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One Level Density for Cubic Galois
Number Fields

Patrick Meisner

Abstract. Katz and Sarnak predicted that the one level density of the zeros of a family of L-functions
would fall into one of ûve categories. In this paper,we show that the one level density for L-functions
attached to cubic Galois number ûelds falls into the category associated with unitary matrices.

1 Introduction

Given an L-function, the one-level density is the function

D(L, f ) ∶=∑
γ
f ( γ logX

2π
) ,

where f is an even Schwartz test function and the sum runs over all non-trivial zeros
of the L-function ρ = 1/2 + iγ. _e Generalized Riemann Hypothesis tells us that γ
will always be real. However, we do not suppose this.

Remark 1.1 _e log factor in the deûnition of the one-level density is to ensure our
zeros havemean spacing 1.

One can think of f as a smooth approximation to the indicator function of an
interval centered at 0. _erefore the one-level density can be thought of as ameasure
of how many zeros are close to the real line, the so-called low-lying zeros.
For a suitably nice family F of L-functions and Schwartz function f , Katz and

Sarnak [5] predicted that

⟨D(L, f )⟩
F
∶= lim

X→∞
1

∣F(X)∣
∑

L∈F(X)
D(L, f ) = ∫

∞

−∞
f (t)W(G)(t)dt,

where the F(X) are ûnite increasing subsets of F andW(G)(t) is the one-level den-
sity scaling of eigenvalues near 1 in a group of randommatrices (indicated byG). _is
group, G, is called the symmetry type of the family F.
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Moreover, Katz and Sarnak predicted that W(G)(t) would fall into one of these
ûve categories

W(G)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, G = U ,
1 − sin(2π t)

2π t , G = Sp,
1 + 1

2 δ0(t), G = O ,
1 + sin(2π t)

2π t , G = SO(even),
1 + δ0(t) − sin(2π t)

2π t , G = SO(odd),

where δ0 is theDirac distribution andU, Sp,O, SO(even), and SO(odd) are the groups
of unitary, symplectic, orthogonal, even orthogonal, and odd orthogonal matrices,
respectively.

1.1 Number Fields

In this section,wewilldiscuss some known results for L-functions attached tonumber
ûelds.
For any number ûeld, K, deûne ζK(s) = ∑a Na−s . Denote ζQ(s) ∶= ζ(s). _en the

L-function associated with the ûeld K would be

LK(s) =
ζK(s)
ζ(s)

.

Further, if we denote the discriminant of K by DK , then the one-level density will be

D(K , f ) =∑
γ
f ( γ logDK

2π
) ,(1.1)

i.e., set X = DK . _en Katz and Sarnak [4] proved the following.

_eorem 1.2 Let F(X) be the family of number ûelds of the form Q(
√
8d) with

X ≤ d ≤ 2X and d square-free. Assuming GRH, if supp( f̂ ) ⊂ (−2, 2), then

lim
X→∞

1
∣F(X)∣

∑
K∈F(X)

D(K , f ) = ∫
∞

∞
f (t)W(Sp)(t)dt.

_erefore, we see that the symmetry type for quadratic extensions is symplectic.
Further, in his thesis [11], Yang considered the family of cubic non-Galois number

ûelds.

_eorem 1.3 Let N3(X) denote the set of cubic ûelds of discriminant between X and
2X and whose Galois closure is S3. If supp( f̂ ) ⊂ (−1/50, 1/50), then

lim
X→∞

1
∣N3(X)∣

∑
K∈N3(X)

D(K , f ) = ∫
∞

∞
f (t)W(Sp)(t)dt.

_erefore, the symmetry type of cubic S3-ûelds is symplectic as well.
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1.2 Function Fields

Every ûnite extension ofFq(t) corresponds to a smooth projective curveC. We deûne
the zeta-function of the curve as

ZC(u) = exp (
∞
∑
n=1

Nn(C)
un

n
) ,

where Nn(C) is the number of Fqn -rational points on C. Since theGRH is known for
ZC(u) (proved by Weil in [9]), we have

ZC(u) =
LC(u)

(1 − u)(1 − qu)
,

where LC(u) is a polynomial that satisûes the function equations

LC(u) = (qu2
)
gLC(

1
qu

) .

where g is the genus of the curve C and all its roots lie on the “half-line” ∣u∣ = q−1/2.
Hence, we can ûnd a unitary symplectic 2g × 2g matrix ΘC , called the Frobenius class
of C, such that

LC(u) = det(I − u√qΘC).

_en the zeros of LC(u) correspond to the eigenangles of ΘC .
Since the eigenangles ofΘC are 2π-periodic,we need tomodify the one-level den-

sity deûnition a bit. So, for an even Schwartz test function f , deûne

F(θ) = ∑
k∈Z

f (N(
θ
2π

− k))

so that F is 2π-periodic and centered on an interval of size roughly 1/N . _en for any
N × N unitary matrix U with eigenangles θ1 . . . , θN , deûne

Z f (U) =
N
∑
j=1
F(θ j).

Finally, we then get that the one-level density for C will be

D(LC , f ) = Z f (ΘC).

_e literature on the one-level density in the function ûeld setting give slightly
diòerent predictions than in the number ûeld setting. For a suitably nice family of
curves F and even Schwartz function f , the literature predicts

1
∣F(X)∣

∑
C∈F(X)

Z f (ΘC) = ∫
G
Z f (U)dU + o(1),

where G is the symmetry type and dU is theHaar measure.
Speciûcally, Rudnick [7] proved the following theorem.
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_eorem 1.4 Let q be odd and let F2g+1 be the set of hyperelliptic curves with aõne
model C∶Y 2 = f (X) with deg( f ) = 2g + 1 (and thus the genus of C is g). _en if
supp( f̂ ) ⊂ (−2, 2),

1
∣F2g+1∣

∑
C∈F2g+1

Z f (ΘC) = ∫
USp(2g)

Z f (U)dU + O(
1
g
) .

