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An important question in phonology is to what degree the learner uses distribu-
tional information rather than substantive properties of speech sounds when
learning phonological structure. This paper presents an algorithm that learns
phonological classes from only distributional information: the contexts in which
sounds occur. The input is a segmental corpus, and the output is a set of phono-
logical classes. The algorithm is first tested on an artificial language, with both
overlapping and nested classes reflected in the distribution, and retrieves the
expected classes, performing well as distributional noise is added. It is then
tested on four natural languages. It distinguishes between consonants and
vowels in all cases, and finds more detailed, language-specific structure. These
results improve on past approaches, and are encouraging, given the paucity of
the input. More refined models may provide additional insight into which phono-
logical classes are apparent from the distributions of sounds in natural languages.

1 Introduction

An area of interest in linguistics is how much of human language is innate
and howmuch is learned from data (e.g. Chomsky 1988, Elman et al. 1996,
Pullum & Scholz 2002, Tomasello 2003). From this perspective, the ques-
tion of how much information about phonological categories can be
retrieved strictly from distributional information is of considerable
importance to the field of phonology.
One of the central observations of phonological theory is that speech

sounds tend to pattern according to phonetic similarity, both within and
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across languages (Chomsky &Halle 1968,Mielke 2008). For example, pro-
cesses like final obstruent devoicing, where voiced obstruents become
voiceless word- or syllable-finally, are common across languages
(Wetzels & Mascaró 2001). Despite the differences in place and manner
of articulation across these sounds, two shared phonetic properties allow
them to be treated as a single class: substantial impedance of airflow out
of the vocal tract, and vocal fold vibration.
Based on this robust typological generalisation, classic work has sug-

gested that there is a universal tendency for language learners to group
sounds based on their phonetic properties (e.g. Chomsky & Halle 1968).
Languages may use classes differently in their phonologies, but in prin-
ciple the set of classes available across languages should be the same, by
virtue of shared human physiology.
There is evidence, however, for the existence of classes that do not appear

to be phonetically coherent, such as the Sanskrit ‘ruki’ class (Vennemann
1974), the triggers for Philadelphia /æ/-tensing (Labov et al. 2006) and
Cochabamba Quechua, where etymological /q/ has become [ʁ], but still pat-
terns with the voiceless stops (Gallagher 2019).Mielke (2008) presents many
such cases. Instances of variable patterning of a segment across languages
also bear on this issue. For example, /l/ varies in whether it is treated as
[+continuant] or [―continuant] in languages (Mielke 2008).
These observations have led some researchers to propose that phono-

logical classes may be learned and language-specific (Mielke 2008,
Dresher 2014, Archangeli & Pulleyblank 2018, among others). Under
such theories, phonologically salient classes need not be phonetically
coherent, and distributional learning must account for a larger part of
phonological acquisition than previously thought. That is, a phonological
class is identified based (at least in part) on how its members pattern in the
language, rather than some shared phonetic quality.
The typological observation that classes tend to be phonetically coherent

is accounted for by suggesting a tendency for similar sounds to undergo
similar phonetically driven diachronic processes (Blevins 2004). In other
words, typology is governed primarily by pressures on language transmis-
sion, rather than biases on the part of the learner. These pressures will tend
to generate phonetically natural outcomes, though unnatural outcomes can
also occur (Beguš 2018a, b). This claim remains controversial (Kiparsky
2006), though unnatural outcomes have been frequently documented
(e.g. Bach & Harms 1972, Mielke 2008, Scheer 2015).
Regardless of whether one is willing to commit to the position of emergent

classes, these ideas raise theoretically interesting questions. Namely, to what
extent are phonological classes apparent in the distribution of sounds in a lan-
guage, and to what extent do learners make use of this information?
For a class to be APPARENT in the distribution of sounds in a language, the

sounds in that class must impose similar restrictions on which sounds may
occur nearby, and this effect must be LEARNABLE, i.e. robust enough to be
detectable by some learning algorithm. Distribution is, however, only one
source of information available to thehuman learner.Even if a class is apparent
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in the input data, this does notmean that learners are bound touse it. Itmaybe
the case that learners rely on such informationonlywhen it is robust enough to
override other (possibly conflicting) influences, such as phonetic information
or learning biases (see e.g. Moreton 2008, Hayes et al. 2009).
This paper investigates the learning of phonological classeswhen onlydis-

tributional information is available. That is, it deals with the question of
what classes are apparent, rather than what the learner might actually use.
It does so by constructing an algorithm that attempts to learn solely from
the contexts in which sounds occur, building on past work (e.g.
Goldsmith & Xanthos 2009, Nazarov 2014, 2016). Again, this is not to
suggest that phonetic information is not important for characterising phono-
logical classes: rather, it is an attempt to see how far we can getwhile restrict-
ing ourselves to only one of the many available sources of information.
The algorithm consists of the four components in (1), each of which con-

tributes to accurate learning of phonological classes.

(1) a. Vector embedding (§4–§4.1)
Sounds in a phonological corpus are represented as points in a high-
dimensional space based on the contexts in which they occur. This
allows for numerical comparison between sounds.

b. Normalisation (§4.2)
The values of the vector representations are transformed using a
statistical technique that highlights informative contexts.

c. Principal Component Analysis (§5.1)
The normalised vector representations are transformed into lower-
dimensional representations.This allows generalisation across contexts
that provide similar information.

d. Clustering (§5.3)
A clustering algorithm is applied to the low-dimensional normalised
representations to find classes.

Steps (c) and (d) are recursively performed on the discovered classes,
allowing classes of different sizes to be found (§5.4).
Aside from eschewing phonetic information, this algorithm operates

with two additional assumptions. First, it uses only phonotactic informa-
tion: there is no explicit attempt to capture alternations. Although this may
be a reasonable assumption about the initial phonological learning done by
infants (e.g. Hayes 2004, Prince & Tesar 2004, Jarosz 2006), it is adopted
here merely as a simplifying assumption. Second, the algorithm assumes
that the learner has access to a segmental representation of speech (e.g.
Lin 2005, Feldman et al. 2013).
The algorithm produces a set of phonological classes that may be viewed

as implicitly reflecting a feature system, in that any class contained in this
set can be uniquely characterised by some combination of feature/value
pairs. The process of deriving an explicit feature system from a set of
classes is described in a related paper (Mayer & Daland 2019).
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This paper is structured as follows. §2 reviews past research that has
taken a distributional approach to learning phonological structure. §3
describes a toy language with well-defined phonotactic properties, which
serves as a running example and a basic test case for the algorithm. The
next two sections describe the components of the algorithm. §4 details
how a normalised vector representation of the sounds of a language can
be generated from a phonological corpus. §5 shows how a combination
of Principal Component Analysis and clustering algorithms can be used
to extract phonological classes from such embeddings, and details its per-
formance on the toy language. §6 applies the algorithm to Samoan,
English, French and Finnish. It is able to successfully distinguish conso-
nants and vowels in every case, and retrieves interpretable classes within
those categories for each language. §7 compares these results against past
work, and §8 offers discussion and proposals for future research.

2 Previous work

Distributional learning has been proposed in most areas of linguistics, sug-
gesting that it may be a domain-general process. Examples include word
segmentation and morphology (e.g. Saffran et al. 1996, Goldsmith
2010), syntax (e.g. Harris 1946, Redington et al. 1998, Wonnacott et al.
2008) and semantics (e.g. Andrews et al. 2009).
Distributional approaches to phonology were explored by a number of pre-

generative phonologists, but this work was limited by technological factors,
and is not well-known today (see Goldsmith & Xanthos 2008: App. A).
More powerful computers, together with advances in statistical and machine
learning research, have recently rendered such approaches more viable.1
Powers (1997) provides a detailed comparison of early work building on

these advances. Notable additions include vector representations of
sounds, normalisation to probabilities and the use of matrix factorisation
and bottom-up clustering algorithms to group sounds together. While
these approaches are a notable step forward, they frequently fail to distin-
guish between consonants and vowels in English. This should be taken
with some caution, however, as Powers ran his evaluations on orthographic
data, whose vowels (a, e, i, o, u and sometimes y) do not map straightfor-
wardly onto phonemic vowels.
In the same period, Ellison (1991, 1992) explored a MINIMUM DESCRIPTION

LENGTH analysis, which uses an information-theoretic objective function to
evaluate how well a set of classes fits an observed dataset. Ellison reports
that his method is generally successful in differentiating consonants and
vowels across a wide range of languages, as well as identifying aspects of
harmony systems. He also runs his models on orthographic data.
In more recent work, Goldsmith & Xanthos (2009) compare three

approaches to learning phonological classes in English, French and

1 Terms that are important for the algorithm presented in this paper will be defined in
later sections.
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Finnish. The first, Sukhotin’s algorithm, is mostly of historical interest,
but can differentiate between consonants and vowels reasonably well,
using calculations simple enough to be performed by hand. The second
uses SPECTRAL CLUSTERING, which models distributional similarity
between segments as an undirected graph with weighted edges. By
finding an optimal partition of the graph into two or more groups,
Goldsmith & Xanthos are able to successfully distinguish between conso-
nants and vowels, and provide a basic characterisation of harmony systems.
The third uses MAXIMUM LIKELIHOOD HIDDEN MARKOV MODELS.
Maximum likelihood estimation is used to learn transition and emission
probabilities for a finite-state machine with a small number of states
(e.g. two for vowel vs. consonant). The ratio of emission probabilities
for each segment between states can then be used to classify them. This
approach works well for distinguishing vowels and consonants, identifying
vowel harmony, and (to some extent) syllable structure.
Calderone (2009) uses a similar approach to spectral clustering,

