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Abstract

We prove that any hyper-Kähler sixfold K of generalized Kummer type has a naturally
associated manifold YK of K3[3] type. It is obtained as crepant resolution of the quotient
of K by a group of symplectic involutions acting trivially on its second cohomology.
When K is projective, the variety YK is birational to a moduli space of stable sheaves
on a uniquely determined projective K3 surface SK . As an application of this construc-
tion we show that the Kuga–Satake correspondence is algebraic for the K3 surfaces
SK , producing infinitely many new families of K3 surfaces of general Picard rank 16
satisfying the Kuga–Satake Hodge conjecture.

1. Introduction

Together with manifolds of K3[n] type, deformations of generalized Kummer varieties constitute
the most well-studied hyper-Kähler manifolds. We refer to this deformation type in dimension 2n
as to the Kumn type. After Beauville [Bea83] gave the first examples of such hyper-Kähler
manifolds, many more have been constructed from moduli spaces of stable sheaves on abelian
surfaces, see [Yos01]. However, the varieties so obtained always have Picard rank at least 2, and
our understanding of a general projective variety of Kumn type remains poor. In fact, for the
time being, no construction of such variety is known (but see [O’Gr22] for some recent ideas).

In the present article we partially remedy this for hyper-Kähler sixfolds of generalized
Kummer type, by associating to any K of Kum3 type a hyper-Kähler manifold YK of K3[3]

type. They are related by a dominant rational map

K ��� YK

of degree 25, described as follows.
Any K of Kum3 type admits an action of the group (Z/4Z)4 � Z/2Z by symplectic auto-

morphisms, where Z/2Z acts on the first factor as −1. In fact, this is the group Aut0(K) of
automorphisms of K which act trivially on its second cohomology, which is deformation invari-
ant by [HT13]. It has been computed in [BNS11] for the generalized Kummer variety associated
to an abelian surface. We let G ⊂ Aut0(K) be the subgroup generated by the automorphisms
whose fixed locus contains a 4-dimensional component. We will show in Lemma 2.4 that

G ∼= (Z/2Z)5.
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Sixfolds of generalized Kummer type and K3 surfaces

Theorem 1.1. Let K be a manifold of Kum3 type. The quotient K/G admits a resolution
YK → K/G with YK a manifold of K3[3] type.

The resolution YK → K/G is obtained via a single blow-up of the reduced singular locus. It
can also be described as the quotient by G of the blow-up of K at the union of the fixed loci of
all non-trivial automorphisms in G. We show that there is an isometry of transcendental Hodge
structures

H2
tr(YK ,Q) ∼−−→ H2

tr(K,Q)(2),

where on the right-hand side the form is multiplied by 2. This parallels the classical construction
of the Kummer K3 surface Km(A) associated to an abelian surface A, where H2

tr(Km(A),Z)
is Hodge isometric to H2

tr(A,Z)(2). The study of the integral transcendental lattices of the
manifolds YK will be the subject of future work.

As a consequence, we obtain a well-defined K3 surface associated to any projective sixfold
of generalized Kummer type.

Theorem 1.2. Let K be a projective variety of Kum3 type. There exists a unique (up to iso-
morphism) projective K3 surface SK such that the variety YK of K3[3] type given by Theorem 1.1
is birational to a moduli spaceMSK ,H(v) of stable sheaves on SK , for some primitive Mukai vector
v and a v-generic polarization H.

We call SK the K3 surface associated to the sixfold K. It is characterized by the exis-
tence of a Hodge isometry H2

tr(SK ,Z) ∼−−→ H2
tr(YK ,Z). These surfaces come in countably many

4-dimensional families of general Picard rank 16; up to isogeny, they are the K3 surfaces S
admitting an isometric embedding H2

tr(S,Q) ↪→ ΛKum3(2) ⊗Z Q of rational quadratic spaces.
Here, ΛKum3 is the lattice which is the second cohomology of manifolds of Kum3 type; it was
computed in [Bea83] that ΛKum3 = U⊕3 ⊕ 〈−8〉, where we denote by U the hyperbolic plane.

Applications
In a series of papers [Mar20, Mar22, Mar23], Markman has proven striking results on the Hodge
conjecture for hyper-Kähler varieties of Kumn and K3[n] type. He uses Verbitsky’s theory of
hyperholomorphic sheaves [Ver96] to produce very interesting algebraic cycles on general pro-
jective hyper-Kähler varieties via deformation. Through our construction, we are able to deduce
more cases of the Hodge conjecture from his results.

Our main application is to the Kuga–Satake Hodge conjecture for K3 surfaces [vGe00]. The
Kuga–Satake construction [Del71] associates via Hodge theory an abelian variety KS(S) to any
projective K3 surface S, and the conjecture predicts the existence of an algebraic cycle inducing
an embedding of the transcendental Hodge structure of the surface into the second cohomology
of KS(S) × KS(S). It is known to hold in many cases for K3 surfaces of Picard number at least
17 (see [Mor85]), but it is wide open otherwise. There are a couple of families of K3 surfaces of
general Picard rank 16 for which the conjecture is known, namely, the family of double covers
of the plane branched at six lines [Par88] and the family of K3 surfaces with 15 nodes in P4

(see [ILP22]).
Theorem 1.3 gives infinitely many new families of K3 surfaces of general Picard rank 16 for

which the Kuga–Satake Hodge conjecture holds true.

Theorem 1.3. Let S be a projective K3 surface such that there exists an isometric embedding
of H2

tr(S,Q) into ΛKum3(2) ⊗Z Q, where (2) indicates that the form is multiplied by 2. Then,
there exists an algebraic cycle γ on S × KS(S) × KS(S) inducing an embedding γ∗ : H2

tr(S,Q) ↪→
H2(KS(S) × KS(S),Q) of rational Hodge structures.
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Via Theorem 1.2, we deduce this statement from the validity of the Kuga–Satake Hodge
conjecture for varieties of Kumn type, established by Voisin [Voi22] as a consequence of results of
O’Grady [O’Gr21] and Markman [Mar23]. Once Theorem 1.3 is proven, a result of Varesco [Var22]
implies that the Hodge conjecture holds for all powers of any K3 surface satisfying the assumption
of the above theorem, see Corollary 5.8.

In the recent preprint [Mar22], Markman proves that any rational Hodge isometry
H2(X,Q) ∼−−→ H2(X ′,Q) between varieties of K3[n] type is algebraic. He expects that an exten-
sion of his argument will lead to the analogous result for varieties of Kumn type. In dimension 6,
we can obtain it from the K3[3] case via Theorem 1.1.

Theorem 1.4. Let K,K ′ be projective varieties of deformation type Kum3. Let

f : H2(K,Q) ∼−−→ H2(K ′,Q)

be a Hodge isometry. Then f is induced by an algebraic correspondence.

Overview of the contents
We sketch the proof of Theorem 1.1. First, we calculate the fixed lociKg of all the automorphisms
g ∈ G: we show that

⋃
g �=1∈GK

g is the union of 16 hyper-Kähler manifolds of K3[2] type, and we
determine the various intersections of these components. Thanks to the deformation invariance
of G, it is in fact enough to calculate these loci in the special case of the generalized Kummer
sixfold on an abelian surface.

We then describe explicitly the singularities ofK/G. It turns out that these are of a particular
simple nature, modeled on products of ordinary double points on surfaces. A resolution YK of
K/G is obtained via a single blow-up of the singular locus. The quotient K/G is a primitive
symplectic orbifold as studied by Fujiki [Fuj83] and Menet [Men20], and we use a criterion due to
Fujiki to prove that YK is a hyper-Kähler manifold. Moreover, the resolution can be performed
in families, so that the YK are deformation equivalent to each other. To complete the proof
of Theorem 1.1 it is therefore sufficient to find a single K of Kum3 type such that YK is of
K3[3] type.

The specific example we study is a Beauville–Mukai system KJ(v3) on a general principally
polarized abelian surface Θ ⊂ J . It admits a Lagrangian fibration to the linear system |2Θ| = P3,
whose general fibres parametrize certain degree-3 line bundles supported on curves in the linear
system. We show that the norm map for line bundles induces a dominant rational map of
degree 25 from KJ(v3) onto a Beauville–Mukai system MKm(J)(w3), a moduli space of sheaves
on the Kummer K3 surface Km(J) associated to J ; the hyper-Kähler variety MKm(J)(w3) is
birational to Km(J)[3]. We next prove that the norm map descends to a birational map

KJ(v3)/G ��� MKm(J)(w3).

It follows that the hyper-Kähler manifold YKJ (v3) is birational to Km(J)[3], and hence YKJ (v3)

is of K3[3] type by Huybrechts’ theorem [Huy99] that birational hyper-Kähler manifolds are
deformation equivalent.

