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Abstract

We show that the solution of the dynamic boundary value problem y∆∆ = f (t, y, y∆), y(t1) = y1, y(t2) = y2,
on a general time scale, may be delta-differentiated with respect to y1, y2, t1 and t2. By utilising an
analogue of a theorem of Peano, we show that the delta derivative of the solution solves the boundary
value problem consisting of either the variational equation or its dynamic analogue along with interesting
boundary conditions.
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1. Introduction

Let T be a time scale and consider the second-order boundary value problem (BVP)

y∆∆ = f (t, y, y∆), t ∈ T, (1.1)

satisfying the Dirichlet boundary conditions

y(t1) = y1, y(t2) = y2, (1.2)

where t1, t2 ∈ Tκ with σ(t1) < t2 and y1, y2 ∈ R. We make the following assumptions:

(i) f (t, d1, d2) : T × R2 → R is continuous;
(ii) (∂ f /∂di) : T × R2 → R, i = 1, 2, are continuous; and
(iii) solutions to (1.1) extend to all of T.

We will also be interested in the variational equation of (1.1) along a solution y(t),
given by

z∆∆ =
∂ f
∂d1

(t, y(t), y∆(t))z +
∂ f
∂d2

(t, y(t), y∆(t))z∆. (1.3)

Research into the relationship of derivatives of solutions of differential equations
and associated variational or variational-like equations has a long history. The idea of
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investigating the derivative of a solution to a differential equation is attributed to Peano
in Hartman’s book [8]. Probably of little surprise, the work presented by Hartman was
done for initial value problems and the derivatives were with respect to the initial data.
Since that time, there has been considerable progress and generalisation. One of the
first papers to study the connection between boundary value problems and variational
equations was [20]. In [19], Peterson studied derivatives with respect to boundary
values. In [9, 10], Henderson extended the result to include derivatives with respect
to boundary points. Next, the authors of [6, 7, 14] produced new results by studying
different types of boundary conditions including multipoint and integral conditions.
The multipoint case was then generalised to an nth-order case in [11, 16]. Much work
has also been done for difference equations [1, 5, 12, 13, 17]. In [18], Lyons utilised
the same techniques to obtain results on the time scale T = hZ. Now, in this work, we
generalise further to any time scale.

Although these papers are different, one interesting aspect to note is that typically
for a dense point the argument follows the same steps. The same is true here in that we
seek to utilise a continuous dependence result and a particular modification of Peano’s
theorem to prove the main theorem. This paper differs from many of the previously
mentioned papers in the use of the mean value theorem when proving the main result.
The mean value theorem on time scales involves two inequalities, which changes the
approach in the proof. We assume throughout this paper that readers are familiar with
the basic concepts and definitions in time scales. For more information on time scales,
see the comprehensive books by Bohner and Peterson [2, 3].

The rest of the paper is arranged as follows. In Section 2 we present a continuous
dependence result for initial value problems and a time scales analogue of Peano’s
theorem. Section 3 introduces a uniqueness property and establishes continuous
dependence for boundary value problems. Finally, in Section 4, we present the main
results.

2. A theorem of Peano
Since the theorem of Peano deals with initial value problems (IVPs), we consider

(1.1) satisfying the initial conditions

y(t0) = c1, y∆(t0) = c2, (2.1)

where t0 ∈ T, c1, c2 ∈ R. We make an additional assumption.

(iv) Solutions to (1.1), (2.1) are unique on all of T; we will denote the unique solution
of (1.1), (2.1) by u(t, t0, c1, c2).

We will make use of the following continuous dependence result for IVPs. See [4]
for the proof for the first-order IVP. This proof can be easily modified for higher-order
problems.

Theorem 2.1. Assume that conditions (i) and (iv) hold. Given an interval [a, b]T,
a point t0 ∈ [a, b]T and ε > 0, there exists a δ(ε, [a, b]T, t0, c1, c2) > 0 such that if
|c1 − e1| < δ and |c2 − e2| < δ, then |u(t, t0, c1, c2) − u(t, t0, e1, e2)| < ε for t ∈ [a, b]T and
e1, e2 ∈ R.
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The next two theorems are analogues of Peano’s result for differential equations.
These theorems and proofs for the first-order system of IVPs can be found in the book
by Lakshmikantham et al. [15]. The first involves differentiation of solutions of (1.1),
(2.1) with respect to initial values.