INDEPENDENT COMPONENT ANALYSIS, which decomposes a matrix of
observed data into a mixture of statistically independent, non-Gaussian
components. This results in a qualitative separation between consonants
and vowels, as well as suggesting finer-grained distinctions within these sets.
Taking a different approach, Nazarov (2014, 2016) details an algorithm

for jointly learning phonological classes and constraints using a combi-
nation of maximum entropy Optimality Theory and Gaussian mixture
models. Nazarov’s method calculates the information gain from introdu-
cing a constraint that penalises a segment in a particular context, then clus-
ters segments based on this information gain, using a Gaussian mixture
model. Segments that are clustered together are hypothesised to form a
class, and specific constraints are in turn combined into more general
ones using these classes. This performs well on a simple artificial language.
Finally, recent work has used neural networks to learn phonological

structure from distribution. Silfverberg et al. (2018) use a recurrent
neural network to generate phoneme embeddings. They show that these
embeddings correlate well with embeddings based on phonological fea-
tures, but do not attempt to explicitly identify classes. Their non-neural
comparison model employs vector embedding, singular value decompo-
sition, and normalisation using positive pointwise mutual information,
all of which are used in the algorithm presented in this paper, but it does
not take phoneme ordering into account. Similarly, Mirea & Bicknell
(2019) generate phoneme embeddings using a long-term short-term
memory neural network, and perform hierarchical clustering on these
embeddings. This clustering does not cleanly separate consonants and
vowels, though some suggestive groupings are present.
The goal of this paper is to expand on the successes of this ongoing col-

lective research programme. The algorithm described below shares many
aspects with past work, such as vector embedding (Powers 1997,
Calderone 2009, Goldsmith & Xanthos 2009, Nazarov 2014, 2016,
Silfverberg et al. 2018, Mirea & Bicknell 2019), normalisation (Powers
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1997, Silfverberg et al. 2018), matrix decomposition (Powers 1997,
Calderone 2009, Goldsmith & Xanthos 2009, Silfverberg et al. 2018)
and clustering algorithms (Powers 1997, Nazarov 2014, 2016, Mirea &
Bicknell 2019). The innovations that will be presented below are largely
in the combination and extension of these techniques, but the clustering
methodology presented is relatively novel.
These innovations allow for the retrieval of classes that stand in a

complex relationship to one another in an artificial language. They also
enable the learning of finer-grained categories in natural languages,
while requiring fewer assumptions than past work. The modular structure
of the algorithm also provides a useful general framework in which further
studies of distributional learning might proceed. The current implementa-
tion of this algorithm is available in the online supplementary materials,
and researchers are encouraged to use and modify it freely.2

3 Parupa: an artificial language

Because it is not clear a priori what classes might be apparent in the distri-
bution of a natural language, it is useful to begin with a case where the
target classes are known in advance, a practice adopted in past work
(Goldsmith & Xanthos 2009, Nazarov 2014, 2016). To this end, I intro-
duce an artificial language called Parupa, which has well-defined phonotac-
tic properties.3 Parupa serves as a running example throughout the paper
and as an initial test case for the algorithm. Its consonant and vowel inven-
tories are shown in (2).

(2) p
b

t
d
r

k
g

i
e

a

u
o

Parupa has the distributional properties in (3).

(3) a. All syllables are CV.
b. Vowel harmony: words must contain only front (/i e/) or back (/u o/)

vowels. /a/ may occur in either case (i.e. it is transparent to harmony).
c. Words must begin with /p/ or /b/.
d. CV co-occurrence restrictions:

/p t k/ must be followed by high vowels or /a/.
/b d g/ must be followed by mid vowels or /a/.
/r/ may be followed by any vowel.
The full set of consonants is only in contrast before /a/.

2 https://doi.org/10.1017/S0952675720000056. Any later modifications of this code
will be made available at https://github.com/connormayer/distributional_learning.

3 The language is named after one of the first words generated by the hidden Markov
model.
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Note that although these properties vary in their ‘phonetic naturalness’,
there is no notion of phonetic substance in this model. These particular
properties were chosen in part to emphasise that the distributional learning
algorithm does not distinguish between natural and unnatural patterns.
More importantly, they were chosen to produce multiple, overlapping par-
titions of the sets of vowels and consonants. For example, the vowel set is
partitioned in two different ways: high–mid and front–back. This struc-
ture is common in natural languages, and introduces challenges for
many clustering algorithms (§5). Given these properties, the algorithm
should retrieve at least the classes shown in Fig. 1.

A language corpus was generated using a Hidden Markov Model (see
Appendix A).4 Although each segment was equally likely to occur in
environments where it is phonologically licit, the phonotactic constraints
meant that not all segments were equally common in the corpus (for
example, /a/ was the most frequent vowel). The generated corpus had
50,000 word tokens, resulting in about 18,000 word types. The input to
the algorithm consists only of the word types.5 Examples of Parupa
words are given in (4).

(4) berari
boka
bopu

pupabopa
padoropa
piretiba

pa
bo
pabarubo

paka
pakubatuda
barika

4 Quantifying similarity: vector space models

This model operates under the assumption that elements in the same cat-
egory should have similar DISTRIBUTIONS (e.g. Harris 1946, Mielke 2008).
A distribution is a description of how frequently each of a set of possible
outcomes is observed. Here the elements we are interested in are sounds,
the categories are phonological classes, and the outcomes are the
CONTEXTS in which a sound occurs, i.e. the other sounds that occur near it.
This assumption can be broken down into two parts. The first is that if

two sounds participate in the same phonological pattern, they must share
some abstract representational label: the label indicates the ‘sameness’ of

Figure 1
The phonological classes of Parupa.

p

b

t

d

k

g r

i

u

e

o a

4 All appendices are available in the online supplementary materials.
5 Consistent with previous work (e.g. Bybee 1995), type frequency produces more
interpretable results than token frequency, and is used throughout.
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the two sounds with respect to this pattern. In this case, the labels we are
interested in are featural specifications reflecting class membership. The
second is that all abstract representational labels must be discoverable
from some phonological pattern, hence for every abstract representational
label there will be a phonological pattern that uses this label. That is, we
should not expect the learner to posit abstract structure in the absence of
some detectable influence on the data. This is similar to assumptions
made in work on hidden structure learning (e.g. Tesar & Smolensky
2000), though it is stronger in suggesting that the existence of a label,
and not only its assignment to overt forms, is conditioned by phonological
patterns.
To quantify the distributions of each sound, I adopt VECTOR SPACE

MODELLING. The principle behind this approach is to represent objects
as vectors or points in an n-dimensional space whose dimensions capture
some of their properties. Embedding objects in a vector space allows for
convenient numerical manipulation and comparison between them.
This approach is commonly applied in many language-related domains

(Jurafsky & Martin 2008): in document retrieval, where documents are
represented by vectors whose dimensions reflect words that occur in the
document, in computational semantics, where words are represented by
vectors whose dimensions reflect other words that occur near the target
word, and in speech/speaker recognition, where sounds are represented
by vectors whose components are certain acoustic parameters of the
sound. This is also essentially the approach taken in many of the papers
discussed above, where sounds are represented as vectors whose dimen-
sions reflect counts of sounds that occur near them. Whether we are
dealing with documents, words or sounds, the projection of these objects
into a vector space should be done in such a way that similar objects end
up closer in the space than less similar ones. An important distinction
between applying this approach to documents or words and applying it
to sounds is that ORDER is crucially important for sounds. In the applica-
tions above, it is generally more useful to know that a word occurs in a
document or that a word occurs near another word than it is to know
that a word is the nth word in a document, or that a word occurs exactly
n words before another word. In contrast, ordering is crucial for pho-
nology, since adjacency and directionality play important roles in phono-
logical processes.6 I generate embeddings by combining aspects of the
approaches described above. Before going into more detail, I will
provide a simple, concrete example of how we can construct a vector
representation of sounds in a phonological corpus.

6 Not all aspects of ordering are important for phonology: knowing that a sound is the
third sound in a word is not generally useful, although knowing that a sound is first
or last can be.

98 Connor Mayer

https://doi.org/10.1017/S0952675720000056 Published online by Cambridge University Press

https://doi.org/10.1017/S0952675720000056


4.1 A simple vector embedding of sounds

Suppose we have a language with only two sounds, /t/ and /a/, and a corpus
containing the five words in (5).

(5) ta ata tata atta taa

Σ is the set of all unique symbols in the corpus. There is an additional
symbol not in Σ, #, which represents a word boundary.7 Here Σ= {t, a}.
To go from this corpus to a vector representation of the sounds, we must

decide how to define the dimensions of the vector space, i.e. which aspects
of a sound’s distribution we wish the model to be sensitive to, and how
these aspects should be quantified. For this simple example, I will define
each dimension as the BIGRAM count of the number of times a particular
symbol occurs immediately before the target symbol. The corresponding
vector for each symbol s in Σ consists of dimensions with labels s1_,
where _ indicates the position of the symbol whose vector we are con-
structing and s1 ∈ Σ ⋃ {#}. The value of each dimension is the number
of times s1 occurs before the target symbol in the corpus.
A matrix consisting of the resulting count vectors is shown in Table I.