Once Theorem 1.1 is proven, the other results follow from it. When K is projective, we define
the associated K3 surface SK as the unique (up to isomorphism) K3 surface whose transcendental
lattice is Hodge isometric to H2

tr(YK ,Z). This is justified by the fact that H2
tr(YK ,Z) has rank at

most 6 and, hence, it appears as transcendental lattice of some K3 surface of Picard rank at least
16. Moreover, for such Picard numbers, two K3 surfaces with Hodge isometric transcendental
lattices are isomorphic; therefore, SK is determined up to isomorphism. To prove our applications,
we exploit the algebraic cycle in K × YK given by the rational map K ��� YK .
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The organization of this text is as follows. In § 2 we calculate the fixed loci of the automor-
phisms of G. In § 3 we study in detail the case of KJ(v3) as outlined above. In § 4 we prove
Theorems 1.1 and 1.2. Finally, in § 5 we use our construction to prove Theorems 1.3 and 1.4.

2. Automorphisms trivial on the second cohomology

Let K be a manifold of Kum3 type and let Aut0(K) be the group of automorphisms of K which
act trivially on H2(K,Z). We let Kh denote the fixed locus of an automorphism h of K.

Definition 2.1. We denote by G the subgroup of Aut0(K) generated by the automorphisms
g ∈ Aut0(K) such that Kg has a 4-dimensional component.

We will see in Lemma 2.4 that G ∼= (Z/2Z)5. The main result proven in this section is then
the following.

Theorem 2.2. Let Z ⊂ K be defined as Z :=
⋃

g �=1∈GK
g. Then Z is the union of 16 fourfolds

Zj , each of which is a smooth hyper-Kähler manifold of K3[2] type. Moreover, two distinct
components intersect in a K3 surface, three distinct components intersect in four points, and
four or more distinct components do not intersect.

In order to prove this, we will compute the fixed loci of all automorphisms in G. Thanks
to the deformation invariance of automorphisms trivial on the second cohomology it will be
sufficient to treat the case of the generalized Kummer variety associated to an abelian surface
A, i.e. K is the fibre over 0 of the composition

A[4] ν−−→ A(4)
∑

−−→ A

of the Hilbert–Chow morphism with the summation map. We denote by A
(4)
0 ⊂ A(4) the fibre

over 0 of
∑

. The restriction ν : K → A
(4)
0 is a crepant resolution.

In this case the group of automorphisms of K acting trivially on the second cohomology has
the natural description Aut0(K) = A4 � 〈−1〉, and the action on K and A[4] is induced by that
on A, see [BNS11].

2.3 Notation
We let An be the group of points of order n of A. Via the isomorphism above, we write
the elements of Aut0(K3(A)) as (ε,±1) for ε ∈ A4. For τ ∈ A2, we denote by A2,τ the set
{a ∈ A | 2a = τ}, which consists of 16 points. The quotient surface A/〈(τ,−1)〉 has 16 nodes
corresponding to points in A2,τ ; its minimal resolution Kmτ (A) is isomorphic to the Kummer
K3 surface associated to A.

Lemma 2.4. Let K be any manifold of Kum3 type. Then G ∼= (Z/2Z)5.

Proof. Since automorphisms in Aut0(K) deform with K, their fixed loci deform as well.
Therefore, it suffices to prove the lemma for the generalized Kummer variety K = K3(A) on
an abelian surface A. In this case we show that

G = A2 × 〈−1〉 ∼= (Z/2Z)5.

We have Aut0(K3(A)) = A4 � 〈−1〉. If h ∈ Aut0(K3(A)) is induced by translation by 0 
= ε ∈ A4,
then, by [Ogu20, Lemma 3.5], the fixed locus (K3(A))h is a union of K3 surfaces if 2ε = 0 and
consists of isolated point if 2ε 
= 0. Consider now h = (ε,−1). The fixed locus of h = (ε,−1)
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on A(4) consists of

Wε = {(a,−a− ε, b,−b− ε), for a, b ∈ A} ⊂ A(4),

and subvarieties of lower dimension. If ε ∈ A2, then Wε is contained in A
(4)
0 and, hence,

(ε,−1) ∈ G. If ε /∈ A2, then Wε has empty intersection with A(4)
0 ; the action of h on A(4)

0 fixes iso-
lated points and the surfaces {(α, b,−b− ε,−α+ ε), b ∈ A}, where α ∈ A satisfies α = −α− ε.
The general point of such a surface is supported on four distinct points. Therefore, the fixed
locus (K3(A))h consists of surfaces and isolated points, because it is a union of symplectic vari-
eties and the fibres of ν have dimension at most 3. We conclude that G is generated by the 16
involutions (τ,−1) with τ ∈ A2 and, hence, G = A2 × 〈−1〉. �

2.5 Relevant subvarieties
In what follows we let K = K3(A) be the generalized Kummer variety on an abelian surface
A. We will calculate the fixed loci of automorphisms in G = A2 × 〈−1〉 acting on K. The next
definition introduces the relevant subvarieties. We denote by ξ = (a, b, c, d) a point of A(4)

0 , and
refer to {a, b, c, d} as the support of ξ.

Definition 2.6. We define the following subvarieties of A(4)
0 :

– for any τ ∈ A2, we let

Wτ := {(a, b,−a+ τ,−b+ τ), for a, b ∈ A};
– for a pair (τ, θ) ∈ A2 ×A2 with τ 
= 0, we let

Vτ,θ := {(a, a+ τ,−a+ θ,−a+ τ + θ), for a ∈ A}.
We denote by Wτ and Vτ,θ the subvarieties of K obtained as strict transform of Wτ and Vτ,θ

under the Hilbert–Chow morphism, respectively.

Note that none among the Wτ and Vτ,θ is contained in the exceptional locus of ν : K → A
(4)
0 ,

so that Wτ and Vτ,θ are well-defined. We will show in Lemma 2.9 that the Wτ are hyper-Kähler
varieties of K3[2] type and that the Vτ,θ are K3 surfaces.

Remark 2.7. (i) For τ ∈ A2, the G-equivariant morphism ψτ : A×A→ A(4) such that (a, b) �→
(a, b,−a+ τ,−b+ τ) has degree 8 and induces an isomorphism

(A/〈(τ,−1)〉)(2) ∼−−→Wτ .

Moreover, Wτ 
= Wτ ′ unless τ = τ ′, as can be seen considering a point (ε, ε, ε, ε) for some ε ∈ A2,τ .
(ii) Given 0 
= τ ∈ A2 and θ ∈ A2, the G-equivariant morphism ψτ,θ : A→ A(4) defined by

a �→ (a, a+ τ,−a+ θ,−a+ τ + θ) induces an isomorphism

A/〈τ, (θ,−1)〉 ∼−−→ Vτ,θ.

For a given τ ∈ A2, the union
⋃

θ∈A2
Vτ,θ has eight irreducible components. In fact, Vτ,θ = Vτ,θ′

if and only if θ′ ∈ {θ, θ + τ}, which can be seen considering a point (a, a+ τ, a, a+ τ): it belongs
to Vτ,θ if and only if a ∈ A2,θ or a ∈ A2,θ+τ . Moreover, it can be easily checked that Vτ,θ 
= Vτ ′,θ′

for τ 
= τ ′. In total, we therefore have 120 distinct surfaces Vτ,θ.

We recall a result of Kamenova, Mongardi and Oblomonkov which will be used in the sequel.
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Proposition 2.8 [KMO22, Lemma B.1]. Let ι : C2 → C2 be the involution given by (x, y) �→
(−x,−y). Consider the rational map

Φ: (Bl0(C2/ι))[n] ��� (C2)[2n]

which maps a general ζ = (P1, . . . , Pn) to ξ = (P1, ι(P1), . . . , Pn, ι(Pn)). Then Φ extends to a
closed embedding, with image the fixed locus for the action of ι on (C2)[2n].

The next lemma describes the varieties Vτ,θ and Wτ introduced above.

Lemma 2.9.

(i) For τ 
= 0, θ ∈ A2, the rational map φτ,θ defined by the commutative diagram

where q is the natural map, extends to a regular morphism, which is an isomorphism onto
its image Vτ,θ.

(ii) For τ ∈ A2, the rational map φτ defined by the commutative diagram

where q is the composition of the Hilbert–Chow morphism with the natural map
(Kmτ (A))(2) → (A/〈(τ,−1)〉)(2), extends to a regular morphism, which is an isomorphism
onto its image Wτ .

Proof. We prove part (i). As translations are fixed point free, for any α ∈ A/〈τ, (θ,−1)〉 the
support of ψτ,θ(α) ∈ Vτ,θ consists of either two or four distinct points, according to whether α is
a node or not. If α is not a node q−1(α) is a single point at which φτ,θ is well-defined. Otherwise,
ψτ,θ(α) = (a, a+ τ, a, a+ τ) for some a in A2,θ or A2,τ+θ. Then, there is a canonical identification
ν−1(ψτ,θ(α)) = P(TaA) × P(Ta+τA). The exceptional divisor in Kmθ(A/〈τ〉) corresponding to the
node α is identified with P(TaA). Translation by τ gives an isomorphism P(TaA) ∼−−→ P(Ta+τA),
and the morphism φτ,θ is extended via φτ,θ(t) := (t, τ(t)) for t ∈ P(TaA).