Hence, the symmetry type of hyperelliptic curves is USp(2g). _is is to be ex-
pected, as all these curves correspond to quadratic extensions, and_eorem 1.2 shows
that quadratic extensions in the number ûeld setting have symmetry type Sp.
Bucur, Costa, David, Guerreiro, and Lowry-Duda [1] proved the following theo-

rem.

_eorem 1.5 Let E3(g) be the family of cubic non-Galois extension of Fq(X) with
discriminant of degree 2g + 4. _en there exists a β > 0 such that if supp( f̂ ) ⊂ (−β, β),
then

1
∣E3(g)∣

∑
C∈E3(g)

Z f (ΘC) = ∫
USp(2g)

Z f (U)dU + O(
1
g
) .

_is again,matches with what is know from the number ûeld case in _eorem 1.3
as a cubic non-Galois extension would have Galois closure S3.
Finally, in the samepaperBucur, Costa, David,Guerreiro, andLowry-Duda extend

Rudnick’s result.

_eorem 1.6 Let ℓ be an odd prime, q ≡ 1 mod ℓ, and let Fg ,ℓ be the moduli space
of curves of ℓ covers of genus g. _en if supp( f̂ ) ⊂ (− 1

ℓ−1 ,
1

ℓ−1 ), then

1
∣Fg ,ℓ ∣

∑
C∈Fg ,ℓ

Z f (ΘC) = ∫
U(2g)

Z f (U)dU + O(
1
g
) .

Here, we see a new symmetry type, that of U(2g).

1.3 Main Theorem

_e aim of this paper is to calculate the one-level density over cubic Galois number
ûelds. Noticing the parallels in the function ûeld setting, and the number ûeld setting
we can use _eorem 1.6 to predict that the symmetry type we should expect is U .
Indeed, that is what we ûnd.

_eorem 1.7 Let F3(X) be the family of cubic, Galois number ûelds of discrimi-
nant between X and 2X. _en if f is an even Schwartz test function with supp( f̂ ) ⊂

(−1/14, 1/14), we have
1

∣F3(X)∣
∑

K∈F3(X)
D(K , f ) = ∫

∞

−∞
f (t)W(U)(t)dt + O(

1
logX

) .

Moreover, if we assume GRH, then we can take f with supp( f̂ ) ⊂ (−1/2, 1/2).
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Two of the key ingredients of_eorem 1.7 are (1): 3 is a prime and (2): Z[ζ3] is a
PID. _erefore, the same arguments could be extended to the family of Z/pZ Galois
number ûelds where p is an odd prime such that Z[ζp] is a PID. Unfortunately, these
conditions are very limiting as this is only true for primes less than 20. However,with
this and_eorem 1.6, it is reasonable to conjecture the following.

Conjecture 1.8 Let p be an odd prime and let Fp(X) be the family of Z/pZ Galois
number ûelds of discriminant between X and 2X. _en there exists a β > 0 (depen-
dent only on p) such that for every even Schwartz test function f such that supp( f̂ ) ⊂
(−β, β), we have

lim
X→∞

1
∣Fp(X)∣

∑
K∈Fp(X)

D(K , f ) = ∫
∞

∞
f (t)W(U)(t)dt.

2 Classifying Cubic Galois Extensions

In this section we will give a construction for all cubic Galois extensions ofQ.

2.1 Class Field Theory

Wewill begin by stating somemain results of class ûeld theory. For general reference,
we refer the reader to [2].

LetK be a globalûeld. Denote byD(K) the group of divisors ofK. For any eòective
divisor m ∈D(K), deûne

Dm(K) = {D ∈D(K) ∶ supp(D) ∩ supp(m) = ∅},

Pm(K) = {(a) ∶ a ∈ K∗ , a ≡ 1 mod PordP(m) for all places P of K},
Cℓm(K) =Dm(K)/Pm(K).

For a divisor D, we use supp(D) to denote the support of D: the set of primes that
appear in D with non-zero coeõcient. _is is not to be confused with the support of
a function as used in Section 1. Pm(K) is the ray of K modulo m, and Cℓm(K) is the
ray class group of K modulo m.

_eorem 2.1 _ere is a one-to-one correspondence between ûnite abelian Galois
extensions L of K unramiûed outside of m with Galois group G and subgroups H of
Cℓm(K) such that G ≅ Cℓm(K)/H.

If we set K = Q, then D(Q) ≅ Q≥0 and eòective divisors correspond to positive
integers. Hence, we will write an eòective divisor of Q as m instead of m to illustrate
that it is an integer. Further, we will denote by supp(m) the set of primes dividing m.
_erefore, from the deûnitions, we get that

Cℓm(Q) = (Z/mZ)
∗ .

Moreover, if we want to ûnd subgroups of Cℓm(Q) such that

Cℓm(Q)/H ≅ Z/3Z
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it suõces to look for subgroups of index 3 of the three torsion subgroup of the ray
class group:

Cℓm(Q)[3] = (Z/3Z)
δm × ∏

p∣m
p≡1 mod 3

Z/3Z,

where δm = 1 if 9∣m and 0 otherwise. Finally, since Cℓm(Q) is a ûnite abelian group,
subgroups of Cℓm(Q) of index 3 are in one-to-one correspondence with subgroups
isomorphic to Z/3Z.
Before we state the next result, we need a deûnition.