For example, the cell in the bottom left corner of this table has the value 6,
because /a/ occurs after /t/ six times in the corpus. Note that although these
sounds have overlapping distributions, the vectors capture the general
pattern of alternation between the two. These counts can be interpreted
as points or vectors in three-dimensional space, where /t/ = (1, 3, 3) and
/a/ = (6, 1, 2).

4.2 What do we count when we count sounds?

The previous example counts sounds that occur immediately preceding
the target sound. This is unlikely to be informative enough for anything
but the simplest languages. There are many other ways we might choose
to count contexts. Here I adopt a type of TRIGRAM counting that counts
all contiguous triples of sounds that contain the target sound.8 Thus our

Table I
Count vectors for a toy language.

t_

1
6

t
a

a_

3
1

#_

3
2

7 For clarity, I omit word boundaries in the presentation of the data. In practice,
words are padded on either side with nJ 1 word-boundary symbols when using
n-gram counts.

8 The software allows n-grams of any size to be used. Trigram counts resulted in the
best performance, and are used throughout the paper (see Appendix C1 for some
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dimension labels will take the forms s1s2_, s1_s₃ and _s2s₃, where s1, s2,
s₃ ∈ Σ ⋃ {#}.
Formally, we define an m × n matrix C, where m= |Σ| (the number of

sounds in the language), and n is the number of contexts. Under
the trigram contexts considered here, n= 3|Σ ⋃ {#}|2. s and c are indexes
referring to a specific sound and context respectively, and each matrix
cellC(s, c) is the number of times sound s occurs in context c in the corpus.

4.3 Normalised counts

Raw counts tend not to be particularly useful when dealing with vector
embeddings of words, because many different types of words can occur
in the same contexts (e.g. near the or is). A common technique is to normal-
ise the counts in some way, such as by converting them to probabilities,
conditional probabilities or more sophisticated measures (Jurafsky &
Martin 2008). Normalisation proves to be valuable for sounds as well.
Here I report results using POSITIVE POINTWISE MUTUAL INFORMATION

(PPMI).9
PPMI is an information-theoretic measure that reflects how frequently a

sound occurs in a context compared to what we would expect if sound and
context were independent (Church &Hanks 1990). It has been used in pre-
vious models of distributional phonological learning (Silfverberg et al.
2018). PPMI is defined in (6).

(6)
PPMI(s, c)=maxtlog2

P(s, c)
P(s)P(c)

, 0u

If P(s) and P(c) are independent, then P(s, c) ≈ P(s)P(c), and hence
the value of the inner term log2 (P(s, c) / P(s)P(c)) will be close to 0. If
P(s, c) occurs more frequently than the individual probabilities of s and
c would predict then the value will be positive, and if (s, c) occurs less
frequently than expected, it will be negative.
PPMI converts all negative values of the inner term to 0 (as opposed to

POINTWISE MUTUAL INFORMATION (PMI), which does not; Fano 1961).
This is desirable when dealing with words, because the size of the vocabu-
lary often requires an unreasonable amount of data to distinguish between
words that tend not to co-occur for principled reasons and words that
happen not to co-occur in the corpus (e.g. Niwa & Nitta 1994, Dagan
et al. 1995). Although this should be less of a concern with phonological
data, given the relatively small number of sounds, in practice PPMI

comparison). Hayes & Wilson (2008) also primarily employ trigrams; see Kager &
Pater (2012) for a phonotactic restriction that operates over a 4-gram window.

9 The software also allows normalisation using raw counts, probabilities, conditional
probabilities and pointwise mutual information (PMI). These normalisation
methods did not perform as well as PPMI on pilot runs. See Appendix C2 for
some comparison.
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provides more interpretable results than PMI on several of the datasets
examined here (see Appendix C2).10
The three probabilities used to calculate (6) can be straightforwardly cal-

culated from the matrix C containing phoneme/context counts using
maximum likelihood estimation, as in (7).

(7)
P(s, c)=

C(s, c)
% C(i, j)

a. P(s)=% P(s, c)b. P(c)=% P(s, c)c.

i, j

c s

We can then define a new matrix M containing our PPMI-normalised
values, as in (8).

(8)
M(s, c)=maxtlog2

P(s, c)
P(s)P(c)

, 0u

Table II shows a matrix consisting of the values from Table I converted to
PPMI. The separation between the two vectors on each dimension has
become even more pronounced.

5 Finding classes using Principal Component Analysis
and k-means clustering

Once we have created normalised vector embeddings of the sounds in our
corpus, we need a way to extract phonological classes from the space. It is
intractable to consider every possible set of classes, since given an alphabet
Σ, there are 2|$| possible classes, and hence 22!%! sets of classes that could be
chosen. One solution is to use CLUSTERING ALGORITHMS. Broadly speaking,

Table II
Count vectors for a toy language, normalised using PPMI.

t_

0
0.61

t
a

a_

0.78
0

#_

0.46
0

10 This result is at odds with the idea that negative information is crucial for learning
grammars (e.g. Trubetzkoy 1939, Hayes & Wilson 2008). I suspect that, as for
words, the number of coincidentally unattested sequences of sounds overwhelms
the number of sequences that are phonotactically illicit. For example, theCMU pro-
nouncing dictionary is transcribed using 39 phonemes, and contains 27,209 words of
length six. There are 396 = 3,518,743,761 possible words of length six that could be
generated from an inventory of 39 phonemes. Thus only 0.0007% of possible six-
sound words are attested. Because there are so many unattested sequences, it may
be the case that it is more informative to know where sounds do occur than where
they do not. I leave a detailed exploration of this for future research.
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such algorithms attempt to assign each point in a dataset to one or more
clusters, such that the points in each cluster are by some criterion more
similar to other points in the cluster than to points outside of the cluster.
Many clustering algorithms with different properties and assumptions

have been proposed (see Aggarwal & Reddy 2013). The nature of the
current task imposes the restrictions in (9) on the type of algorithm that
should be used.

(9) a. It must be unsupervised, meaning that the algorithm does not require
access to training data (sounds that have already been assigned to
classes).

b. It must not require the number of classes to be specified in advance.
c. It must allow multiple class membership. This is analogous to saying

that it must allow a set of sounds to be partitioned in multiple ways.
In Parupa, for example, /i/ patterns as both a front and a high vowel.

d. Distributional evidence for class membership might only be present
in some contexts. For example, the high–mid vowel distinction in
Parupa is signalled only by the preceding consonant, while the
front–back distinction is apparent only from the preceding and
following vowels. A suitable algorithm should be able to look at
meaningful subsets of all contexts when clustering sounds.

There are clustering algorithms that meet these criteria, particularly
certain SUBSPACE CLUSTERING algorithms (Müller et al. 2009), but, for
practical reasons, properties of the data considered here make them
difficult to apply. First, these algorithms are generally difficult to param-
eterise in a principled way, requiring assumptions about the number of
clusters or the distributional properties of the data. Second, traditional
phonological analysis assumes that there are no outlier sounds: even if a
sound is underspecified for most features (e.g. Lahiri & Marslen-Wilson
1991), it should still belong to at least one cluster, such as the class of
consonants or vowels.11 Many common clustering algorithms assume the
presence of outliers. Finally, our data consist of a small number of
points, one per sound, and a large number of dimensions, one per
context. Most clustering algorithms are optimised to handle the opposite
situation well, and this leads to severe efficiency issues.
In light of these problems, I propose an algorithm that makes clustering

well suited to this task. It works by recursively applying Principal
Component Analysis and one-dimensional k-means clustering. The next
sections will show that this allows for multiple partitions of the same set
of sounds, while simultaneously exploiting the generally hierarchical
structure of phonological classes.

11 But see §6.1 and §6.4, where a clear distributional distinction is found between
native and recently acquired phonemes in Samoan and Finnish.
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5.1 Principal Component Analysis

Principal Component Analysis (PCA; Hotelling 1933) is a dimensionality-
reduction technique. It takes a matrix consisting of points in some number
of possibly correlated dimensions and geometrically projects that data onto
a set of new, uncorrelated dimensions called PRINCIPAL DIRECTIONS. These
are linear combinations of the original dimensions. The dimensions of the
data after they have been projected onto the principal directions are called
PRINCIPAL COMPONENTS.
The number of principal components is the minimum of mJ 1 and n,

where m is the number of rows in the dataset and n is the original
number of dimensions. Principal components are ordered descending by
proportion of variance captured, with PC1 capturing the most variance,
followed by PC2, and so on. This has the useful consequences in (10).

(10) a. To reduce a data set to p dimensions while minimising the amount
of information lost, we simply choose the first p principal com-
ponents.

b. Because we know how much variance each principal component
captures, we can choose the number of new dimensions using a
variance-based criterion. This could be choosing the number of
dimensions required to capture some percentage of the original
variance, or choosing only dimensions whose variance contribution
exceeds some threshold.