The proof of part (ii) is similar. If ψτ (α, β) consists of four distinct points, then q−1(α, β)
is a single point at which φτ is well-defined. If the support of ψτ (α, β) consists of three distinct
points, then exactly one between α and β is a node of A/〈(τ,−1)〉, and ψτ (α, β) = (a, ε,−a+ τ, ε)
for some a ∈ A \A2,τ and ε ∈ A2,τ ; we extend φτ via the canonical identifications q−1(α, β) =
P(TεA) = ν−1(ψτ (α, β)). If the support of ψτ (α, β) consists of two distinct points then either
α = β for some smooth point or α 
= β with both α and β nodes of A/〈(τ,−1)〉. In the first case
there exists a ∈ A \A2,τ such that ψτ (α, β) = (a, a,−a+ τ,−a+ τ). Then q−1(α, β) = P(TaA)
and ν−1(ψτ (α, β)) = P(TaA) × P(T−a+τA), and we define φτ by t �→ (t, (τ,−1)(t)). In the second
case ψτ (α, β) = (ε1, ε2, ε1, ε2) for some ε1 
= ε2 both in A2,τ , and we extend φτ via the canonical
isomorphisms q−1(α, β) = P(Tε1A) × P(Tε2A) = ν−1(ψτ (α, β)). Finally, consider the case when
α = β and α is a node. Locally analytically around the node α of A/〈(τ,−1)〉, the morphism q
is isomorphic to the composition

(Bl0(C2/ι))[2] → (Bl0(C2/ι))(2) → (C2/ι)(2),
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where ι(x, y) = (−x,−y) is the restriction of the involution (τ,−1). The rational map φτ is
identified with Φ: (Bl0(C2/ι))[2] ��� (C2)[4] which maps a general ζ = (α, β) to the subscheme
ξ = (α, ι(α), β, ι(β)). Then Proposition 2.8 implies that φτ extends to a closed embedding
(Bl0(C2/ι))[2] ↪→ (C2)[4], completing the proof. �

The various intersections of the submanifolds Wτ ⊂ K are as follows.

Lemma 2.10.

(i) For τ1 
= τ2 in A2 we have Wτ1 ∩Wτ2 = Vτ1+τ2,τ1 .
(ii) For pairwise distinct τ1, τ2, τ3 in A2, the intersection Wτ1 ∩Wτ2 ∩Wτ3 consists of the four

distinct points of the set

ν−1({(a, a+ τ1 + τ2,−a+ τ1,−a+ τ2) ∈ A
(4)
0 , a ∈ A2,τ1+τ2+τ3}) ⊂ K.

(iii) The intersection of four or more distinct submanifolds Wτ is empty.

Proof. (i) A point ξ ∈ A
(4)
0 belongs to Wτ1 ∩Wτ2 if and only if it can be written as ξ = (a, b,−a+

τ1,−b+ τ1) as well as ξ = (a′, b′,−a′ + τ2,−b′ + τ2), for some a, b, a′, b′ in A. Then, we may
assume that a′ = a; since τ1 
= τ2, it follows that −a+ τ1 
= −a′ + τ2. This forces either b′ =
−a+ τ1 or −b′ + τ2 = −a+ τ1; in both cases, we can write

ξ = (a,−a+ τ1,−a+ τ2, a+ τ1 + τ2),

i.e. ξ ∈ Vτ1+τ2,τ1 . Thus, Wτ1 ∩Wτ2 = Vτ1+τ2,τ1 and, hence, for their strict transforms we have
Wτ1 ∩Wτ2 = Vτ1+τ2,τ1 .

(ii) By part (i), a point ξ lies in the intersection Wτ1 ∩Wτ2 ∩Wτ2 if and only if it can be
written as ξ = (a, a+ τ1 + τ2,−a+ τ1,−a+ τ2) as well as ξ = (a′′, b′′,−a′′ + τ3,−b′′ + τ3). Again,
we may assume a′′ = a. Then we must have −a+ τ3 = a+ τ1 + τ2; equivalently, a ∈ A2,τ1+τ2+τ3 .
Moreover, either we have b′′ = −a+ τ1 or b′′ = −a+ τ2. Note that, since a ∈ A2,τ1+τ2+τ3 , in the
first case −b′′ + τ3 = −a+ τ2, while in the second case −b′′ + τ3 = −a+ τ1. This shows that

Wτ1 ∩Wτ2 ∩Wτ3 = {(a, a+ τ1 + τ2,−a+ τ1,−a+ τ2) ∈ A
(4)
0 , a ∈ A2,τ1+τ2+τ3}.

This set consists of four distinct points. Indeed, G acts transitively on it and the subgroup of G
generated by the (τi,−1), i = 1, 2, 3 acts trivially. Moreover, it is easy to see that if g ∈ G is not
an element of this subgroup, then it has no fixed points in the above set. Hence, the intersection
Wτ1 ∩Wτ2 ∩Wτ3 is in bijection with (Z/2Z)2. No point of this set belongs to the exceptional
locus of the Hilbert–Chow morphism, so that Wτ1 ∩Wτ2 ∩Wτ3 consists of four distinct points.

(iii) Note that Wτ1 ∩Wτ2 ∩Wτ3 ∩Wτ1+τ2+τ3 is empty. We have seen above that if θ ∈ A2 \
{τ1, τ2, τ3, τ1 + τ2 + τ3}, the action of (θ,−1) on Wτ1 ∩Wτ2 ∩Wτ3 is free; as Wθ is clearly fixed
by (θ,−1), it follows that Wτ1 ∩Wτ2 ∩Wτ3 ∩Wθ = ∅. �

2.11 Fixed loci
We calculate the fixed locus of the automorphisms g ∈ G. Our results confirm those of
Oguiso [Ogu20] and Kamenova, Mongardi and Oblomkov [KMO22].

Proposition 2.12. Let g 
= 1 ∈ G. Then:

– if g = (τ, 1), with τ 
= 0 ∈ A2, the fixed locus Kg is the disjoint union of the eight K3 surfaces
Vτ,θ, for θ varying in A2;
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– if g = (τ,−1) with τ ∈ A2, the fixed locus Kg is the union of the K3[2] type variety Wτ and
140 isolated points; the isolated points are given by the set{

(ε1, ε2, ε3, ε4), εi ∈ A2,τ pairwise distinct and such that
4∑

i=1

εi = 0 ∈ A

}
.

Proof. Let g = (τ, 1) with τ 
= 0 ∈ A2. The action of g on ξ = (a, b, c, d) ∈ A(4) is given by ξ �→
(a+ τ, b+ τ, c+ τ, d+ τ). We see immediately that the surfaces Vτ,θ are fixed by g. Conversely,
if ξ is fixed and a belongs to its support, then also a+ τ must be in the support. Therefore,
ξ = (a, a+ τ, b, b+ τ); if ξ ∈ A

(4)
0 , then 2a+ 2b = 0, so that θ := a+ b belongs to A2 and ξ ∈ Vτ,θ.

By the description of Vτ,θ given in Lemma 2.9(i), the fixed locus of g in ν−1(Vτ,θ) is precisely
Vτ,θ. Since the fixed locus is smooth, Kg is the disjoint union of the eight K3 surfaces Vτ,θ, for
θ ∈ A2.

Assume now that g = (τ,−1). If ξ = (a, b, c, d) ∈ A(4), the action of g is given by ξ �→ (−a+
τ,−b+ τ,−c+ τ,−d+ τ). Note that Wτ is contained in the fixed locus of g on A

(4)
0 . Moreover

any ξ entirely supported at points of A2,τ is fixed by g. Conversely, let ξ ∈ A
(4)
0 be fixed. Then we

have the following possibilities. If the support of ξ does not intersect A2,τ , we have ξ = (a,−a+
τ, b,−b+ τ) for some a, b ∈ A \A2,τ and ξ belongs to Wτ . If the support of ξ contains some
ε ∈ A2,τ and some a /∈ A2,τ , then ξ = (a,−a+ τ, ε, b) for some b ∈ A; as ξ ∈ A

(4)
0 , we must have

b = ε, and hence ξ belongs to Wτ . Finally, assume that ξ = (ε1, ε2, ε3, ε4) is entirely supported at
A2,τ . As ξ belongs to A(4)

0 we have
∑

i εi = 0 in A. If the support of ξ consists of four distinct
points, then ξ /∈Wτ . Otherwise, ξ = (ε1, ε1, ε2, ε2) lies in Wτ .