Theorem 2.2. Assume that (i)–(iv) hold. Let t0 ∈ Tκ
2

and c1, c2 ∈ R be given. Then
for i = 1, 2, βi(t) := (∂u/∂ci)(t, t0, c1, c2) exists and is the solution of (1.3) along
u(t, t0, c1, c2), satisfying the initial conditions

β1(t0) = 1, β∆
1 (t0) = 0,

β2(t0) = 0, β∆
2 (t0) = 1.

The following theorem involves differentiation of solutions of (1.1), (2.1) with
respect to initial points.

Theorem 2.3. Assume that (i)–(iv) hold. Let t0 ∈ Tκ
2

and c1, c2 ∈ R be given. Then
γ(t) := u∆to (t, t0, c1, c2) is the solution of the second-order linear dynamic equation

γ∆∆ = A1(t)γ + A2(t)γ∆,

satisfying the initial conditions

γ(t0) = −u∆(t0, σ(t0), c1, c2), γ∆(t0) = −u∆∆(t0, σ(t0), c1, c2),

where

A1(t) =

∫ 1

0

∂ f
∂d1

(t, su(t, σ(t0), c1, c2) + (1 − s)u(t, t0, c1, c2), u∆(t, t0, c1, c2)) ds

and

A2(t) =

∫ 1

0

∂ f
∂d2

(t, u(t, σ(t0), c1, c2), su∆(t, t0, σ(t0), c1, c2) + (1 − s)u∆(t, t0, c1, c2)) ds.

Note that if σ(t0) = t0, γ∆∆ = A1(t)γ + A2(t)γ∆ is the variational equation along u(t)
of (1.1).

3. Disconjugate-type assumptions

Because we will be differentiating solutions of (1.1), (1.2) with respect to its
boundary values and boundary points, we would like (1.1), (1.2) to have a unique
solution. We first need to define the idea of a generalised zero.

Definition 3.1. The function v : T→ R has a generalised zero at a ∈ T if v(a) = 0 or
v(ρ(a))y(a) < 0.

We make two disconjugate-type assumptions for dynamic equations. The first
provides uniqueness for solutions of (1.1), (1.2) and the second provides uniqueness
for solutions of second-order linear dynamic equations.
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Definition 3.2. We say that (1.1) satisfies Property U on T if whenever y1(t) and y2(t)
are solutions of (1.1) such that y1(t) − y2(t) has a generalised zero at t1, t2 ∈ Tκ with
σ(t1) < t2, then y1(t) − y2(t) ≡ 0 on T.

Definition 3.3. The linear dynamic equation

s∆∆ = M(t)s + N(t)s∆ (3.1)

is said to satisfy Property U on T provided there is no nontrivial solution s(t) of (3.1)
such that s(t) has a generalised zero at t1, t2 ∈ Tκ with σ(t1) < t2.

Last, we provide a continuous dependence result with respect to boundary values.
The proof involves an application of the Brouwer theorem on invariance of domain.
See [4] for the proof.

Theorem 3.4. Assume that conditions (i) and (iii) hold and that (1.1) satisfies Property
U on T. Let y(t) be a solution of (1.1). Also, let t1, t2 ∈ Tκ with σ(t1) < t2 and y1, y2 ∈ R
be given. Then there exists a δ > 0 such that if |ti − si| < δ for si ∈ T

κ, σ(s1) < s2, and
|yi − xi| < δ for xi ∈ R, i = 1, 2, the boundary value problem for (1.1) satisfying

w(s1) = x1, w(s2) = x2,

has a unique solution w(t, s1, s2, x1, x2). Moreover, as δ→ 0, this solution converges
to y(t) on T.

4. The main results

We first differentiate y(t), a solution of (1.1), (1.2), with respect to the boundary
values.