Deûnition 2.2 Call an integer 3-split if all its prime divisors are congruent to 0 or 1
mod 3.

Lemma 2.3 For any integer m, there is a two-to-one correspondence between cube-
free 3-split integers, D, such that supp(D) ⊂ supp(m) and cubicGalois extensions ofQ
unramiûed outside of the primes dividing m.

Proof As was stated above, there is a one-to-one correspondence between Z/3Z
subgroups of Cℓm(Q)[3] and cubic Galois extensions ofQ unramiûed outside of the
primes dividing m. _ere is a one-to-two correspondence between such subgroups
and non-zero elements of

Cℓm(Q)[3] = (Z/3Z)
δm × ∏

p∣m
p≡1 mod 3

Z/3Z.

Let ep be the coordinates of a element in Cℓm(Q)[3]. Nowwe construct the cube-free
3-split integer as

D ∶= ∏
p∣m

p≡0,1 mod 3

pep .

_is correspondence is one-to-two, since there are two generators for each subgroup.

Corollary 2.4 Let D1 and D2 be two distinct cube-free 3-split integers. _en they
correspond to the same cubic Galois extension of Q if and only if there exists a D ∈ Q
such that D2 = D2

1D3.

Proof Let
D i =∏ pep, i

be the prime factorization of D i , i = 1, 2. _en by the proof of Lemma 2.3, we see
that D1 and D2 correspond to the same cubic extension ofQ if and only if the vectors
(ep,1) and (ep,2) generate the same subgroup in Cℓm(Q)[3] where m is any positive
integer such that supp(D1)∪ supp(D2) ⊂ supp(m). Since D1 /= D2, this is if and only
if ep,2 ≡ 2ep,1 mod 3 for all primes p. Setting

D =∏ p
ep,2−2ep,1

3

suõces.
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2.2 Explicit Correspondence

In this section,wewill construct an explicit correspondence between cube-free 3-split
integers and cubic Galois extensions ofQ.

Let ζ3 be a primitive cubic root of unity and denote K = Q(ζ3). _e following are
well-known facts about the cyclotomic ûeld K.

Lemma 2.5 (i) _e only ramiûed prime in K is 3, and a prime p splits if p ≡ 1
mod 3 and is inert if p ≡ 2 mod 3.

(ii) OK = Z[ζ3] is a PID.
(iii) O∗

K = {±1,±ζ3 ,±ζ2
3}

(iv) K/Q is Galois with Gal(K/Q) = Z/2Z

Denote the unique prime dividing 3 in OK by P3. Hence, 3OK = P2
3 . Moreover,

denote the unique generator of Gal(K/Q) by σ .

Lemma 2.6 Let D be a 3-split integer. _en there exists D1 ,D2 ∈ OK such that
D = ±D1D2, σ(D1) = D2 and gcd(D1 ,D2) =P

v3(D)
3 .

Proof Since D is 3-split, we can write

D = 3e3∏
p∣D
p/=3

pep ,

where all the primes appearing in the product have the property that p ≡ 1 mod 3
and hence split in K. _at is, we can write pOK =P1P2, wherePσ

1 =P2.
Deûne

Di ∶=∏
p∣D
p/=3

P
ep
i .

Since OK = Z[ζ3] is a PID, we can ûnd D′i such that Di = (D′i). Moreover, since
D σ

1 = D2,we can assume σ(D′1) = D′2. Nowwe notice that 3 = (1− ζ3)(1− ζ̄3). Deûne

D1 = (1 − ζ3)e3D′1 D2 = (1 − ζ̄3)e3D′2 .
_en σ(D1) = D2 and DOK = (D1D2). _erefore, D = uD1D2 for some unit u ofOK .
However, since both D and D1D2 are ûxed by σ , we see that u is also ûxed by σ , so
u = ±1.
Finally, we remark that gcd(D′1 ,D′2) = 1 andP3 = (1 − ζ3)OK = (1 − ζ̄3)OK .

Deûnition 2.7 For any 3-split integer, we will call the factorization D = ±D1D2 as
in Lemma 2.6 its 3-split factorization.

Remark 2.8 _e 3-split factorization of an integer is not unique. It depends on
choices of primes P ∈ OK dividing 3-split primes p ∈ Z. As we will see, the classiû-
cation depends on the choice of factorization of the 3-split primes in OK , and hence
is not canonical. However, when we count such extensions this choice will not mat-
ter (as it shouldn’t). _erefore, for every 3-split prime p /= 3, we will ûx a prime
P ∈ OK dividing it and thus ûx its 3-split factorization p = ±p1p2 where P = p1OK
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andPσ = p2OK . Further, we ûx a generator ofP3, the unique prime dividing 3, to be
1 − ζ3. Consequently, this ûxes a 3-split factorization of all 3-split integers.
As a result of ûxing these primeswe see that ifD and E are two 3-split integerswith

3-split factorizations D = ±D1D2 and E = ±E1E2, then gcd(D1 , E2) = gcd(D2 , E1) =

Pe
3 for some integer e. _is is due to the fact that the primes dividingD1 and E1 are the

P corresponding to the primes p dividing D and E, respectively, whereas the primes
dividing D2 and E2 are thePσ .

Lemma 2.9 For any 3-split integer D with 3-split factorization D = ±D1D2, the
extension K′

D ∶= Q(ζ3 , 3
√
D1D2

2) is a Galois extension ofQ with Galois group Z/6Z.