The mathematical details of PCA can be found in Appendix B.
PCA is useful for clustering phonological data for several reasons: first,

because our matrix consists of few rows and many dimensions, its dimen-
sions are highly correlated. Applying PCA reduces the matrix to a set of
uncorrelateddimensions,whichmakes interpretationmore straightforward.
Second, PCA helps to highlight robust sources of variance while reducing
noise. Finally, examining individual principal components has the potential
to reveal multiple ways of partitioning a single set of sounds (see §5.2).
The generalisation performed by PCA has been achieved in various ways

in previous work. Silfverberg et al. (2018) use PCA in an analogous way,
while Calderone (2009) employs independent component analysis, which
is closely related. Nazarov (2014, 2016) uses interaction between constraint
selection and class induction to achieve a similar outcome: constraint selec-
tion chooses particular contexts to focus on, and class induction allows
multiple contexts to be aggregated into a single context by inferring a
phonological class.

5.2 Visualising PPMI vector embeddings of Parupa segments

A challenge in dealing with high-dimensional spaces is visualising the data.
PCA proves useful for this task as well: by choosing the first two or three
principal components, we can visualise the data in a way that minimises the
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variance that is lost. The visualisations of vector embeddings used
throughout this paper will employ this technique. In addition to allowing
the embeddings to be qualitatively evaluated, it also provides a partial
representation of the input to the clustering component described in the
next section. Note that different partitions of each set of sounds can be
observed along each individual principal component.
Figure 2a shows a two-dimensional PCA visualisation of the vector

space embedding of Parupa using trigram counts and PPMI weighting.
The vowel/consonant distinction is clear along PC1, and vowel height is
reflected in PC2.
Figures 2b and 2c show PCAs generated using only rows of the matrix

M corresponding to consonants and vowels respectively. For the conso-
nants, the distinction between sounds that must precede high vowels
and sounds that must precedemid vowels is reflected in PC1, while the dis-
tinction between sounds that can begin a word and sounds that cannot is
reflected in PC2. For the vowels, the height distinction is reflected in
PC1, while the backness distinction is reflected in PC2. Note the

Figure 2
A PCA visualisation of the vector embeddings of Parupa, generated using trigram

counts and PPMI normalisation: (a) all segments; (b) consonants; (c) vowels.
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intermediate position of /r/ and /a/ in the plots, reflecting their shared dis-
tributions within the consonant and vowel classes.
PCA visualisations must be interpreted with caution, since they gener-

ally lose information present in the full space. In the simple case of
Parupa, however, it seems clear that there should be sufficient information
in the vector embeddings to retrieve the intended classes.

5.3 k-means clustering

Given a principal component, we would like to determine how many
classes the distribution of sounds suggests. For example, a visual inspection
of Fig. 2b suggests PC1 should be grouped into three classes: /b d g/, /r/ and
/p t k/, while PC2 should be grouped into two classes: /b p/ and /d g r k t/.
k-means clustering can be used to group a set of points into k clusters by
assigning points to clusters in such a way that the total distance from
each point to its cluster centroid is minimised (MacQueen 1967). That is,
we assign our data points x1 … xm to clusters c = c1 … ck such that we
minimise the within-cluster sum of squares (WCSS), as in (11).

(11) WCSS=% % |x®mi|2
xÊcii=1

k

where μi is the centroid of cluster ci and ‖xJ μi‖ is the Euclidean distance
between x and μi.
In order to determine the optimal value of k, information-theoretic mea-

sures such as the Bayesian Information Criterion (Schwarz 1978) can be
used. Suchmeasures attempt to strike a balance betweenmodel complexity
and model fit by penalising more complex models (in this case, higher
values of k), while rewarding fit to the data (in this case, distances from
the cluster centroids). I use a custom Python implementation of the X-
means algorithm (Pelleg & Moore 2000), based on the R code provided
by Wang & Song (2011), which finds the optimal number of clusters
using the Bayesian Information Criterion as an evaluation metric. When
applied to PC1 and PC2 of the set of consonants discussed in the previous
paragraph, this algorithm finds exactly the expected classes: namely /b d g/,
/r/ and /p t k/ on PC1, and /b p/ and /d g r k t/ on PC2.
Readers familiarwith clustering techniquesmightfind it odd that cluster-

ing is carried out over single principal components rather than all dimen-
sions, whether these be the original dimensions representing specific
contexts or the reduced dimensions after PCA is performed. This is a sen-
sible choice, because of the properties of the vector embeddings.
The columns in the vector space are massively redundant. Each princi-

pal component in a PCA can be thought of as an aggregation of the infor-
mation in a correlated set of columns in the original data. Thus PCA does
some of the work of finding meaningful subspaces over which clustering is
likely to be effective. Each principal component can be thought of as repre-
senting some number of dimensions in the original space.
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Additionally, clustering over individual principal components rather
than sets of principal components allows us to find broad classes in the
space that might otherwise be overlooked. This is apparent when examin-
ing Fig. 2c: clustering over PC1 and PC2 separately allows us to find dis-
tinct partitions of the vowel space based on height and backness. If PC1
and PC2 were considered together, the only likely clusterings would be
either a single cluster containing all vowels, missing the class structure
completely, or one cluster per sound. The latter is equivalent to finding
classes that reflect the INTERSECTIONS of different height and backness
values, but overlooks the broader class structure from which these
subclasses are generated. Finding such classes is a property that many sub-
space clustering algorithms have, but, as described above, these algorithms
are generally unsuited to this type of data. Clustering over single principal
components is a simple way to achieve this property while mitigating many
of the issues that arise.
Since principal components capture increasingly less and less of the total

variance of the data, we may wish to cluster on only a subset of them that
capture robust patterns. I return to this issue in §5.5.
The spectral clustering algorithm in Goldsmith & Xanthos (2009) is

similar to the method presented here, in that it clusters sounds one-dimen-
sionally along a single eigenvector by choosing an optimal partition. Their
use of maximum entropy Hidden Markov Models also involves a kind of
one-dimensional clustering on emission probability ratios, setting a
threshold of 0 as the boundary between clusters. Powers (1997) and
Mirea & Bicknell (2019) both use hierarchical clustering to extract
classes from embeddings. Hierarchical clustering is simple, but not well
suited to phonological class discovery: it cannot find multiple partitions
of the same set of sounds, and requires the number of classes to be
decided by an analyst. Finally, Nazarov (2014, 2016) uses Gaussian
mixture models to do one-dimensional clustering on the embeddings of
segments in a context. Gaussian mixture models assume that the data
was generated by some number of underlying Gaussian distributions,
and attempt to learn the parameters of these distributions and provide a
probabilistic assignment of points to each. This approach is perhaps the
most similar to the one taken here, since k-means can be considered a
special case of Gaussian mixture models that does hard cluster assignment
and does not take into account the (co-)variance of its discovered clusters.

5.4 Recursively traversing the set of classes

The final component of this clustering algorithm exploits the generally
hierarchical nature of phonological classes. In many cases a distinction is
only relevant to segments in a particular class: for example, the feature
[strident] is only relevant for coronal fricatives and affricates. Thus pat-
terns that do not contribute a great deal to the variance of the entire set
of sounds might become more apparent when only a subset of the
sounds is considered. In order to exploit this hierarchical structure and
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detect such classes, this clustering algorithm is called recursively on the
sets of classes that are discovered.
Let A be the matrix created by performing PCA on M (the matrix con-

taining normalised embeddings of the sounds in the corpus). Suppose we
perform k-means clustering on the first column of A (the first principal
component ofM), and discover two classes, c1 and c2. The recursive traver-
sal consists of the steps in (12).

(12) a. Creating a matrix M¢ containing just the rows in the original em-
bedding matrix, M, that correspond to sounds in c1.

b. Performing PCA on M¢, producing a new matrix A¢, whose col-
umns are the principal components.

c. Performing k-means clustering on the individual columns of A¢.

This process will then be repeated on c2, on any classes discovered when
clustering on A′ and on the remaining columns of A. Recursive traversal
stops when (a) M′ consists of only a single row (i.e. there is a cluster con-
taining just one sound), or (b) the clustering step produces a single cluster.
Note that the original normalised embeddingM is always used as the start-
ing point: recursive traversal does not recalculate embeddings, but simply
performs PCA and clustering on a subset of the rows in this matrix.

5.5 Putting it all together

To summarise, this algorithm runs Principal Component Analysis on a
matrix of normalised vector embeddings of sounds, and attempts to find
clusters on the most informative principal components. For each cluster
found, the algorithm is recursively applied to that cluster to find additional
subclusters. Considering multiple principal components for each set of
sounds allows multiple partitions of these sets, and the recursive character
allows it to exploit the generally hierarchical nature of phonological classes
to discover more subtle class distinctions.
The steps of the algorithm and the necessary parameters are detailed

in (13).