We conclude that the fixed locus of g acting on A
(4)
0 consists of Wτ and the isolated points

in the set {
(ε1, ε2, ε3, ε4), εi ∈ A2,τ pairwise distinct and such that

4∑
i=1

εi = 0 ∈ A

}
.

There are 140 isolated fixed points. Indeed, the total number of ordered sequences (ε1, ε2, ε3, ε4)
such that

∑
i εi = 0 is 163. There are 16 such sequences with support a single point, and 6

(
16
2

)
=

16 · 45 with support two distinct points. The number of ordered sequences as above supported
on four distinct points is 163 − 16 − 16 · 45 = 16 · 210; under the symmetric group, each of them
has an orbit of cardinality 24. Hence, the number of isolated fixed points is 210·16

24 = 140.
Therefore, Kg consists of 140 isolated fixed points and the fixed locus of g acting on ν−1(Wτ ).

To conclude we have to check that the latter coincides with Wτ . Using the description of Wτ

given in the proof of Lemma 2.9(ii) and the second assertion of Proposition 2.8 it is readily seen
that ν−1(ξ) ∩Kg = ν−1(ξ) ∩Wτ for any ξ ∈Wτ . �

Remark 2.13. Let h = (ε,±1) be an automorphism in Aut0(K3(A)) = A4 � 〈−1〉. One can see
directly from Definition 2.6 that h maps Wτ to Wτ+2ε, for any τ ∈ A2.

We can finally give the proof of the main result of this section.

Proof of Theorem 2.2. Let us first assume that K is the generalized Kummer variety associ-
ated to an abelian surface A. Let g = (τ, 1) ∈ G, with τ 
= 0 ∈ A2. Consider a component Vτ,θ

of Kg. The surface Vτ,θ is clearly contained in Wθ and, hence, the same holds for their strict
transforms. Now let g = (τ,−1) ∈ G. Let P be an isolated fixed point in Kg. Then we have
P = (ε1, ε2, ε3, ε4) for some pairwise distinct εi ∈ A2,τ summing up to 0 in A. The last condition
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implies that we can write P = (ε1, ε2, ε1 + θ, ε2 + θ) for some 0 
= θ ∈ A2. This is the same as

P = (ε1, ε2,−ε1 + θ + τ,−ε2 + θ + τ),

which lies in Wτ+θ. By Lemma 2.12 we conclude that for a generalized Kummer variety the
union of the fixed loci Kg consists of the 16 varieties Wτ of K3[2] type. The intersections of these
components were computed in Lemma 2.10.

Now let f : K → B be a smooth and proper family of Kum3 manifolds over a connected base
B, with a fibre K0 isomorphic to the generalized Kummer variety on an abelian surface A. By
the result of Hassett and Tschinkel [HT13, Theorem 2.1], up to a finite étale base change, there
is a fibrewise action of G = A2 × 〈−1〉 on K. By [Fuj83, Lemma 3.10], this action is locally trivial
with respect to f , i.e. any x ∈ K has a neighborhood Ux = (f−1f(Ux) ∩ Kf(x)) × f(Ux) such that
the action on Ux of the stabilizer subgroup of x is induced by that on the fibre Kf(x). Therefore,
for any τ ∈ A2 the fixed locus Kg of g = (τ,−1) contains a smooth family Wτ → B of manifolds
of K3[2] type as the unique component of Kg with positive-dimensional intersection with the
fibres of f . We conclude that for any b ∈ B we have⋃

1�=g∈G

(Kb)g =
⋃

τ∈A2

Wτ |Kb
,

and that the components Wτ |Kb
intersect as claimed. �

3. A Lagrangian fibration

Throughout this section, J denotes a general principally polarized abelian surface. We fix a
symmetric theta divisor Θ ⊂ J , which is unique up to translation by a point of J2. For any
integer d, we consider the Mukai vector vd := (0, 2Θ, d− 4) on J and the moduli space MJ(vd)
of Θ-semistable sheaves with Mukai vector vd ([HL10]). The Albanese fibration

MJ(vd)
alb−−−→ Pic0(J) × J

is isotrivial [Yos01]. We denote the fibre of alb over (OJ , 0) by KJ(vd). For d even, KJ(vd) is
singular and admits a crepant resolution of OG6 type, by [O’Gr03] and [LS06]. When d is odd,
KJ(vd) is smooth, and it is a hyper-Kähler sixfold of Kum3 type [Yos01]. In this case, we consider
the group G ⊂ Aut0(KJ(vd)) introduced in Definition 2.1.

The main result of this section is the following.

Theorem 3.1. The quotient KJ(v3)/G is birational to Km(J)[3].

We will, in fact, show that for any odd d the quotient KJ(vd)/G is birational to a variety of
K3[3] type. Before proceeding with the proof we need to fix some notation.

3.2 Preliminaries
Let C be a smooth projective curve of genus g. Its Picard variety Pic•(C) =

⊔
d Picd(C) is

the group of line bundles modulo isomorphism. Tensor product gives multiplication maps
m : Pica(C) × Picb(C) → Pica+b(C). We denote by [n] : Picd(C) → Picnd(C) the nth power map.
The Jacobian of C is the abelian variety Pic0(C); for d 
= 0, the variety Picd(C) is a torsor under
Pic0(C).
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Assume now that π : C̃ → C is an étale double cover, so that C̃ is of genus 2g − 1. In this
situation, for each integer d, we have:

– the pull-back map π∗ : Picd(C) → Pic2d(C̃);
– the norm map Nmπ : Picd(C̃) → Picd(C);
– the covering involution σ : C̃ → C̃, inducing σ∗ : Picd(C̃) → Picd(C̃).

The composition Nmπ ◦ π∗ : Picd(C) → Pic2d(C) coincides with multiplication by 2, while π∗ ◦
Nmπ : Picd(C̃) → Pic2d(C̃) is given by L �→ L⊗ σ∗(L).

We refer to Mumford’s paper [Mum74] for the following. The étale double cover π is
uniquely determined by a 2-torsion line bundle η on C, which is the only non-trivial element in
ker(π∗ : Pic0(C) → Pic0(C̃)). Moreover, the image of the pull-back map π∗ : Picd(C) → Pic2d(C̃)
is precisely the fixed locus of σ∗. The involution σ∗ acts as the inverse L �→ L∨ on the kernel
of the norm map Nmπ : Pic0(C̃) → Pic0(C). This kernel has two connected components; the
one containing the neutral element is the Prym variety P (π) of the cover, an abelian variety of
dimension g − 1. The fibres of Nmπ : Picd(C̃) → Picd(C) are torsors under P (π) × Z/2Z.

3.3 Geometric set-up
Let Θ ⊂ J be the general principally polarized abelian surface of Picard rank 1, with Θ a sym-
metric theta divisor. By Riemann–Roch H0(J,OJ(2Θ)) = 4; we will identify the complete linear
system |2Θ| with P3. It is classically known that this linear system is base-point free and induces
an embedding of J/± 1 into P3,∨ as a quartic surface with 16 nodes. Blowing-up the nodes of
this quartic surface one obtains the Kummer K3 surface Km(J) associated to J . We denote by H
the divisor on Km(J) obtained as pull-back of a hyperplane section of J/± 1 ⊂ P3,∨. The linear
system |H| is naturally identified with |2Θ| = P3.

Consider the universal family of genus-5 curves C̃ → |2Θ|. The involution −1 of J acts trivially
on |2Θ|, and we consider the quotient family C → P3, which is identified with the hyperplane
linear system on J/± 1 ⊂ P3,∨. There is a degree 2 morphism π : C̃ → C over P3. We denote by
D → |H| the universal family of curves over the linear system |H| on Km(J); clearly, Cb = Db if
and only if Cb does not pass through any of the nodes of J/± 1.

A detailed study of the linear system |2Θ| and the map π : C̃ → C can be found in Verra’s
article [Ver87]. In particular, he shows that, for any b ∈ P3, the curve C̃b is smooth if and only if
Cb is so, and in this case the Prym variety of the étale double cover πb : C̃b → Cb is the abelian
surface J . Moreover, Cb is smooth if and only if it does not contain any node of J/± 1 and it
does not lie on a tangent hyperplane.

3.4 Beauville–Mukai systems
Taking the Jacobian of the smooth curves in the families introduced above yields families of
abelian varieties over a Zariski open subvariety of P3. The total space of these families can
be compactified considering suitable moduli spaces of stable sheaves on J and Km(J). The
construction leads to certain hyper-Kähler varieties equipped with Lagrangians fibrations, called
Beauville–Mukai systems [Bea91, Muk84].

Consider the Mukai vector vd = (0, 2Θ, d− 4) on J , for an integer d. The moduli space
MJ(vd) parametrizes pure dimension 1 sheaves on J which are push-forward of semistable and
torsion-free sheaves of rank 1 and degree d supported on curves algebraically equivalent to 2Θ.
Mapping a sheaf to its support [LeP93] gives a morphism

MJ(vd)
supp−−−−→ Pic0(J) × P3.
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We define the degree-d relative compactified Jacobian as

Picd(C̃/P3) := supp−1({OJ} × P3).