Proof By Kummer theory, we have that K′
D is a Galois extension of K with Galois

groupZ/3Z (since µ3 ⊂ K). Let τ be a generatorofGal(K′
D/K) such that τ( 3

√
D1D2

2) =

ζ3 3
√
D1D2

2 and let σ be the generator of Gal(K/Q) as above.
We know that σ(D1D2

2) = D2
1D2, and so, up to a choice of cube root of D2

1D2, we
get σ( 3

√
D1D2

2) =
3
√
D2

1D2. _erefore, K′
D is a Galois extension ofQ.

_us, σ is an element of order 2 and τ is an element of order 3 in Gal(K′
D/Q).

Hence, σ and τ generate Gal(K′
D/Q), since [K′

D ∶ Q] = 6. So it remains to show that
σ and τ commute.
Clearly, στ(ζ3) = τσ(ζ3), since τ ûxes K. Now,

στ( 3
√

D1D2
2) = σ( ζ3 3

√

D1D2
2) = ζ̄3 3

√

D2
1D2 ,

τσ( 3
√

D1D2
2) = τ( 3

√

D2
1D2) = τ(

3
√
D1D2

2
2

D2
) =

ζ2
3

3
√
D1D2

2
2

D2
= ζ̄3 3

√

D2
1D2 .

_erefore, σ and τ commute and Gal(K′
D/Q) = Z/6Z, as claimed.

Let H = {1, σ} ⊂ Gal(K′
D/Q) and let KD = (K′

D)
H be the ûxed ûeld of H. _en

KD = Q(
3
√

D1D2
2 +

3
√

D2
1D2)

is Galois with Gal(KD/Q) = Z/3Z.

Lemma 2.10 Let D1 ,D2 be distinct 3-split integers. _en KD1 = KD2 if and only if
there exists a D ∈ Q such that D2 = D2

1D3.

Proof Since K′
D i

= KD i (ζ3) and KD i = (K′
D i
)H , we have KD1 = KD2 if and only if

K′
D1
= K′

D2
.

LetD1 = ±D1,1D1,2, D2 = ±D2,1D2,2 be the 3-split factorization ofD1 andD2. _en
Kummer _eory applied to K tells us that K′

D1
= K′

D2
if and only if there exists E ∈ K∗

such that

D2,1D2
2,2 = D1,2D2

1,1E3 .(2.1)

Let p /= 3 be a prime and let P be the ûxed prime lying above it in OK . _en by
Remark 2.8, we have that P does not divide D1,2 nor D2,2. _us, vP(D1,1) = vp(D1)

and vP(D1,2) = vp(D2).
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Combining this with (2.1), we get

vP(D2) = vP(D2,1D2
2,2) = vP(D1,2D2

1,1E3
) = 2vp(D1) + 3vP(E).

In particular, vp(D2) ≡ 2vp(D1) mod 3.
Finally, if we let P3 be the unique prime lying over 3 in K, and consider just the

powers ofP3 appearing in (2.1), then by the construction of the 3-split factorization
we get

3v3(D2)(1 − ζ3)v3(D2) = 3v3(D1)(1 − ζ̄3)v3(D1)E3
3 ,

where E3 is the part of E divisible by P3. Using the fact that 1 − ζ3 = 3/(1 − ζ̄3) and
rearranging, we get

32v3(D2)−v3(D1) = (1 − ζ̄3)v3(D1)+v3(D2)E3
3 .(2.2)

Now, E3 = u(1 − ζ3)n for some unit u and some integer n. Since all the units satisfy
u3 = ±1,we have E3

3 = ±(1− ζ3)3n . _erefore, (2.2) implies that v3(D1)+v3(D2) = 3n.
In particular, v3(D1) ≡ 2v3(D2) mod 3, as required.

Proposition 2.11 _e two-to-one correspondence from cube-free 3-split integers D
such that supp(D) ⊂ supp(m) to cubic Galois extensions of Q unramiûed outside the
primes dividing m, as in Lemma 2.3, can be explicitly given by

D z→ KD = Q(
3
√

D1D2
2 +

3
√

D2
1D2) .

Proof We must ûrst show that this map is well deûned. _at is, that KD is cubic,
Galois, and unramiûed outside of the primes dividing m. We have already shown that
KD is in fact cubic andGalois. Since [K ∶Q] = 2 is coprime to 3 = [KD ∶Q] = [K′

D ∶K],
we see that a prime ramiûes in KD if and only if a prime lying above it in OK ramiûes
in K′

D if and only if p∣D. _erefore, themap iswell deûned. Finally, Lemmas 2.3, 2.10,
and Corollary 2.4 show that this map is two-to-one and surjective.

From now on, D will always denote a cube-free 3-split integer.

2.3 Discriminant

Denote ∆D as the discriminant of KD . If we let fD be the conductor of KD , then we
have ∆D = f 2D . _eorem 10 of [3] states that vp( f ) = 1 or 0 if p /= 3, while v3( f ) = 2
or 0. _us, we get that

∆D = 34δD ∏
p ramified in KD

p2 ,(2.3)

where δD is 1 if 3 is ramiûed inKD and 0 otherwise. _erefore, it remains to determine
which primes ramify in KD .
As was mentioned in the proof of Proposition 2.11, a prime p ramiûes in KD if and

only if p∣D. Since D is cube-freewe can ûnd d1, d2 square-free, coprime, and coprime
to 3 such that D = 3v3(D)d1d2