(13) a. Calculate the normalised vector embedding matrix M.
b. Perform Principal Component Analysis using M as input, producing

matrix A.

d. Return the clusters that were found by this and all recursive calls.

c. For each principal component, or column of A, A:,i, where 1≤i≤p:
Cluster the sounds in A:,i into between 1 and k clusters.i.
If more than one cluster is found, run steps (b) and (c) again on
each cluster that has more than one member, using as input the
matrix M¢, which contains only the rows of M corresponding to
the sounds found in the cluster.

ii.
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The two parameters that must be set here are p, the number of principal
components we consider for each input, and k, the maximum number of
clusters we attempt to partition each principal component into.
I choose k by assuming the typical properties of phonological feature

systems, where a class is either +, ― or 0 (unspecified) for a particular
feature. This suggests that we should partition each principal component
into either one (no distinction), two (a +/― or +/0 distinction, as in PC2
in Fig. 2b) or three (a +/―/0 distinction, as in PC1 in Fig. 2b). Thus,
setting k= 3 seems to be a principled choice.
When choosing p, we want to select only those principal components

that are sufficiently informative. If p is too high, principal components
that contain mostly noise will be included, and result in spurious classes
being detected. If p is too low, important classes may be overlooked.
There have been many proposals for how to choose the number of compo-
nents (e.g. Cangelosi & Goriely 2007). Here I use a variant of the relatively
simple Kaiser stopping criterion (Kaiser 1958). This takes only the princi-
pal components that account for above-average variance. This criterion is
simple to calculate and works well in practice here.
In general, however, choosing how many components to use can be

more of an art than a science. It is useful to consider this as a parameter
that might be tuned for different purposes (for example, we might want
to consider less robustly attested classes, with the intention of later evalu-
ating them on phonetic grounds). Increasing or decreasing the number of
components used has the effect of increasing or decreasing the algorithm’s
sensitivity to noise, and determines how robust a pattern must be to be
retrieved. I will return to this point in §6.

5.6 Simplifying assumptions

I make two simplifying assumptions when applying the algorithm to the
data presented in the rest of the paper: I restrict partitions of the full set
of sounds to a maximum of two classes, using only the first principal com-
ponent. Assuming that the most obvious partition is between consonants
and vowels, this is equivalent to stipulating that the first partition of a seg-
mental inventory must be into these two categories, and that subclasses
must be contained entirely in the set of vowels or the set of consonants.
This potentially misses certain classes that span both sets (like the class
of [+voice] sounds, or classes containing vowels and glides, such as /i j/
and /u w/), but greatly reduces the number of classes generated, and facili-
tates interpretation.
Previous work has made similar assumptions about how the full set of

sounds should be partitioned: spectral clustering in Goldsmith &
Xanthos (2009) explicitly assumes a partition into two classes when
making consonant–vowel distinctions, while the maximum entropy
Hidden Markov Model assumes as many classes as there are states.
Studies that use hierarchical clustering (Powers 1997, Mirea & Bicknell
2019) also implicitly make this assumption, as hierarchical clustering
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always performs binary splits. Thus, relative to past work, this assumption
does not provide undue bias in favour of a clean consonant–vowel division.
In fact, lifting the restriction that the first principal component must be

clustered into at most two classes produces different results only in the
cases of Parupa and French. In both cases the full set of sounds is parti-
tioned into three classes instead of two, and only in French are the conso-
nant and vowel classes placed in overlapping partitions. Allowing clustering
of the full set of sounds on other principal components produces additional
classes in every case, but does not affect the classes that are retrieved from the
first principal component. See Appendix C.3 for more discussion.

5.7 Running the algorithm on Parupa

Recursively applying PCA and k-means clustering to the Parupa vector
embeddings detailed in §4 produces (14), where the classes in bold are
those that might be expected from a pencil-and-paper analysis.

(14) /i e u o a/
/i u/
/e o/
/i e/
/u o/
/a/

/p t k b d g r/
/b d g/
/p t k/
/p b/
/t k d g r/

/d g/
/k t/
/p/
/b/
/r/

All of the expected classes indicated in Fig. 1 are present in this set.
Although there are classes that do not obviously participate in the phono-
tactic restrictions described above, these are derivable from the expect-
ed classes: e.g. /t k d g r/ is the class of non-word-initial consonants, /d g/
is the class of non-word-initial consonants that can precede mid vowels,
/t k/ is the class of non-word-initial consonants that can precede high
vowels, etc. The hierarchical relationship between these classes is shown
in Fig. 3, which was generated using code from Mayer & Daland (2019).

p t k b d g r i e u o a

p t k b d g r i e u o a

b d g u oa i u

b p

Figure 3
Classes retrieved for Parupa.

p t kp b t k d g r e o i e

d g t k r
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These diagrams are used throughout the paper, and do not reflect the
order in which the classes were retrieved by the algorithm.12 Rather,
they arrange the classes in a hierarchical structure, where the lines
between classes represent a parent–child relationship: the child class is a
proper subset of the parent class, and there is no other class that intervenes
between the two. Dashed lines indicate that a class is the intersection of two
or more parents. These diagrams give a sense of the overall relationship
between the classes retrieved by the algorithm.
Note that the singleton classes consisting of individual segments are not

in general retrieved. This is the consequence of the k-means clustering
component deciding that no partition of a class into two or three subclasses
is justified. This is not of great concern, however, since the assumption of a
segmental representation necessarily implies that singleton classes are
available to the learner. These may be appended to the list of retrieved
classes if desired.
This algorithm performs well on Parupa, successfully retrieving all of

the intended classes, including those that involve partitioning sets of
sounds in multiple ways.

5.8 Evaluating the robustness of the algorithm on Noisy Parupa

Parupa’s phonotactic constraints are never violated. Although the algo-
rithm does well on retrieving the class structure to which these constraints
are sensitive, no natural language is so well behaved. In order to evaluate
how well the algorithm handles noise, I examine its performance on a
more unruly variant of Parupa: Noisy Parupa.
Noisy Parupa is identical to Parupa, except that some percentage of the

generatedword tokens are not subject tomost of the phonotactic generalisa-
tions described in §3: they constitute NOISE with respect to these generalisa-
tions (see e.g. Archangeli et al. 2011). Noisy words still maintain a CV
syllable structure, but the consonants and vowels in each position are
chosen with uniform probability from the full sets of consonants and
vowels. Examples of Noisy Parupa words are shown in (15), and the
HiddenMarkovModel for generating noisywords is shown inAppendixA.

(15) gogi
reku

kikuka
toredi

duke
pipu

A NOISE PARAMETER determines what percentage of the words are noisy.
Standard Parupa can be thought of as a special case, where this parameter
is set to 0. As the value of this parameter increases, the algorithm should
have more difficulty finding the expected classes. The model was tested

12 Classes are generally retrieved in a top-down fashion, with partitions of larger classes
preceding partitions of smaller ones. This accords with certain proposals for phono-
logical learning (e.g. Dresher 2014). The algorithm exhausts all recursive partitions
of a principal component before moving on to the next.
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on 110 corpora. The noise parameter was varied from 0% to 100% in incre-
ments of 10%, and ten corpora were generated for each parameter value.
Figure 4 shows the median number of expected and unexpected classes

found by the algorithm as the percentage of noisy words increases. The
expected classes are defined as exactly the classes in Fig. 1. The number
of unexpected classes varies stochastically with the contents of each
corpus, but the number of expected classes found remains reasonably
high until 100% noise. From 40% to 70% noise, the expected classes
that are not detected are either /p t k/, /b d g/ or both. In about half the
cases (19/40), the unexpected classes include /p t k r/ and/or /b d g r/.13
In 20 of the remaining 21 cases, the sets /p t/ and/or /b g/ are recovered.
This indicates that the pattern is still detected to some extent, although
the participating classes are less clear, due to the increase in noise.
From 80% to 90% noise, the algorithm reliably fails to detect the classes

/p t k/ and /b d g/, while occasionally also overlooking other classes: /p b/
(4/20), /u o/ (3/20), /i u/ (1/20), /i e/ (3/20) and /e o/ (1/20).
Finally, at 100% noise, the consonants and vowels are the only classes

reflected in the distribution, and these are successfully retrieved in all
cases. The other expected classes that are sometimes retrieved are the
result of chance.
The results of the algorithm on Noisy Parupa suggest that it is robust to

noise. All the expected classes are discovered in up to 30% noise, and even
in up to 90% noise most of the expected classes are still found. Even when

m
ed

ia
n

 n
u

m
b

er
 o

f
d

et
ec

te
d

 c
la

ss
se

s 

Figure 4
A plot of the median number of expected and unexpected classes found by the

algorithm as the percentage of noisy words increases. Error bars span the minimum
and maximum number of classes retrieved from a corpus at that noise level.
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13 When both these classes are present, they will necessarily have been discovered while
clustering on separate principal components, since they overlap.
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expected classes are lost at higher noise levels, these are often still reflected
in aspects of the unexpected classes that are found.14

6 Testing the algorithm on real language data

In this section I deploy the algorithm on several real languages: Samoan,
English, French and Finnish. I include Samoan because it has a relatively
small segmental inventory and fairly restrictive phonotactics, providing a
simple test case. English, French and Finnish are included for continuity
with previous studies (Calderone 2009, Goldsmith & Xanthos 2009,
Silfverberg et al. 2018, Mirea & Bicknell 2019). In addition to simply
exploring which classes are distributionally salient in each language, my

Figure 5
A PCA visualisation of the vector embeddings of Samoan:

(a) all segments; (b) consonants; (c) vowels.
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14 A reviewer wonders, following Archangeli et al. (2011), whether certain types of
noise are more disruptive to this algorithm than others, and whether these corre-
spond to what we see in natural language. It would be interesting to compare the
algorithm’s performance under different types of noise against human performance
under similar conditions in artificial grammar learning experiments.