If b ∈ P3 corresponds to a smooth curve in |2Θ|, the fibre over b of the support morphism
supp: Picd(C̃/P3) → P3 is the degree-d Picard variety of the curve. The Albanese morphism
alb: Picd(C̃/P3) → J is an isotrivial fibration with fibre KJ(vd), and it maps a sheaf F ∈ KJ(vd)
to the sum

∑
c2(F ) ∈ J , see [Wie18, § 6].

A similar construction can be done for the family of curves D on Km(J). Given an integer d,
we consider the Mukai vector wd = (0, H, d− 2) on Km(J). The degree d relative compactified
Jacobian of curves in |H| is the moduli space

Picd(D/P3) := MKm(J)(wd),

of semistable sheaves with Mukai vector wd, with respect to a fixed wd-generic polariza-
tion. It is a hyper-Kähler variety of K3[3] type by [O’Gr97] and [Yos99]. The moduli space
MKm(J)(wd) parametrizes pure dimension-1 sheaves on Km(J) which are push-forward of torsion-
free sheaves of rank 1 and degree d on curves in the linear system |H|. There is a morphism
supp: Picd(D/P3) → P3 which is a Lagrangian fibration, whose general fibres are the degree-d
Picard varieties of the smooth curves in |H|.

3.5 The relative norm map
We denote by B ⊂ P3 the locus parametrizing smooth curves. The maps introduced in § 3.2 give
morphisms over B. Hence, we obtain rational maps

Nmπ : Picd(C̃/P3) ��� Picd(D/P3);

π∗ : Picd(D/P3) ��� Pic2d(C̃/P3).

The pull-back π∗ has been studied by Rapagnetta [Rap07] and by Mongardi, Rapagnetta and
Saccà [MRS18]. They show that it gives a degree-2 dominant rational map

Picd(D/P3) ��� KJ(v2d),

exhibiting a variety of OG6 type as the quotient of a variety of K3[3] type by a birational
symplectic involution. We consider instead the norm map Nmπ.

Lemma 3.6. For each d, the restriction Nmπ : KJ(vd) ��� Picd(D/P3) is dominant and generi-
cally finite of degree 25.

Proof. For each k, the kth power map [k] : Picd(C̃/P3) ��� Pickd(C̃/P3) restricts to a rational map
[k] : KJ(vd) ��� KJ(vkd). This can be easily checked at smooth curves C̃b in the family using the
description of the Albanese map L �→ ∑

c2(L).
Consider the following commutative diagram.

Both the horizontal maps are dominant and generically finite of the same degree 26. Indeed,
they preserve the fibres of the respective support morphisms, which, generically, are torsors
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under abelian threefolds. Hence, the degree of [2] is the number of points of order 2 on an
abelian threefold.

It thus suffices to prove the lemma for Nmπ : KJ(v2d) ��� Pic2d(D/P3). Since KJ(v2d) is the
closure of the image of π∗, the involution σ∗ is the identity on KJ(v2d). Hence, the rational map

coincides with multiplication by [2]; this composition is therefore dominant and generically finite
of degree 26. Since π∗ : Pic2d(D/P3) ��� KJ(v4d) is generically finite of degree 2, it follows that
Nmπ is dominant and it has degree 25. �

3.7 The action of G
Assume now that d is odd, so that KJ(vd) is a smooth variety of Kum3 type and the support
map gives a Lagrangian fibration on it. In this case the group Aut0(KJ(vd)) has been explicitly
identified by Kim in [Kim21].

Proposition 3.8. Let d be odd. Then G = Pic0(J)2 × 〈−1〉, where −1 acts on KJ(vd) via the
pull-back F �→ (−1)∗(F ) of sheaves, and the action of L ∈ Pic0(J)2 is given by F �→ F ⊗ L. Any
element of G preserves the fibres of the support fibration.

Proof. We first show that Pic0(J)2 × 〈−1〉 acts on KJ(vd) via automorphisms trivial on the
second cohomology and which preserve the Lagrangian fibration given by the support morphism.

Since −1: J → J acts trivially on the cohomology of J in even degrees, the pull-back of
sheaves defines an automorphism (−1)∗ of KJ(vd); this automorphism is trivial for d even but
not for d odd. By [MW15, Lemma 2.34], the action of (−1)∗ is symplectic, i.e. the induced
action on the transcendental cohomology H2

tr(KJ(vd),Z) is the identity. Since all curves in |2Θ|
are stable under −1, the automorphism (−1)∗ preserves all fibres of the support fibration. The
Picard rank of KJ(vd) is 2, because J is a general abelian surface by assumption (see [Yos01]).
Hence, by Lemma 3.10, the induced action of (−1)∗ on NS(KJ(vd)) is also the identity. Since
H2(KJ(vd),Z) is torsion free, we conclude that (−1)∗ acts trivially on the second cohomology.

Now let L ∈ Pic0(J)2. Let B ⊂ |2Θ| be the locus of smooth curves, and consider the universal
curve j : C̃B ↪→ J ×B. By [Wie18, Lemma 6.9], the corresponding pull-back j∗ : Pic0(J) ×B →
Pic0(C̃/P3)B is an injection of abelian schemes. Note that the covering involution σ for the cover
π : C̃B → CB is the restriction of −1 × idB. Hence, the induced involution σ∗ on Pic0(C̃/P3)B is
the inverse map on j∗b (Pic0(J)), for each b ∈ B. As KJ(v0) is the fixed locus of this involution,
the 2-torsion line bundle L on J corresponds uniquely to a 2-torsion section sL of KJ(v0)B → B.
For any d, the variety KJ(vd)B is a torsor under KJ(v0)B and, hence, F �→ F ⊗ L induces a
birational automorphism gL of KJ(vd), which restricts to a translation on the smooth fibres of
the support morphism. This implies that gL is symplectic. We deduce from Lemma 3.10 that gL

extends to a regular automorphism of KJ(vd), whose induced action is trivial on NS(KJ(vd)) as
well.

According to [Kim21, Theorem 5.1] we have described all automorphisms in Aut0(KJ(vd))
preserving the fibration supp: KJ(vd) → P3. We claim now that an automorphism in
Aut0(KJ(vd)) which does not preserve the fibration cannot fix a component of dimension 4
on KJ(vd); this will show that G = Pic0(J)2 × 〈−1〉.

Let D = supp∗(OPn(1)) ∈ Pic(KJ(vd)) be the line bundle inducing the fibration. Since
Aut0(KJ(vd)) acts trivially on H2(KJ(vd),Z), it acts on |D| = P3 = |2Θ|. We obtain an
action of Aut0(KJ(vd))/(Pic0(J)2 × 〈−1〉) ∼= (Z/2Z)4 on |2Θ|, which, up to conjugation by an
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automorphism of P3, is identified with the action generated by

(x, y, z, w) �→ (z, w, x, y), (x, y, z, w) �→ (y, x, w, z),

(x, y, z, w) �→ (x, y,−z,−w), (x, y, z, w) �→ (x,−y, z,−w);

see [Gon94, Lemma 1.52, Note 1.4]. Thus, h ∈ Aut0(KJ(vd)) either acts trivially on |2Θ| or it
fixes a pair of skew lines. Assume by contradiction that h ∈ Aut0(KJ(vd)) fixes a fourfold but
does not preserve the support fibration. Then (KJ(vd))h contains one of the varieties Zj of K3[2]

type from Theorem 2.2, and the image of Zj via the fibration must be a line R ⊂ |2Θ| fixed by h.
But, by a theorem of Matsushita [Mat99], the K3[2] variety Zj does not admit any non-constant
morphism to P1. �

Remark 3.9. By [Ver87], the relative Prym variety P → B of the double cover π : C̃B → CB is an
isotrivial family over B with fibre J . Since the involution σ∗ acts as the inverse on the image
of the pull-back j∗, the constant abelian scheme j∗(Pic0(J) ×B) is contained into, and hence
equal to, the relative Prym variety.

Lemma 3.10. Let f : X → Pn be a Lagrangian fibration, where X is a 2n-dimensional projective
hyper-Kähler variety of Picard rank 2. Let g : X ��� X be a birational automorphism such that
f ◦ g = f . Then g extends to a regular automorphism of X, and g∗|NS(X)

: NS(X) → NS(X) is the

identity.

Proof. The Néron–Severi group NS(X) is a rank 2 lattice of signature (1, 1). Any birational
automorphism g induces an isometry g∗ of H2(X,Z) which restricts to an isometry of NS(X).
Denote by D ∈ NS(X) the class of the line bundle f∗(OPn(1)), and pick E ∈ NS(X) such that
D and E generate NS(X) ⊗ Q. Since f ◦ g = f , we have g∗(D) = D. Using that D is isotropic
one sees that this forces g∗(E) = E as well, so that g∗ is the identity on NS(X); by [Fuj81], g
extends to an automorphism of X. �

We can now complete the proof of the main result of this section.