2 . _en we have

∆D = (9δDd1d2)
2 ,

where δD is 1 if 3∣D and 0 otherwise. (Note that this deûnition of δD agrees with the
deûnition in (2.3) as 3 is ramiûed if and only if 3∣D.)
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Finally, recall that F3(X) is the set of cubic, Galois extensions of determinant be-
tween X and 2X. _en [10, _eorem 1.2] states that there exists a constant c, such
that

∣F3(X)∣ ∼ cX1/2 .(2.4)

3 L-Functions and Explicit Formula

Before we begin, we will ûx some notation. We will denote p as a prime in Q, p as
a prime in KD , and P as a prime in K = Q(ζ3). Hence, when we write an inûnite
product over primes, the set of primes that we run over will be indicated by which of
the above three symbols we use. Moreover, we will denote by Np and NP the norms
of p andP overQ. Later, in Section 4, we will also use ℓ to denote a prime inQ and l
a prime dividing it in K and Nl to denote the norm over Q.
For any prime p denote by e(p) and f (p) the ramiûcation index and inertial de-

gree of p in K and by eD(p) and fD(p) the ramiûcation index and inertial degree of
p in KD . Further, let g(p) and gD(p) be the number or primes dividing p in K and
KD , respectively.

3.1 L-Functions

Let ζ(s), ζK(s) and ζD(s) be the ζ-functions ofQ,K and KD , respectively. _at is,

ζ(s) =∏
p

( 1 −
1
ps )

−1
, ζK(s) =∏

P

( 1 −
1

NPs )
−1
, ζD(s) =∏

p

( 1 −
1

Nps )
−1
,

which all converge for R(s) > 1.
Let

LK(s) =
ζK(s)
ζ(s)

and LD(s) =
ζD(s)
ζ(s)

be the L-functions of K and KD , respectively.
Since both K and KD are Galois, we can rewrite ζK and ζD as

ζK(s) =∏
p

( 1 −
1

p f (p)s
)
−g(p)

,

ζD(s) =∏
p

( 1 −
1

p fD(p)s
)
−gD(p)

.

From Lemma 2.5, we have that

(e(p), f (p), g(p)) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(2, 1, 1) p = 3,
(1, 1, 2) p ≡ 1 mod 3,
(1, 2, 1) p ≡ 2 mod 3.

_erefore, it remains to determine the possible values of (eD(p), fD(p), gD(p)).
Since [K ∶Q] = 2 is coprime to [KD ∶Q] = 3 and K′

D is the compositum of K and
KD , we get that ifP is the prime dividing p in K that was ûxed in Remark 2.8, then

( eD(p), fD(p), gD(p)) = ( eK′D/K(P), fK′D/K(P), gK′D/K(P)) .

158

https://doi.org/10.4153/CMB-2018-002-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-002-4


One Level Density for Cubic Galois Number Fields

A primeP in K ramiûes in K′
D ifP∣D1D2

2 , splits if D1D2
2 is a cube modulo P and is

inert otherwise. _erefore,

(eD(p), fD(p), gD(p)) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(3, 1, 1) p∣D,
(1, 1, 3) (

D1D2
2

P
)

3 = 1,

(1, 3, 1) (
D1D2

2
P

)
3 /= 0, 1,

(3.1)

where ( ⋅⋅ ) 3 is the cubic residue symbol for K.
Since D2 = σ(D1), where σ is the generator of Gal(K/Q), we get that

(
D2

P
)

3
= σ( D1

P
)

3
= (

D1

P
)

2

3
.

Hence,

(
D1D2

2

P
)

3
= (

D1

P
)

2

3
.

Now, every integer can be written as DD′ where D is 3-split and all of the primes
dividing D′ are 2 mod 3. Deûne amultiplicative character on the integers as

χp(DD′) = (
D1

P
)

3
.(3.2)

_en we can rewrite (3.1) as

(eD(p), fD(p), gD(p)) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(3, 1, 1) p∣D,
(1, 1, 3) χp(D) = 1,
(1, 3, 1) χp(D) /= 0, 1.

Note that χp is not a Dirichlet character.

Remark 3.1 In the case of p = 3, everything will be a cubemodulo P3. Hence, we
have χ3(D) = 1 unless 3∣D, and therefore

(eD(3), fD(3), gD(3)) =
⎧⎪⎪
⎨
⎪⎪⎩

(3, 1, 1) 3∣D,
(1, 1, 3) otherwise.

Further, if n is an integer such that all its prime factors are 2 mod 3, then χp(n) = 1.

Putting everything together, we can write the L-functions of K and KD as

LK(s) = ∏
p≡1 mod 3

( 1 −
1
ps )

−1
∏

p≡2 mod 3
( 1 +

1
ps )

−1
,

LD(s) = ∏
p

χp(D)=1

( 1 −
1
ps )

−2
∏
p

χp(D)/=0,1

( 1 +
1
ps +

1
p2s )

−1
.(3.3)

If χ is any character on K modulo f, we deûne the L-function associated with this
character as

LK(χ, s) =∏
P

( 1 −
χp(P)

NPs )
−1

.

Finally, we will need a zero density theorem. We use [6,_eorem 2.3].
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_eorem 3.2 For any 1/2 ≤ α ≤ 1 and T > 0, let N(α, T , χ) be the number of zeros
ρ = β + iγ of LK(χ, s) with α ≤ β ≤ 1 and ∣γ∣ ≤ T . _en there exists an A > 0 such that

∑
q≤Q

∑
∗

χ mod q
N(α, T , χ) ≪ (Q2T)

4(1−α)
3−2α (logQT)

A,

where∑∗ indicates that we sum over principal characters.