112 Connor Mayer

https://doi.org/10.1017/S0952675720000056 Published online by Cambridge University Press

https://doi.org/10.1017/S0952675720000056


overarching goal is to successfully discover a consonant–vowel divide.
More specific goals will be detailed in the relevant sections.
For these case studies, I vary the parameter that determines how many

principal components of a class are considered. Recall that the default is to
cluster only on principal components that account for a greater than
average proportion of the variance in the data. I scale this by multiplying
it by a factor (so, for example, we might only consider principal compo-
nents that account for twice the average variance). This is useful because
of the varying levels of distributional noise in different datasets. It is
important to remember that all classes returned with a higher threshold
will also be returned when the threshold is lowered, but in the latter case
some additional, less robust classes will be returned as well. I vary this
parameter primarily to keep the number of discovered classes suitably
small for expositional purposes.The default parameter is 1. More discus-
sion of this parameter can be found in Appendix C4.

6.1 Samoan

The Samoan corpus was generated from Milner’s (1993) dictionary, and
contains 4226 headwords.15 The representations are orthographic, but
there is a close correspondence between orthography and transcription.
Symbols have been converted to IPA for clarity.
Figure 5 is a visualisation of the vector embedding of Samoan, and the

retrieved classes are shown in Fig. 6. The algorithm successfully distin-
guishes between consonants and vowels. It also makes a rough distinction
between long and short vowels, although /aː/ is grouped with the short
vowels. Finally, the set of short vowels and /aː/ is split into low and non-
low, while the set of long vowels is partitioned into high and mid sets.

Figure 6
Classes retrieved for Samoan.

p t k ? m n N f v s h l r i i: e e: u u: o o: a a:

p t k ? m n N f v s h l r i i: e e: u u: o o: a a:

i e u o

i:

i: e: o:a a: u:

i e u o a a: i: e: u: o:

e: o:

15 Thanks to Kie Zuraw for this data.
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There does not appear to be a sufficient distributional basis for partitioning
the set of consonants. Lowering the variance threshold for which principal
components to consider did not result in more classes being learned.
The patterning of /aː/ with the short vowels can be explained by exam-

ining its distribution. While V.V sequences are common in Samoan (1808
occurrences in the corpus), V.Vː, Vː.V and Vː.Vː sequences are rarer (226
occurrences). In 171 of these 226 occurrences, the long vowel is /aː/.
Thus /aː/ patterns more like a short vowel than a long vowel with
respect to its distribution in vowel sequences, and the algorithm reflects
that in its discovered classes. This is an example of a class that cannot be
captured using phonetic features, but is salient in the distribution of the
language.16
To examine whether the trigram window is too small to capture infor-

mation that might allow the consonants to be grouped, I also ran the algo-
rithm on Samoan with the vowels removed. This should allow it to better
capture any word-level co-occurrence restrictions that might differentiate
groups of consonants (McCarthy 1986, Coetzee & Pater 2008). A PCA of
the resulting vector embedding of the Samoan consonants is shown in
Fig. 7.

I report results from running the algorithm with a scaling factor of 1.3
on the variance threshold (i.e. only principal components with at least
1.3 times the average variance were considered). The constraint that the
initial partition of the set of sounds must be binary was also removed,
because the consonant–vowel distinction does not apply here. This
results in the classes shown in Fig. 8. /r/ and /k/ are clearly set apart

Figure 7
A PCA visualisation of the vector embeddings of Samoan

consonants from a corpus without vowels (scaling factor: 1.3).
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16 An anonymous reviewer wonders whether this pattern may have emerged from per-
ceptual expectations for low vowels to be longer than non-low vowels, making /a:/
more perceptually similar to other short vowels.
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from the other consonants. These sounds are relatively uncommon in
Samoan, occurring predominantly in loanwords, and this is reflected in
their distribution. These sounds could be seen as distributional ‘outliers’
that are not as integrated into the phonotactics as native sounds.
Aside from the marginal status of /r/ and /k/ in Samoan phonology, it is

hard to justify these classes in any linguistically satisfying way. The ad-
ditional classes found when the variance threshold was lowered were simi-
larly arbitrary. This suggests that consonant co-occurrence restrictions
reflect little more than the special status of these consonants. Samoan
has been shown to have phonotactic restrictions on root forms (e.g.
Alderete & Bradshaw 2013), and it is possible that running the algorithm
on roots rather than headwords would make these patterns more
detectable.
Given Samoan’s strict (C)V phonotactics, it is perhaps not surprising

that distribution yielded few distinctions in the set of consonants. This
raises the interesting question of whether speakers of Samoan actually
use phonological features to categorise consonants (other than perhaps
/r/ and /k/), or if they are treated as atomic segments. I turn now to
English, where the presence of consonant clusters may give us a better
chance of retrieving additional phonological information.

6.2 English

The English corpus was generated from the CMU pronouncing dictionary
(2008), which gives phonemic transcriptions. Only words with a frequency
of at least 1 in the CELEXdatabase (Baayen et al. 1995) were included, and
some manual error correction was performed. The resulting corpus
consisted of 26,552 word types. Figure 9 is a visualisation of the vector
embedding of English. I report results from using a scaling factor of 1.1
on the variance threshold. The retrieved classes are shown in Fig. 10.

Figure 8
Classes retrieved for Samoan with no vowels.

p t k ? m n N f v s h l r

p t k ? m n N f v s h l r

p t ? m n N f v s h l k

p t ? m N f s h l n v

t ? m N f s h l p
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The sets of vowels and consonants are correctly retrieved. Within the con-
sonants, there is a distinction between /w ɹ/, /p b f h j l/ and the remaining
consonants, i.e. nasals, coronal obstruents and /v/. The class of velar
obstruents, /k g/, is recovered, as well as the class of labial obstruents,
/p b f/, with the exception of /v/. The vowels are more difficult to interpret,
but there are splits that are suggestive of the tense vs. lax distinction.
In a language like Samoan, with a small number of sounds and restricted

syllable structure, it is relatively simple to identify the specific distribu-
tional properties that lead to a particular class being detected. More pho-
notactically complex languages like English are not as straightforward.
We can, however, get a sense of what distributional information is
reflected in a principal component by looking at how contexts are linearly
combined to produce that principal component. A context’s coefficient in
this linear combination reflects the correlation between the principal com-
ponent and the context. Therefore, we can partially characterise a principal
component by examining which contexts are strongly correlated with it.
There is not enough space here for a detailed exploration of the distribu-

tional properties that define each of the classes discovered here, but I will
briefly look at the topmost splits within the consonant and vowel classes.

Figure 9
A PCA visualisation of the vector embeddings of English:

(a) all segments; (b) consonants; (c) vowels (scaling factor: 1.1).
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As noted above, the topmost split in the consonant class is into three
classes: /w ɹ/, /p b f h j l/ and the remaining consonants. This split is dis-
covered on PC1 of the consonant embeddings, which is visible in Fig. 9b.
This principal component appears to primarily capture whether segments
tend to occur before or after a vowel. In the 100 most positively correlated
contexts, the target consonant is followed by a vowel in 100% of contexts
with a following sound (i.e. _s2s₃ or s1_s₃), and is preceded by a conso-
nant or word boundary in 96% of contexts with a preceding sound (i.e.
s1_s₃ or s1s2_). Conversely, in the 100 most negatively correlated con-
texts, the target consonant is more frequently followed by a consonant
or word boundary than in the highly correlated contexts (39%), and is
almost always preceded by a vowel (97%). This may be interpreted as
expressing a gradient preference for onset position, though the presence
of /h/ in the intermediate class /p b f h j l/ indicates that this is not a com-
plete characterisation, since this sound occurs only in onsets.

p t k b d g m n N f v T D s z S Z h C J w j l Ó i I eI E æ u U V o O A  aI aU OI

p t k b d g m n N f v T D s z S Z h C J w j l Ó i I eI E æ u U V o O A  aI aU OI

t k d g m n N v T D s z S Z h C Jp b f h j l w Ó i I eI E æ u V o A aI aU OI U O 

k g t d m n N v T D s z S Z h C J i I eI E æ u V A aI aU OIop b f h lp b f j U O

h lj p b f i eI aI aU OI I E æ u V A

b p f i aI aU OI I E æ V A ueI OI

A I E æ VeI OI i aI aU

Figure 10
Classes retrieved for English.
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English vowels projected onto PC3.
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The topmost split in the vowel class is between the class /ʊ ɔ ɝ/ and the
remaining vowels. This split is discovered on PC3 of the vowel embed-
dings, as shown in Fig. 11. This principal component appears to primarily
capture how a vowel sequences with English liquids. In the 100 most posi-
tively correlated contexts, the target vowel frequently precedes /ɹ/ (54%)
or /l/ (9%), but rarely follows them (/ɹ/: 3%; /l/: 2%; though it frequently
follows /w/: 29%). Conversely, in the 100 most negatively correlated con-
texts, the target vowel frequently follows /ɹ/ (17%) and /l/ (12%), but
rarely precedes them (/ɹ/: 0%; /l/: 3%). Thus, broadly speaking, this prin-
cipal component appears to encode a preference for vowels to precede
rather than follow liquids (particularly /ɹ/), with the class /ʊ ɔ ɝ/ tending
to precede them. I leave a more detailed investigation of the distributional
properties that give rise to the remaining classes as a topic for future
research.