Proof of Theorem 3.1. Using the identification of G given in Proposition 3.8 we will show that
the norm map descends to a birational map KJ(vd)/G ��� Picd(D/P3), for any odd d. The
varieties Picd(D/P3) are of K3[3] type, and Pic3(D/P3) is birational to Km(J)[3], see [Bea99,
Proposition 1.3].

For a smooth curve C̃b ∈ |2Θ| the norm map is induced by the map of divisors which sends∑
i ai[Pi] to

∑
i ai[π(Pi)]. It is then clear that Nmπ((−1)∗(F )) = Nmπ(F ) for any F ∈ KJ(vd)B.

Instead let L ∈ Pic0(J)2, and let sL : P3 ��� KJ(v0) be the rational section defined by sL(b) =
j∗b (L), where j : C̃B ↪→ J ×B denotes the natural inclusion. By Remark 3.9, the section sL is
contained in the relative Prym variety; in particular, the composition Nmπ ◦ sL gives the zero
section of Pic0(D/P3)B → P3.

Therefore, for any g ∈ G and y ∈ KJ(vd)B we have Nmπ(g(y)) = Nmπ(y), which means that
Nmπ : KJ(vd) ��� Picd(D/P3) descends to a rational map

Nmπ : KJ(vd)/G ��� Picd(D/P3).

This map is, in fact, birational, because Nmπ : KJ(vd) ��� Picd(D/P3) is generically finite of
degree 25 by Lemma 3.6, and G has also order 25. �
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4. The K3 surface associated to a Kum3 variety

In this section we give the proof of Theorems 1.1 and 1.2. We let K be a manifold of Kum3 type
and consider the quotient K/G by the group G ∼= (Z/2Z)5 of Definition 2.1. We will show that
the blow-up of the singular locus of K/G yields a hyper-Kähler manifold YK of K3[3] type.

4.1 The singularities of K/G
By Theorem 2.2, the locus Z =

⋃
1�=g∈GK

g is the union of 16 irreducible components Zi, for i =
1, . . . , 16. Denote byXi ⊂ K/G, the image of Zi via the quotient map q : K → K/G. We introduce
the following stratification of K/G into closed subspaces:

Xj := {x ∈ K/G | x belongs to at least j components Xi};
clearly, X0 = K/G.

Proposition 4.2. The subspace Xj is empty for j � 4. For j < 4, a point x ∈ Xj \Xj+1 has
a neighborhood Ux ⊂ K/G analytically isomorphic to

(C2/ι)j × (C2)3−j ,

where ι is the involution (x, y) �→ (−x,−y).
Proof. Theorem 2.2 implies immediately that Xj is empty for j � 4. The group G acts freely on
q−1(X0 \X1) and, hence, X0 \X1 is smooth.

If K → B is a smooth proper family of Kum3 manifolds, the quotient K/G→ B is a locally
trivial family (see [Fuj83, Lemma 3.10]): any point x ∈ K/G has a neighborhood Ux of the form
to f(Ux) × (f−1(f(x)) ∩ Ux). Therefore, to prove the proposition we may assume that K is the
generalized Kummer sixfold on an abelian surface A.

In this case the components Zi are the explicit Wτ , for τ ∈ A2 (see Definition 2.6). Recall that
Wτ ⊂ K is the unique positive-dimensional component of the fixed locus of (τ,−1) ∈ G, and that
the induced action of G/〈(τ,−1)〉 on Wτ is faithful. For any z ∈Wτ there is a decomposition
Tz(K) = NWτ |K,z ⊕ Tz(Wτ ), where the first factor is the normal space. The action of (τ,−1)
on Tz(K) is (−1, 1). Now let x ∈ X1 \X2, and let z ∈ K be a preimage of x. By definition,
z belongs to exactly one component Wτ . The stabilizer is Gz = 〈(τ,−1)〉. By the above, there
exists a neighborhood Vz of z ∈ K such that g(Vz) ∩ Vz is empty for any g /∈ Gz, and Vz = (C2)3

with (τ,−1)|Vz
= (ι, id, id). The image of Vz under the quotient map is thus a neighborhood

Ux = (C2/ι) × (C2)2 of x in K/G.
In the other cases we proceed similarly. Let x ∈ X2 \X3, and let z ∈ K be one of its preim-

ages. Then z belongs to two distinct components Wτ1 and Wτ2 . The stabilizer Gz
∼= (Z/2Z)2 is

the subgroup 〈(τ1,−1), (τ2,−1)〉 of G. There is a decomposition Tz(K) = NWτ1 |K,z ⊕NWτ2 |K,z ⊕
Tz(Wτ1 ∩Wτ2), and the action of Gz is generated by (−1, 1, 1) and (1,−1, 1). This implies that
the image in K/G of a sufficiently small neighborhood of z in K is isomorphic to (C2/ι)2 × (C2).

Finally, let x ∈ X3 and z ∈ K a preimage of it. Then z belongs to exactly three components
Wτi , for i = 1, 2, 3. The stabilizer Gz is the subgroup generated by the involutions (τi,−1), for
i = 1, 2, 3, and there is a decomposition Tz(K) =

⊕3
i=1NWτi |K,z of the tangent space. The action

of (τi,−1) on Tz(K) is −1 on the ith summand and the identity on the complement. We conclude
that there exists a neighborhood Vz of z in K whose image in K/G is isomorphic to (C2/ι)3. �

4.3 The symplectic resolution of K/G
We will now conclude the proof of Theorem 1.1 in several steps. First we show that the blow-up
of the singular locus of K/G resolves the singularities.
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Proposition 4.4. Let YK := BlX1(K/G) be the blow-up of the singular locus with reduced
structure. Then YK is a smooth manifold. It is identified with the quotient by G of the blow-up
of K at Z =

⋃
1�=g∈GK

g.

The proposition will be reduced to the following elementary statement.

Lemma 4.5. Let ι : C2 → C2 be the involution (x, y) �→ (−x,−y), let j, k be positive
integers. Then the blow-up of (C2/ι)j × (C2)k along its singular locus is isomorphic to
(Bl0(C2/ι))j × (C2)k. It is thus smooth, and identified with the quotient (Bl0(C2)/ι)j × (C2)k of
(Bl0(C2))j × (C2)k.

Proof. Given noetherian schemes T1 and T2 and closed subschemes V1 � T1 and V2 � T2, we
have

Bl(V1×T2)∪(T1×V2)(T1 × T2) = BlV1(T1) × BlV2(T2).

It is easy to see this when T1 and T2 are affine schemes, using the definition of blowing-up via the
Proj construction [Har77, II, § 7]. The singular locus of (C2/ι)j × (C2)k is the union of pr−1

i ({0})
for i from 1 to j, where pri : (C2/ι)j × (C2)k → (C2/ι) is the projection onto the ith factor. Via
the above observation, the statement is reduced to the case j = 1, k = 0, which is the well-known
minimal resolution of an isolated A1-singularity of a surface. �
Proof of Proposition 4.4. By Proposition 4.2, any point x ∈ K/G has a neighborhood of the form
(C2/ι)j × (C2)k. Therefore, Lemma 4.5 immediately implies that the blow-up YK of the singular
locus is smooth. It also implies that the natural birational map BlZ(K)/G ��� YK extends to an
isomorphism. �

We will now use a criterion due to Fujiki [Fuj83] to show that YK is symplectic, i.e. that it
admits a nowhere degenerate holomorphic 2-form.

Proposition 4.6. The manifold YK is hyper-Kähler.

Proof. The singular space K/G is a primitively symplectic V-manifold in the sense of Fujiki.
According to his [Fuj83, Proposition 2.9], to show that YK admits a symplectic form it suffices
to check that the following two conditions are satisfied:

(i) for each component Xj of the singular locus of K/G, a general point x ∈ Xj has a neighbor-
hood Ux = A× Vx in K/G, where A is a surface and Vx = Ux ∩Xj is a smooth neighborhood
of x in Xj ;

(ii) the restriction of p : YK → K/G to the preimage of Ux is the product

p′ × id : Ã× Vx → A× Vx,

where p′ is the minimal resolution of A.

We have already shown in the course of proof of Propositions 4.2 and 4.4 that these conditions
hold, with A a neighborhood of the ordinary node 0 ∈ C2/ι, whose minimal resolution is the
blow-up of the singular point.

Hence, YK is symplectic. From its description as the quotient BlZ(K)/G we obtain
h2,0(YK) = 1 (see also § 4.7). Finally, YK is simply connected by [Fuj83, Lemma 1.2]. �

We can now complete the proof of our main result.