3.2 Explicit Formula

Since KD has one embedding into R and two embeddings into C, the function

ΛD(s) ∶= ∣∆D ∣s/2ΓR(s)ΓC(s)ζD(s)

satisûes the functional equation

ΛD(s) = ΛD(1 − s),

where

ΓR(s) = π−s/2Γ(s/2) ΓC(s) = 2(2π)−sΓ(s) = ΓR(s)ΓR(s + 1)

and Γ(s) is the usual Gamma function.
Let ρD , j = 1/2+ iγD , j be the zeros of LD(s) and let f be an even Schwartz function.

Proposition 2.1 of [8] gives the explicit formula

∑ f (γD , j) =
1
2π ∫

∞

−∞
f (x) log∆Ddx −

2
2π

∞
∑
n=1

Λ(n)λD(n)
√

n
f̂ ( log n

2π
) + C f ,

where the sum runs over all zeros of LD(s), Λ(n) is the von-Magoldt function, λD(n)
satisûes

L′D(s)
LD(s)

= −
∞
∑
n=1

Λ(n)λD(n)
ns

and

C f =
1
2π ∫

∞

−∞
f (x)(2

Γ′R
ΓR

(
1
2
+ ix) +2

Γ′R
ΓR

(
1
2
− ix) +

Γ′R
ΓR

(
3
2
+ ix) +

Γ′R
ΓR

(
3
2
− ix))dx

is independent of our choice of D.
Recalling that the deûnition of D(K , f ) from (1.1) requires multiplying the zeros

by a factor of L ∶= log ∆D
2π , we apply the explicit formula and the deûnition of Λ(n) to

get

D(KD , f ) =∑ f (LγD , j)

= ∫

∞

−∞
f (x)dx − 2

log∆D

∞
∑
m=1
∑
p

λD(pm) log p
√

pm f̂ ( log pm

log∆D
) + C̃ f (D),

(3.4)

where we use the observation that f̂ (Lx) = 1/L f̂ (x/L) and C̃ f (D) is the same as C f
with f replaced with f (L⋅).
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3.3 Main Term

Applying the explicit formula (3.4), we get

1
∣F3(X)∣

∑
KD∈F3(X)

D(KD , f ) = ∫
∞

−∞
f (t)W(U)(t)dt − ET ,

where

(3.5) ET =
1

∣F3(X)∣
∑

KD∈F3(X)
(

2
log∆D

∞
∑
m=1
∑
p

λD(pm) log p
√

pm f̂ ( log pm

log∆D
) + C̃ f (D)) .

So it remains to show that ET = O( 1
log X ) .

4 Error Term

First, we note that if KD ∈ F3(X), then X ≤ ∆D ≤ 2X, and so log∆D ∼ logX, and we
can rewrite (3.5)

ET ∼
1

c
√
X

∑
KD∈F3(X)

2
logX

(
∞
∑
m=1
∑
p

λD(pm) log p
√

pm f̂ ( log pm

logX
) + C̃ f (D)) ,

where we also use (2.4) to write ∣F3(X)∣ ∼ c
√
X.

4.1 Easy Error Terms

In this section, we show that most of terms of ET are trivially O( 1
log X ) .

By a change of variable in the deûnition C f , we see that C̃ f (D) = O( 1
log ∆D

) , and
hence

1
c
√
X

∑
KD∈F3(X)

C̃ f (D) = O(
1

√
X

∑
KD∈F3(X)

1
log∆D

) = O(
1

logX
) .

Now, we use the known bound λD(pm) = O(m) and the trivial bound f̂ (x) =

O(1) to get

1
c
√
X

∑
KD∈F3(X)

2
logX

∞
∑
m=3
∑
p

λD(pm) log p
√

pm f̂ ( log pm

logX
)

≪
1

√
X logX

∑
KD∈F3(X)

∑
p

∞
∑
m=3

m log p
√

pm

≪
1

logX ∑p
1

p3/2−є = O(
1

logX
) .

It remains to determine what happens to the sums when m = 1 or 2.
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4.2 Coefficients of L′D
LD

Direct computation from (3.3) shows

λD(p) = λD(p2
) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 χp(D) = 0,
2 χp(D) = 1,
−1 χp(D) /= 0, 1.

Moreover, if χp is as in (3.2), it is easy to see that

λD(p) = λD(p2
) = χp(D) + χ2p(D),

since χp is a cubic character.
_erefore, we need to estimate

1
√
X logX

∑
KD∈F3(X)

∑
p

log p(χp(D) + χ2p(D))
√

pm f̂ ( log pm

logX
)

for m = 1, 2.
Since χp is a cubic character, we have χ2p = χp . Hence, it will be enough to deter-

mine
1

√
X logX

∑
KD∈F3(X)

∑
p

χp(D) log p
√

pm f̂ ( log pm

logX
)(4.1)

for m = 1, 2.
Applying Proposition 2.11, we can write (4.1) as

1
√
X logX

∑
′

√
X≤d1d2≤

√
2X
∑
p

χp(d1d2
2) log p

√
pm f̂ ( log pm

logX
)

+
1

√
X logX

∑
′

√
X/81≤d1d2≤

√
2X/81

∑
p

χp(3d1d2
2) log p

√
pm f̂ ( log pm

logX
)

+
1

√
X logX

∑
′

√
X/81≤d1d2≤

√
2X/81

∑
p

χp(9d1d2
2) log p

√
pm f̂ ( log pm

logX
) ,

where ∑′ means we are summing over all pairs d1 , d2 that are square-free, 3-split,
coprime and coprime to 3. We see then it will be suõcient to estimate

1
√
X logX

∑
p

log p
√

pm f̂ (
log pm

logX
) ∑

′

d1d2≤Y
χp(d1d2

2)

for m = 1, 2.