6.3 French

A specific goal for the French case study is to see if the aspects of syllable
structure retrieved by Goldsmith & Xanthos (2009) (roughly, a distinction

Figure 12
A PCA visualisation of the vector embeddings of French:

(a) all segments; (b) consonants; (c) vowels (scaling factor: 1.7).
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between vowels, onset-initial and onset-final consonants) can also be dis-
covered using this technique. The French corpus is the one used in
Goldsmith & Xanthos (2009).17 It consists of 21,768 word types in pho-
nemic transcription. Figure 12 is a visualisation of the vector embedding
of French, with a scaling factor of 1.7 on the variance threshold.18 The
retrieved classes are shown in Fig. 13. The sets of consonants and
vowels are correctly retrieved. Within the consonants, there is a clean
split between approximants and non-approximants, and, within the
approximants, between liquids and glides. The glides are further split
into rounded and unrounded glides. The vowels are more difficult to inter-
pret, but there is a general split between nasalised vowels and vowels with
unmarked roundness on one hand, and the remaining vowels on the other
(/y e ə/ are the exceptions).
I will again examine the distributional properties leading to the topmost

splits in the consonant and vowel classes. The topmost split in the conso-
nant class is between the set of approximants /w j ɥ l ʁ/ and the remaining
consonants. This split is discovered on PC1 of the consonant embeddings,
which is shown in Fig. 12b. This principal component seems to capture
generalisations about syllable structure. In the 100 most positively corre-
lated contexts, the target segment is followed by a vowel in 99% of contexts
with a following sound, and preceded by a consonant in 93% of contexts
with a preceding sound. The 100 most negatively correlated contexts are
more likely to be followed by a consonant (43%; most commonly /l/ or
/ʁ/), and are generally preceded by a vowel (89%). This appears to
capture the generalisation that approximants tend to occur in complex
onsets following a non-approximant. This is similar to the grouping

Figure 13
Classes retrieved for French.

p t k b d g m n ¿ f v s z S Z h w j W l ¶ i y e ø E œ u o O a @ Ù Ô Ú Ò

i y e ø E œ u o O a @ Ù Ô Ú Ò

i y E u o O ae ø œ @ Ù Ô Ú Ò

Ù Òø œ e @ Ô Ú

p t k b d g m n ¿ f v s z S Z h w j W l ¶

p t k b d g m n ¿ f v s z S Z h w j W l ¶

w j W  l ¶

j w W

17 Thanks to John Goldsmith for this data.
18 The higher value of the scalar than for other languages indicates that more classes are

robustly attested in the distribution of sounds in the French corpus than in other
corpora.
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discovered by Goldsmith & Xanthos (2009) using their maximum likeli-
hood Hidden Markov Model, although the partition here is cleaner: the
class they find corresponding to onset-final segments also contains
several vowels and other consonants.
The topmost split of the vowel class is between /i y ɛ u o ɔ a/ and /e ø œ ə

Ù Ô Ú Ò/. This split is discovered on PC1 of the vowel embeddings, which is
shown in Fig. 12c. This principal component seems to capture a tendency
for vowels to be adjacent types of consonants, though it is difficult to
describe succinctly. In the 100 most positively correlated contexts, the
target segment is followed by a sonorant in 70% of contexts with a follow-
ing sound (mostly /l/ and /ʁ/), while in the 100 most negatively correlated
contexts, it is followed by an obstruent or word boundary in 91% of rele-
vant contexts. The preceding contexts appear to differ according to place of
articulation: of the 100 most positively correlated contexts, the preceding
sound is coronal in 32% of relevant contexts, while in the 100 negatively
correlated contexts, it is coronal in 70% of relevant contexts.

6.4 Finnish

Finnish is a central example in Goldsmith & Xanthos (2009). A specific
goal of this case study is to replicate their discovery of the classes relevant
to vowel harmony. The Finnish vowel-harmony system is sensitive to
three classes of vowels: the front harmonising vowels /y ø æ/, the back har-
monising vowels /u o ɑ/ and the transparent vowels /i e/. Words tend not to
contain both front and back harmonising vowels, and the transparent
vowels can co-occur with either class. Goldsmith & Xanthos show that
both spectral clustering and hidden Markov models are able to detect
these classes (though see §7 for additional discussion).
Because the corpus used in Goldsmith & Xanthos (2009) is not publicly

available, I use a corpus generated from a word list published by the
Institute for the Languages of Finland.19 Finnish orthography is, with a
few exceptions, basically phonemic, and so a written corpus serves as a
useful approximation of a phonemic corpus. Words containing characters
that are marginally attested (i.e. primarily used in recent loanwords) were
excluded.20 This resulted in the omission of 564 word types, leaving a total
of 93,821 word types in the corpus. Long vowels and geminate consonants
were represented as VV and CC sequences respectively.
The algorithm was first run on a modified version of the corpus contain-

ing only vowels, mirroring the corpus used in Goldsmith & Xanthos
(2009). The vector embedding of this corpus is shown in Fig. 14. As
with the Samoan consonants, the restriction on the number of classes

19 http://kaino.kotus.fi/sanat/nykysuomi/.
20 These characters are c, x, q, z, š, ž and å. These are uncommon orthographic repre-

sentations of sounds that are more robustly attested by other characters, and their
omission is justified under the assumption that we are modelling phonological
rather than orthographic knowledge. Goldsmith & Xanthos (2009) remove the
same characters, except for c, x and q.
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retrieved in the initial partition was lifted. The retrieved classes are shown
in Fig. 15. The harmonic classes are successfully discovered, and, consist-
ent with the results in Goldsmith & Xanthos (2009), the transparent
vowels /i e/ pattern more closely with the back vowels than with the
front. In addition, classes suggestive of a low–non-low distinction are dis-
covered among the front vowels.

The algorithm was then run on the corpus containing both consonants
and vowels. The vector embeddings are shown in Fig. 16, with a scaling
factor of 1.2 on the variance threshold. Consonants and vowels are success-
fully distinguished. I focus here on the retrieved vowel classes, which are
shown in Fig. 17.21 Here the front harmonising vowels are again

P
C

2

Figure 14
A PCA visualisation of the vector embeddings

of Finnish from a corpus with only vowels.
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Figure 15
Classes retrieved for the Finnish corpus containing only vowels.

i y e ø æ u o a

i e u o A y ø æ

æy øu o A i e

21 Within the consonants, the apparent distinction between /f b g r/ and the other con-
sonants is interesting. Similarly to /k r/ in Samoan, /b g f/ are phonological ‘outliers’
in Standard Finnish, occurring only in recent loanwords (Suomi et al. 2008). The
case of /r/ is likely related to syllable structure: although the canonical syllable in
Finnish is maximally CVC, CC onsets are possible, particularly in loanwords.
The second C in these onsets is frequently /r/, as in tragedia, kromosomi or professori.
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differentiated from the transparent and back harmonising vowels,
although the split is not as clean as in the vowel-only corpus: the non-
high front harmonisers /ø æ/ form their own class, and only later is /y/
split off from the remaining vowels. In addition, the distinction between
transparent and back harmonising vowels is not made, although the set
containing both is split into classes suggesting a high–non-high contrast.

Figure 17
Vowel classes retrieved for the full Finnish corpus.

i y e ø æ u o A

i y e u o A ø æ

y

e A i u

i e u o A

o

Figure 16
A PCA visualisation of the vector embeddings of Finnish:

(a) all segments; (b) consonants; (c) vowel (scaling factor: 1.2).
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The loss of clear class distinctions when consonants are added is likely a
function of the trigram counting method: because Finnish allows conso-
nant clusters, trigrams are not able to capture as much of the vowel co-
occurrence as they need to generate the expected classes (see also Mayer
& Nelson 2020). More will be said on this in §8.
The algorithm presented here is able to retrieve the correct classes from

the corpus containing only vowels, and retrieves classes that capture
aspects of the harmony pattern when run on the full corpus. Although
the results on the vowel-only corpus seem quite comparable to those in
Goldsmith & Xanthos (2009), the next section will discuss why the
current results constitute an improvement in other ways.