Proof of Theorem 1.1. Let K → B be a smooth proper family of manifolds of Kum3 type. Up to
a finite étale base-change, G acts fibrewise on K, and the fixed loci of automorphisms in G are
smooth families over B. By Theorem 2.2, the union Z of Kg for 1 
= g ∈ G has 16 components
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Zi, each of which is a smooth family of manifolds of K3[2] type over B. The blow-up of K
along Z is a smooth family K̃ over B, and the action of G extends to a fibrewise action on K̃.
By Propositions 4.4 and 4.6, the quotient Y = K̃/G is a smooth proper family of hyper-Kähler
manifolds over B, with fibre over the point b ∈ B the manifold YKb

. It thus suffices to find a
single K of Kum3 type such that YK is hyper-Kähler of K3[3] type.

Consider the sixfold KJ(v3) introduced in § 3, which is constructed from a Beauville–Mukai
system on a principally polarized abelian surface J . By Theorem 3.1, in this case YKJ (v3)

is birational to the Hilbert scheme Km(J)[3] on the Kummer K3 surface associated to J .
By [Huy99, Theorem 4.6], birational hyper-Kähler manifolds are deformation equivalent, and
therefore YKJ (v3) is of K3[3] type. �

4.7 The associated K3 surface
The following computation is entirely analogous to [Flo23, § 3]. If Z is a compact Kähler manifold,
we let H2

tr(Z,Z) denote the smallest sub-Hodge structure of H2(Z,Z) whose complexification
contains H2,0(Z). Let K be a manifold of Kum3 type, and denote by K̃ the blow-up of K along⋃

1�=g∈GK
g. By Proposition 4.4 we have a commutative diagram

where p, p′ are blow-up maps and q, q′ are the quotient maps for the action of G.
The pull-back gives an isomorphism p′∗ : H2

tr(K,Z) → H2
tr(K̃,Z). Since G acts trivially on

H2(K,Z), the push-forward q′∗ : H2
tr(K̃,Z) → H2

tr(YK ,Z) is injective, and q′∗q′∗ is multiplication
by 25 on H2

tr(K̃,Z). It follows that

r∗ : H2
tr(K,Z) → H2

tr(YK ,Z)

becomes an isomorphism of Hodge structures after tensoring with Q. Denote by qK and qYK
the

Beauville–Bogomolov forms on H2(K,Z) and H2(YK ,Z), respectively.

Lemma 4.8. For any x ∈ H2
tr(K,Z) we have qYK

(r∗(x), r∗(x)) = 29qK(x, x). Therefore,

1
16
r∗ : H2

tr(K,Q)(2) ∼−−→ H2
tr(YK ,Q),

is a rational Hodge isometry, where (2) indicates that the form is multiplied by 2.

Proof. Let cK and cY be the Fujiki constants of K and Y , respectively [Fuj87]. This means that
we have

∫
K x6 = cKqK(x, x)3 for any x ∈ H2(K,Z), and similarly for YK . Let x ∈ H2

tr(K,Z);
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since x is G-invariant, we have r∗(r∗x) = 25x. We compute

qYK
(r∗x, r∗x)3 =

1
cYK

∫
YK

(r∗x)6

=
1

25cYK

∫
K

(r∗r∗x)6

=
1

25cYK

∫
K

(25x)6

=
225cK
cYK

qK(x, x)3.

By [Rap08], we have cYK
= 15 and cK = 60. Hence, qYK

(r∗x, r∗x) = 29qK(x, x), so r∗/24

multiplies the form by 2 and yields the claimed rational Hodge isometry. �

We now prove that every projective K of Kum3 type has a naturally associated K3 surface.

Proof of Theorem 1.2. Let K be a projective variety of Kum3 type and let YK be the crepant
resolution of K/G. By the above lemma, the transcendental lattice H2

tr(YK ,Z) is an even lattice
of signature (2, k), and rank at most 6. By [Mor84, Corollary 2.10], there exists a K3 surface
SK such that H2

tr(SK ,Z) is Hodge isometric to H2
tr(YK ,Z). A criterion independently due to

Mongardi and Wandel [MW15] and Addington [Add16, Proposition 4] ensures that YK is bira-
tional toMSK ,H(v), for some primitive Mukai vector v and a v-generic polarizationH on SK . The
surface SK is uniquely determined up to isomorphism, because two K3 surfaces of Picard rank
at least 12 with Hodge isometric transcendental lattices are isomorphic, see [Huy16, Chapter 16,
Corollary 3.8] �

Remark 4.9. The K3 surfaces SK come in countably many 4-dimensional families. A projective
K0 of Kum3 type with Picard rank 1 gives such a family, consisting of the K3 surfaces S such
that H2

tr(S,Z) is a sublattice of H2
tr(SK0 ,Z).

Up to isogeny, the K3 surfaces obtained are easily characterized as follows. Recall that
ΛKum3 = U⊕3 ⊕ 〈−8〉 is the lattice H2(K,Z) for K of Kum3 type.

Lemma 4.10. Let S be a projective K3 surface. The following are equivalent:

– there exists an isometric embedding of H2
tr(S,Q) into ΛKum3(2) ⊗Z Q;

– there exist a projective variety K of Kum3 type with associated K3 surface SK and a rational
Hodge isometry H2

tr(S,Q) ∼−−→ H2
tr(SK ,Q).

Proof. The second assertion implies the first thanks to Lemma 4.8. Conversely, let
Φ: H2

tr(S,Q) ↪→ ΛKum3(2) ⊗Z Q be an isometric embedding. Choose a primitive sublattice T ⊂
ΛKum3 such that T (2) ⊗Z Q coincides with the image of Φ. Equip T with the Hodge structure
induced by that on H2

tr(S,Q) via Φ. By the surjectivity of the period map [Huy99], there exists
a manifold K of Kum3 type such that H2

tr(K,Z) is Hodge isometric to T , and Lemma 4.8 gives
a Hodge isometry H2

tr(S,Q) ∼−−→ H2
tr(SK ,Q). Since the signature of T is necessarily (2, k) with

k � 4, Huybrechts’ projectivity criterion [Huy99] implies that K is projective. �

5. Applications to the Hodge conjecture

In this section we prove Theorems 1.3 and 1.4. Throughout, all cohomology groups are taken
with rational coefficients, which are thus suppressed from the notation.
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We start with a simple observation. Let X,Y be smooth projective varieties and let
φ : H2(X) → H2(Y ) be a morphism of Hodge structures.

Lemma 5.1. The morphism φ is induced by an algebraic correspondence if and only if its
restriction to H2

tr(X) is so.

Proof. There is a decomposition H2(X) = H2
tr(X) ⊕H2

alg(X), where H2
alg(X) is spanned by cycle

classes of divisors. Similarly, H2(Y ) = H2
tr(Y ) ⊕H2

alg(Y ). Any morphism H2
tr(X) → H2

alg(Y ) or
H2

alg(X) → H2
tr(Y ) of Hodge structures is trivial. Hence, φ gives a Hodge class

φtr ⊕ φalg ∈ (
H2

tr(X)∨ ⊗H2
tr(Y )

) ⊕ (
H2

alg(X)∨ ⊗H2
alg(Y )

)
.

The lemma follows because the second summand consists of algebraic classes. �

Proof of Theorem 1.4. Let K and K ′ be projective varieties of Kum3 type and assume that
f : H2(K) ∼−−→ H2(K ′) is a rational Hodge isometry. By the above lemma, it suffices to show
that the component ftr : H2

tr(K) ∼−−→ H2
tr(K

′) is algebraic.
Let Y , Y ′ be the varieties of K3[3] type given by Theorem 1.1 applied to K and K ′, respec-

tively, and let r : K ��� Y and r′ : K ′ ��� Y ′ be the corresponding rational maps. They induce
isomorphisms of Hodge structures r∗ : H2

tr(K) ∼−−→ H2
tr(Y ) and r′∗ : H2

tr(K
′) ∼−−→ H2

tr(Y
′). Let f̄tr

be defined as

f̄tr := r′∗ ◦ ftr ◦ (r∗)−1 : H2
tr(Y ) → H2

tr(Y
′).

The inverse of r∗ is r∗/25, and similarly for r′. It follows that ftr is algebraic if and only if f̄tr

is so. By Lemma 4.8, the map f̄tr is a rational Hodge isometry and, hence, it is algebraic by
Markman’s theorem in [Mar22]. �

5.2 The Kuga–Satake correspondence
The Kuga–Satake construction associates an abelian variety to any polarized Hodge structure
of K3 type. We briefly recall this construction, referring to [vGe00] and [Huy16, Chapter 4] for
more details.

Let (V, q) be an effective polarized Q-Hodge structure of weight 2 with h2,0(V ) = 1. The
Clifford algebra C(V ) is defined as the quotient

C(V ) :=
⊕
k�0

V ⊗k/〈v ⊗ v − q(v, v)1〉v∈V .