4.3 Generating Series

Fix a prime p and consider the generating series

Gp(s) = ∑
′

d1 ,d2

χp(d1d2
2)

(d1d2)s ,

which converges for R(s) > 1.
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It is tempting to treat Gp(s) as a multi-Dirichlet L-function. However, χp is not
a Dirichlet character. It is, however, related to a cubic Dirichlet character on K =

Q(ζ3) modulo P. _e following proposition shows exactly how Gp(s) is related to
L-functions over K.

Proposition 4.1 Let P be the prime in K dividing p ûxed in Remark 2.8 and let
χP = ( ⋅

P
)

3 be the cubic residue symbol modulo P on K. _en

Gp(s) =
√

LK(χP , s)LK(χ2P , s)Hp(s),(4.2)

whereHp(s) is some function (deûned in the proof) that absolutely converges forR(s) >
1/2.

Proof We can write an Euler product expansion for Gp(s) as follows:

Gp(s) = ∏
ℓ≡1 mod 3

( 1 +
χp(ℓ) + χ2p(ℓ)

ℓs
) .

If l is the ûxed prime dividing ℓ in K, then we get χp(ℓ) = χP(l). Moreover, we
see that

χp(ℓ) + χ2p(ℓ) = χP(l) + χ2P(l) = χ2P(lσ) + χP(lσ),

where σ is the generator of Gal(K/Q). _at is, the argument in the Euler product is
independent of the choice of prime dividing ℓ.
Further, if ℓ ≡ 1 mod 3, then there always exist two primes lying above it with

Nl = ℓ. _us,

∏
ℓ≡1 mod 3

( 1 +
χp(ℓ) + χ2p(ℓ)

ℓs
) = ∏

l∣ℓ
ℓ≡1 mod 3

( 1 +
χP(l) + χ2P(l)

Nls
)

1/2
.

Finally, if ℓ ≡ 2 mod 3, then there exists a unique l∣ℓ and Nl = ℓ2. _erefore,

∏
l∣ℓ

ℓ≡1 mod 3

( 1 +
χP(l) + χ2P(l)

Nls
)

= ∏
l/=P3

( 1 +
χP(l) + χ2P(l)

Nls
) ∏

ℓ≡2 mod 3
( 1 +

χP(l) + χ2P(l)

ℓ2s
)
−1

=∏
l

( 1 −
χP(l)

Nls
)
−1
∏
l

( 1 −
χ2P(l)

Nls
)
−1

Hp(s)

= LK(χP , s)LK(χ2P , s)Hp(s),

where Hp(s) is some Euler product that converges for R(s) > 1/2.

Corollary 4.2

∑
′

d1d2≤Y
χp(d1d2

2) = ∫

1+i∞

1−i∞
Gp(s)

Y s

s
ds.

163

https://doi.org/10.4153/CMB-2018-002-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-002-4


P. Meisner

Proof We know that LK(χP , s) and LK(χ2P , s) are entire and zero free onR(s) = 1.
And since Hp(s) can be written as an Euler product that converges for R(s) > 1/2,
it will also be analytic and zero free on R(s) = 1. Hence, Gp(s) will be analytic on
R(s) = 1. _e result then follows from Perron’s formula.

_e goal now is to analytically continue Gp(s) to a region to the le� of R(s) = 1
andmove this contour integral as far aswe can. Sincewe do not know anything about
the convergence of Hp(s) to the le� ofR(s) = 1/2, the furthest we can hope to move
the contour is to the lineR(s) = 1/2 + є. Moreover, if LK(χP , s) has a zero, then the
right-hand side of (4.2) fails to be analytic at this zero.

Our plan moving forward is to move the contour for as many primes as we can
and use_eorem 3.2 to bound the number of bad primes for which we cannot move
the contour. Of course GRH implies that we can move all the contours to the line
R(s) = 1/2 + є, but we will refrain from using that for now.

4.4 Bounding the Error Term

Proposition 4.3 Suppose supp( f̂ ) ⊂ (−β, β). _en for any T and 13/14 < α < 1, we
have

1
√
X logX

∑
p

log p
√

pm f̂ (
log pm

logX
) ∑

′

d1d2≤Y
χp(d1d2

2) ≪

X(β−1)/2+є

logX
(
Y
T
+ Y α+є) + Y(X2βT)

4(1−α)
3−2α (logXT)A

X(β+1)/2 .

Proof First of all, if supp( f̂ ) ⊂ (−β, β), then this will restrict the sum over the
primes to the region Xβ/m . Combining this with Corollary 4.2, we get

1
√
X logX

∑
p

log p
√

pm f̂ (
log pm

logX
) ∑

′

d1d2≤Y
χp(d1d2

2) =

1
√
X logX

∑
p≤Xβ/m

log p
√

pm f̂ (
log pm

logX
) ∫

1+i∞

1−i∞
Gp(s)

Y s

s
ds.

We can write

∫

1+i∞

1−i∞
Gp(s)

Y s

s
ds = ∫

1+iT

1−iT
Gp(s)

Y s

s
ds + ∫R(s)=1

∣I(s)∣>T
Gp(s)

Y s

s
ds.