7 Comparison with past work

A direct comparison of this algorithm to past approaches is difficult,
because of the lack of a clear quantitative measure of success, the lack of
publicly available implementations and the use of different datasets.
Qualitative comparison is possible, however, particularly for the English,
French and Finnish datasets, which are similar or identical to some of
those used by previous studies (particularly Calderone 2009 and
Goldsmith & Xanthos 2009). From this perspective, the current algorithm
offers several notable improvements.
In none of the past approaches, with the exception of Nazarov (2014,

2016), is there a clear method for producing multiple partitions of the
same set of sounds (i.e. multiple class membership), or for partitioning
subsets of the segmental inventory without tailoring the input to include
only those subsets. The current algorithm is capable of both. Because mul-
tiple class membership and privative specification are important properties
of most phonological characterisations of a language, these are desirable
properties.
The spectral clustering algorithm detailed in Goldsmith & Xanthos

(2009) is similar to the current approach in that it decomposes a matrix
representation of the distribution of sounds into a single dimension
along which sounds may be clustered. There are several aspects in which
the current algorithm outperforms spectral clustering. First, spectral clus-
tering is not able to produce an accurate separation of consonants and
vowels in any of the languages it has been applied to (English, French
and Finnish), though Goldsmith & Xanthos suggest performance could
be improved by considering a wider range of contexts. The current algo-
rithm was able to produce this separation accurately in all cases tested
here. Second, spectral clustering operates by choosing a numerical bound-
ary between clusters that minimises conductance. The decision of how
many boundaries to choose must be specified by the analyst (e.g. we
choose one boundary when partitioning consonants and vowels, but two
when partitioning back, front and transparent vowels). The algorithm pre-
sented here determines whether one, two or three clusters is optimal.
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The maximum entropy Hidden Markov Model approach, also detailed
in Goldsmith & Xanthos (2009), performs better on the consonant–vowel
distinction, accurately retrieving it in English and French (Finnish is not
discussed). Further, it is able to identify vowel classes that participate in
harmony processes in Finnish when the input consists only of vowels,
and loosely captures a distinction between intervocalic and postconsonan-
tal consonants in French. The algorithm presented here performs at least
as well, and again does not require that the number of classes be specified in
advance, representing a significant increase in robustness and
generalisability.
The independent component analysis method described in Calderone

(2009) seems to be able to distinguish between consonants and vowels,
as well as suggesting the existence of subclasses within these. However,
Calderone does not provide a method for determining exactly how many
classes are present: evidence for classes comes from inspection of visual
representations of the individual components.
The algorithm presented here could be seen as a more theory-neutral

variant of Nazarov (2014, 2016), in that it shares components that
perform similar tasks but does not assume a particular structure for the
grammar. The toy language on which Nazarov’s model is tested contains
three phonotactic constraints that refer respectively to a single segment
(no word-final /m/), one class of segments (no nasals word-initially) and
two classes of segments (no labials between high vowels). Nazarov’s algo-
rithm is generally successful in learning constraints that refer to these
classes, although less reliably so for the final constraint involving two inter-
acting classes, finding it in only about half of the simulations.
When the current algorithm is run on the set of licit words in Nazarov’s

toy language, it successfully distinguishes between consonants and vowels,
and finds the consonant classes in (16).

(16) /p t k b d g m n N/
/p t k b d g/
/t k d g/

/p b m/
/p b/
/n N/
/m/

The algorithm finds classes corresponding to the labials, /p b m/, the nasals
that can occur word-finally, /n ŋ/, and the nasal that cannot occur word-
finally, /m/. It fails to find the full class of nasals, because it immediately
partitions the set of consonants into three classes: the two nasal sets and
the remaining consonants. Thus it succeeds in capturing a generalisation
that Nazarov’s algorithm has difficulty with (the set of labials), while not
fully generalising to the nasal class, at whichNazarov’s algorithm generally
succeeds.
There are two additional considerations in comparing the performance

of the two algorithms. First, the toy language employed has strict
CVCVC candidate word forms. This is necessary to allow Nazarov’s algo-
rithm to construct a probability distribution over possible forms. Since
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syllable structure is pre-encoded in the candidate set, there is no opportun-
ity for Nazarov’s model to find constraints against other types of syllable
structures. This means that the simulations do not test whether the
learner is able to induce a consonant/vowel distinction. More generally,
candidate classes must be restricted to some subset of interest, since the
set of all possible words in a language is infinite. This limits the flexibility
of the algorithm, since different subsets must be chosen when investigating
different properties.
Second, the phonotactic constraints of the toy language are never vio-

lated. It is unclear how well Nazarov’s algorithm performs on more gradi-
ent cases, which are common in natural language phonotactics (e.g. Anttila
2008, Coetzee & Pater 2008, Albright 2009). The algorithm presented here
functions well when noise is added.

8 Discussion and conclusion

The question of what information about phonological classes can be
retrieved from distributional information is of considerable interest to
phonological theory. The algorithm described in this paper accurately
retrieves the intended classes from an artificial language with a reasonably
complex class structure, even in the presence of distributional noise. When
applied to real languages, it successfully distinguishes consonants from
vowels in all cases, and makes interpretable distinctions within these cat-
egories: it separates long and short vowels (with the exception of /aː/) in
Samoan, captures vowel harmony in Finnish, finds classes based on syl-
lable structure in French and English, and identifies ‘outlier’ phonemes
in Samoan and Finnish.
Although the results may seem modest, they are encouraging, consider-

ing the paucity of the data. No recourse at all is made to the phonetic prop-
erties of the sounds, and the data is represented as simple strings of
phonemes. Combining this algorithm with a distributional approaches to
syllabification (e.g. Mayer 2010) and morphology (e.g. Goldsmith 2010)
would likely increase performance.
In a more fully realised model of phonological learning, a necessary sub-

sequent step would be to derive a feature system from the learned classes.
This step is not treated in this paper, but is discussed in Mayer & Daland
(2019), where we show that, given certain assumptions about what kinds of
featurisations are allowed, an adequate feature system is derivable from a
set of input classes. These two papers may be seen as complementary,
and as potential components of a more realistic model of phonological
learnability that takes into account other important sources of information,
such as phonetic similarity (e.g. Lin 2005, Mielke 2012) and alternations
(e.g. Peperkamp et al. 2006).
An additional interesting result here is that distributional information is

not equally informative for all classes across all languages. Distributional
information produces an interpretable partition of vowels in Samoan,
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but there is little meaningful structure within the class of consonants, even
when vowels are removed from the corpus. Indeed, the phonology of the
language (including alternations) might not justify any such structure.
French and English, on the other hand, have more interpretable results
for consonants, but of the two, the result for French more closely match
a typical linguistic description. This suggests that the phonotactics of
any given language may refer only to a limited set of phonological
classes, and, accordingly, that in some languages, phonotactics may be a
stronger indicator of phonological classhood than in others.
This study suggests a variety of possibilities for future research, both in

terms of improving the performance of the algorithm and of more broadly
exploring the role of distributional learning in phonological acquisition.
A desirable property of the structure of the algorithm presented here is

that it is MODULAR, in the sense that the four components, vector embed-
ding, normalisation, dimensionality reduction and clustering, are rela-
tively independent of one another, and can in principle be modified
individually (though different forms of embedding will likely require
different methodologies in other components). This general structure,
first quantifying similarity between sounds and subsequently using clus-
tering to extract classes, provides a useful conceptual framework from
which to approach problems of distributional learning in phonology in
general, and lends itself to exploration and iterative improvement.
The counting method employed in the vector embedding step is almost

certainly a limiting factor. A trigram window is small enough that long-
distance dependencies may be overlooked. For the case of the artificial lan-
guage Parupa, trigram counts were sufficient to capture all phonological
constraints in the language, and, accordingly, the model performed well.
It is likely that considering additional aspects of context would improve
performance on the real languages, although simply increasing the size
of the contexts considered in an n-gram model will lead to issues of data
paucity. Using sequential neural networks to generate phoneme embed-
dings is a particularly promising possibility, since they can produce
vector representations of sounds without being explicitly told which fea-
tures of the context to attend to (Silfverberg et al. 2018, Mirea &
Bicknell 2019, Mayer & Nelson 2020). Alternatively, integrating a mech-
anism for tier projection (e.g. Hayes & Wilson 2008, Heinz et al. 2011)
into this algorithm based on classes that have already been discovered
could help mitigate the limitations of trigram counting.
An additional consideration is that this algorithm makes a fairly broad

pass over the language. Meaningful distributional information about a
class might be present in only very specific contexts, and this information
may be indistinguishable from noise and similarly suppressed by PCA. A
principled way of attending to specific contexts, perhaps along the lines of
Nazarov (2014, 2016), would have the potential to allow more granular
classes to be revealed.
While this algorithm provides insight into what classes are apparent in

language data, it does not tell us whether human learners are sensitive to
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this information. These questions can be explored by complementary
experimental work, particularly artificial grammar learning studies
(Moreton & Pater 2012a, b).
The results in this paper show that distributional and phonetic informa-

tion are often not in agreement. Given that substantive bias effects (a pref-
erence for learning phonetically coherent classes) are notoriously elusive in
artificial grammar learning studies, it seems promising to further probe the
hypothesis that phonological classes in real languages should be phonetic-
ally coherent. To investigate how distributional and phonetic information
are integrated, researchers might perform studies that investigate whether
classes that are both phonetically coherent and highly salient in the distri-
bution of participants’ native languages are generalised more robustly in
artificial grammar learning tasks than classes that are either only distribu-
tionally salient or only phonetically coherent.
In addition, it would be interesting to investigate whether distributional

learning of phonological classes is a strategy available to infants (similar to
word segmentation; e.g. Saffran et al. 1996), or whether it is a higher-level
strategy that does not become available until after further phonological
development. The various assumptions and parameter values used in
this algorithm (the number of partitions made, restrictions on the initial
partition, the variability scalar, the order of class retrieval, etc.) may also
be informed by results from acquisition studies.
Finally, as an anonymous reviewer suggests, this algorithm may have

useful applications in other domains where distributional learning has been
proposed, such as the learning of morphosyntactic classes (e.g. Harris 1946).
Several current debates in phonology revolve around how great a role

distributional learning plays in the acquisition and transmission of phono-
logical structure. The algorithm presented in this paper provides some
insight into what kinds of phonological information are salient in distribu-
tional data. It is my hope that this might subsequently inform further
study of the extent to which human learners are able to integrate this infor-
mation into their phonological grammars.
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