As a Q-vector space, C(V ) ∼= ∧•(V ); hence, dim(C(V )) = 2rk(V ). The Clifford algebra is Z/2Z-
graded, C(V ) = C+(V ) ⊕ C−(V ). In [Del71], Deligne shows that the Hodge structure of V
induces a Hodge structure of weight 1 on C+(V ) of type (1, 0), (0, 1), which admits a polar-
ization and, hence, defines an abelian variety KS(V ) up to isogeny. This 2rk(V )−2-dimensional
abelian variety is called the Kuga–Satake variety of V . Upon fixing some v0 ∈ V , the action of
V on C(V ) via left multiplication induces an embedding of weight 0 rational Hodge structures

V (1) ↪→ End(C+(V )) = H1(KS(V ))∨ ⊗H1(KS(V )),

which maps v to the endomorphism w �→ vwv0.

Remark 5.3. If V ′ ⊂ V is a sub-Hodge structure such that V ′⊥ consists of Hodge classes, then
KS(V ) is isogenous to a power of KS(V ′). Replacing the form q with a non-zero rational multiple
results in isogenous Kuga–Satake varieties. See [Huy16, Chapter 4, Example 2.4 and Proof of
Proposition 3.3]

405

https://doi.org/10.1112/S0010437X23007625 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007625


S. Floccari

LetX be a projective hyper-Kähler variety of dimension 2n. The Kuga–Satake variety KS(X)
of X is the abelian variety obtained from (H2

tr(X), qX) via the Kuga–Satake construction, where
qX is the restriction of the Beauville–Bogomolov form. Identifying H1(KS(X)) with its dual,
there exists an embedding of Hodge structures of H2

tr(X) into H2(KS(X) × KS(X)). According
to the Hodge conjecture this embedding should be induced by an algebraic cycle.

Conjecture 5.4 (Kuga–Satake Hodge conjecture). Let X be a projective hyper-Kähler
variety. There exists an algebraic cycle ζ on X × KS(X) × KS(X) such that the associated
correspondence induces an embedding of Hodge structures

ζ∗ : H2
tr(X) ↪→ H2(KS(X) × KS(X)).

Remark 5.5. For a K3 surface X, the above form of the conjecture is equivalent to [vGe00, § 10.2].
To see this, let Mot be the category of Grothendieck motives over C, in which morphisms are given
by algebraic cycles modulo homological equivalence, see [And04]. The motive h(X) ∈ Mot of X
decomposes as the sum of its transcendental part htr(X) and some motives of Hodge–Tate type.
Since the standard conjectures hold for X and KS(X), the tensor subcategory of Mot generated
by their motives is abelian and semisimple [Ara06, Theorem 4.1]. Therefore, Conjecture 5.4 and
the formulation of van Geemen [vGe00, § 10.2] are both equivalent to h2

tr(X) being a direct
summand of h2(KS(X) × KS(X)) in the category Mot.

We will use the following easy lemma.

Lemma 5.6. Let X and Z be projective hyper-Kähler varieties. Assume that there exists an
algebraic cycle γ on Z ×X which induces a rational Hodge isometry

γ∗ : H2
tr(Z) ∼−−→ H2

tr(X)(k),

for some non-zero k ∈ Q. Then, if Conjecture 5.4 holds for X, it holds for Z as well.

Proof. By Remark 5.3 there exists an isogeny φ : KS(X) → KS(Z) of Kuga–Satake varieties. It
induces an isomorphism

φ∗ : H2(KS(X) × KS(X)) ∼−−→ H2(KS(Z) × KS(Z))

of rational Hodge structures. If Conjecture 5.4 holds for X, there exists an algebraic cycle ζ on
X × KS(X) × KS(X) giving an embedding of Hodge structures

ζ∗ : H2
tr(X) ↪→ H2(KS(X) × KS(X)).

It follows that the embedding of Hodge structure given by the composition

φ∗ ◦ ζ∗ ◦ γ∗ : H2
tr(Z) ↪→ H2(KS(Z) × KS(Z))

is induced by an algebraic cycle on Z × KS(Z) × KS(Z). �

For convenience of the reader we restate Theorem 1.3.

Theorem 5.7. Let S be a projective K3 surface such that there exists an isometric embedding
of H2

tr(S) into ΛKum3(2) ⊗Z Q. Then Conjecture 5.4 holds for S.

Proof. By Lemma 4.10, there exists a projective variety K of Kum3 type with associated K3
surface SK and a rational Hodge isometry t0 : H2

tr(S) ∼−−→ H2
tr(SK). Denote by YK the crepant

resolution of K/G given by Theorem 1.1 and let v,H be given by Theorem 1.2, so that YK is
birational to the moduli space MSK ,H(v). Denote by r : K ��� YK the natural rational map of
degree 25.
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By [Bus19, Huy19], the isometry t0 is algebraic. Next, by [Muk87], there exists a quasi-
tautological sheaf U over SK ×MSK ,H(v), which means that there exists an integer ρ such
that for any F ∈MSK ,H(v) the restriction of U to SK × {F} is F⊕ρ. Consider the algebraic
class

γ :=
1
ρ
ch(U) · pr∗

√
tdSK

∈ H•(SK ×MSK ,H(v)),

where pr : SK ×MSK ,H(v) → SK is the projection. By [O’Gr97], its Künneth component γ3 ∈
H6(SK ×MSK ,H(v)) induces a Hodge isometry

t1 : H2
tr(SK) ∼−−→ H2

tr(MSK ,H(v)).

By [CM13], the standard conjectures holds for MSK ,H(v) (this also follows from [Bül20]
via the arguments of [Ara06]). Hence, all Künneth components of γ are algebraic. Now let
f : MSK ,H(v) ��� YK be a birational map. Then the push-forward f∗ : H2

tr(MSK ,H(v)) ∼−−→
H2

tr(YK) is a Hodge isometry. By Lemma 4.8, a multiple of the composition r∗ ◦ f∗ gives a
Hodge isometry t2 : H2

tr(MSK ,H(v)) ∼−−→ H2
tr(K)(2).

It follows that the Hodge isometry

t2 ◦ t1 ◦ t0 : H2
tr(S) ∼−−→ H2

tr(K)(2)

is induced by an algebraic cycle on S ×K. The Kuga–Satake Hodge conjecture holds for K by
[Voi22]. By Lemma 5.6, Conjecture 5.4 holds for the K3 surface S as well. �

For the general projective variety K of Kum3 type, H2
tr(K,Q) is a rank-6 Hodge structure

with Hodge numbers (1, 4, 1) and the explicit knowledge of the quadratic form allows one to
show that the Kuga–Satake variety is A4, where A is an abelian fourfold of Weil type (cf. [vGe00,
Theorem 9.2]). O’Grady moreover shows in [O’Gr21] thatH1(A,Q) ∼= H3(K,Q). This is a crucial
ingredient in the subsequent work of Markman [Mar23] and Voisin [Voi22]. O’Grady’s theorem
further allows us to apply a result of Varesco [Var22] to prove the Hodge conjecture for all powers
of the K3 surfaces appearing in Theorem 1.3.

Corollary 5.8. Let S be a projective K3 surface such that there exists an isometric embedding
of H2

tr(S) into ΛKum3(2) ⊗Z Q. Then the Hodge conjecture holds for all powers of S.

Proof. By Remark 4.9, there exists a 4-dimensional family S → B of projective K3 surfaces of
general Picard rank 16 such that: for each b ∈ B the fibre Sb is of the form SKb

for some Kb

of Kum3 type and for some 0 ∈ B there exists a rational Hodge isometry H2
tr(S) ∼−−→ H2

tr(S0).
By [Huy19], it is sufficient to prove the Hodge conjecture for all powers of S0.

To this end, it will be enough to check that S → B satisfies the two assumptions of [Var22,
Theorem 0.2]. As explained in [Var22, Theorem 4.1], the first of these assumptions is that the
Kuga–Satake variety of a general K3 surface in the family is isogenous to A4 for an abelian
fourfold A of Weil type with trivial discriminant. This holds by O’Grady’s theorem in [O’Gr21]
as already mentioned. The other assumption is that the Kuga–Satake Hodge conjecture holds
for the surfaces Sb for all b ∈ B, which is the content of Theorem 5.7. �

Remark 5.9. The conclusions of Theorem 5.7 and Corollary 5.8 were known for the two 4-
dimensional families of K3 surfaces studied in [Par88] and [ILP22]. The general fibre has
transcendental lattice U⊕2 ⊕ 〈−2〉⊕2 in the first case and U⊕2 ⊕ 〈−6〉 ⊕ 〈−2〉 in the second.
The reader may check that the K3 surfaces studied in [Par88] satisfy the assumption of our
Theorem 5.7, while those appearing in [ILP22] do not.
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