Let S1 be the sum consisting of the former and S2 the latter. _en

S2 =
1

√
X logX

∑
p≤Xβ/m

log p
√

pm f̂ (
log pm

logX
) ∫R(s)=1

∣I(s)∣>T
Gp(s)

Y s

s

≪
Y

T
√
X logX

∑
p≤Xβ/m

log p
√

pm

≪
Y

T
√
X logX

⎧⎪⎪
⎨
⎪⎪⎩

Xβ/2+є m = 1,
logXβ/2 m = 2,

≪
YX(β−1)/2+є

T logX
.
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Deûne

Eα(Q , T) = { p ≤ Q ∶ LK(χP , s) has a zero in the region α <R(s) < 1, ∣I(s)∣ < T} .

_enwewillwrite S1 = S3+S4,where S3 consists of the sumof primes not inEα(Q , T)

and S4 consists of the sum of primes in Eα(Q , T).
By deûnition, Gp(s) is analytic in the region α < R(s) < 1, ∣I(s)∣ < T for p /∈

Eα(Xβ , T), so we can shi� the contour for these primes. _at is,

S3 =
1

√
X logX

∑

p≤Xβ/m
p/∈Eα(Xβ ,T)

log p
√

pm f̂ (
log pm

logX
) ∫

1+iT

1−iT
Gp(s)

Y s

s
ds

=
1

√
X logX

∑

p≤Xβ/m
p/∈Eα(Xβ ,T)

log p
√

pm f̂ (
log pm

logX
)

× ( ∫

α+є+iT

α+є−iT
Gp(s)

Y s

s
ds + ∫α+є≤R(s)≤1

∣I(s)∣=T
Gp(s)

Y s

s
ds)

≪
1

√
X logX

∑

p≤Xβ/m
p/∈Eα(Xβ ,T)

log p
√

pm (Y α+є + Y
T
)

≪
1

√
X logX

(Y α+є + Y
T
)

⎧⎪⎪
⎨
⎪⎪⎩

Xβ/2+є m = 1
logXβ/2 m = 2

≪
X(β−1)/2+є

logX
(Y α+є + Y

T
) .

Finally, recall that N(α, T , χ) is the number of zeros of LK(χ, s) in the region α <
R(s) < 1, ∣I(s)∣ < T . _erefore, by _eorem 3.2, we get for some A > 0

∣Eα(Q , T)∣ ≤ ∑
q≤Q

∑
∗

χ mod q
N(α, T , χ) ≪ (Q2T)

4(1−α)
3−2α (logQT)

A.

_erefore,

S4 =
1

√
X logX

∑

p≤Xβ/m
p∈Eα(Xβ/m ,T)

log p
√

pm f̂ (
log pm

logX
) ∫

1+iT

1−iT
Gp(s)

Y s

s
ds

≪
Y

√
X

∑

p≤Xβ/m
p∈Eα(Xβ/m ,T)

1
√

pm .

For m = 2, we can bound the remaining sum by logX and get that S4 ≪
Y√
X
logX

which suõces. In order tomanagewhenm = 1,wewill split it up into dyadic intervals.
_erefore,

∑

Xβ/2 j<p≤Xβ/2 j−1

p∈Eα(Xβ ,T)

1
√p

= ∑

Xβ/2 j<p≤Xβ/2 j−1

p∈Eα(Xβ/2 j−1 ,T)

1
√p

≪ ∣Eα(Xβ/2 j−1 , T)∣
2 j/2

Xβ/2

≪
(X2βT)

4(1−α)
3−2α (logXT)A

Xβ/2
2 j/2(1− 16(1−α)

3−2α ) .
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And so,

S4 ≪
Y(X2βT)

4(1−α)
3−2α (logXT)A

X(β+1)/2

β log2 X

∑
j=1

2 j/2(1− 16(1−α)
3−2α )

≪
Y(X2βT)

4(1−α)
3−2α (logXT)A

X(β+1)/2 .

_is last line is true because the sum converges, since α > 13/14 (and hence the expo-
nent appearing is negative).

Corollary 4.4 Assuming GRH, we have

1
√
X logX

∑
p

log p
√

pm f̂ (
log pm

logX
) ∑

′

d1d2≤Y
χp(d1d2

2) ≪
Y 1/2+єX(β−1)/2+є

logX
.

Proof In thenotation of the proof ofProposition 4.3,GRH implies thatE1/2(Q , T) =

∅ for all choices of Q and T . _erefore, S4 = 0, and we can take T → ∞ to get that
S2 = 0 and

S3 ≪
Y 1/2+єX(β−1)/2+є

logX
.

4.5 Proof of Theorem 1.7

Now, we can ûnally prove_eorem 1.7.

Proof of_eorem 1.7 By Propositions 4.3 and 3.3,we see that if supp( f̂ ) ⊂ (−β, β),
then

1
∣F3(X)∣

∑
KD∈F3(X)

D(KD , f ) = ∫
∞

−∞
f (t)W(U)(t)dt − ET ,

where for any T > 0 and 13/14 < α < 1,

ET ≪
X(β−1)/2+є

logX
(
X1/2

T
+ Xα/2+є) + X1/2(X2βT)

4(1−α)
3−2α (logXT)A

X(β+1)/2 +
1

logX
.

Setting T = Xβ , we get

ET ≪
1

Xβ/2−є logX
+
X(α+β−1)/2+є

logX
+ Xβ(

12(1−α)
3−2α − 1

2 )(logX)
A
+

1
logX

.

Since α > 13/14, we get that 12(1−α)
3−2α − 1

2 < 0, and so the only restriction on β comes
from the second term. _at is as long as β < 1 − α < 1/14 we have

ET ≪
1

logX
.

If we assume GRH, then by Corollary 4.4 we get

ET ≪
X(β−1/2)/2+є

logX
+

1
logX

,

and as long as β < 1/2, we get ET ≪ 1
log X .
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