Theorem 4.1. Assume that conditions (i)–(iv) are satisfied, that (1.1) satisfies Property
U on T, and that (1.3) satisfies Property U along all solutions of (1.1). Suppose that
y(t, t1, t2, y1, y2) is a solution of (1.1), (1.2) on T where t1, t2 ∈ Tκ with σ(t1) < t2 and
y1, y2 ∈ R. Then for i = 1, 2, zi := (∂y/∂yi)(t, t1, t2, y1, y2) exists on T and is a solution
of (1.3) along y(t, t1, t2, y1, y2) that satisfies

z1(t1) = 1, z1(t2) = 0,
z2(t1) = 0, z2(t2) = 1.

Since y1, y2 ∈ R, the proof is identical to the real case and is therefore omitted.
The second result deals with differentiation of the solution y(t) of (1.1), (1.2) with

respect to the boundary points.

Theorem 4.2. Assume that conditions (i)–(iii) hold and that (1.1) satisfies Property
U on T. Let y(t, t1, t2, y1, y2) be a solution of (1.1), (1.2) on T, where t1, t2 ∈ T with
σ(t1) < t2 and y1, y2 ∈ R. Then for i = 1, 2, νi := y∆ti (t, t1, t2, y1, y2) is a solution of the
linear dynamic equation

ν∆∆
i = A1i(t)νi + A2i(t)ν∆

i ,
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where

A1i(t) =

∫ 1

0

∂ f
∂d1

(t, sy(t, σ(ti)) + (1 − s)y(t, ti), y∆(t, σ(ti))) ds

and

A2i(t) =

∫ 1

0

∂ f
∂d2

(t, y(t, ti), sy∆(t, σ(ti)) + (1 − s)y∆(t, ti)) ds,

with boundary conditions

ν1(t1) = −y∆(t1, σ(t1), t2, y1, y2), ν1(t2) = 0,

ν2(t1) = 0, ν2(t2) = −y∆(t2, t1, σ(t2), y1, y2).

Proof. We only look at ν1(t), since ν2(t) is similar. Because t2, y1, and y2 are fixed in
the proof, we denote y(t, t1, t2, y1, y2) by y(t, t1). We consider two cases.

Case 1. t1 < σ(t1). First,

ν∆∆
1 = [y∆t1 (t, t1)]∆∆

=
1

µ(t1)
[y∆∆(t, σ(t1)) − y∆∆(t, t1)]

=
1

µ(t1)
[ f (t, y(t, σ(t1)), y∆(t, σ(t1))) − f (t, y(t, t1), y∆(t, t1))]

=
1

µ(t1)
[ f (t, y(t, σ(t1)), y∆(t, σ(t1))) − f (t, y(t, t1), y∆(t, σ(t1)))

+ f (t, y(t, t1), y∆(t, σ(t1))) − f (t, y(t, t1), y∆(t, t1))]

=

∫ 1

0

∂ f
∂d1

(t, sy(t, σ(t1)) + (1 − s)y(t, t1), y∆(t, σ(t1))) ds
(
y(t, σ(t1)) − y(t, t1)

µ(t1)

)
+

∫ 1

0

∂ f
∂d2

(t, y(t, t1), sy∆(t, σ(t1)) + (1 − s)y∆(t, t1)) ds

·

(
y∆(t, σ(t1)) − y∆(t, t1)

µ(t1)

)
= A11ν1(t) + A12ν

∆
1 (t).

Also,

ν1(t1) = y∆t1 (t1, t1)

=
1

µ(t1)
[y(t1, σ(t1)) − y(t1, t1)]

=
1

µ(t1)
[y(t1, σ(t1)) − y(σ(t1), σ(t1)) + y(σ(t1), σ(t1)) − y1]

= −y∆(t1, σ(t1)) +
1

µ(t1)
[y1 − y1] = −y∆(t1, σ(t1))
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and

ν1(t2) = y∆t1 (t2, t1)

=
1

µ(t1)
[y(t2, σ(t1)) − y(t2, t1)]

=
1

µ(t1)
[y2 − y2] = 0

which completes the proof of this case.

Case 2. t1 = σ(t1). In this case,

ν∆∆
i = A11(t)νi + A21(t)ν∆

i

is the variational equation (1.3) along y(t). Because t1 = σ(t1), t1 is right dense in T
and so for any δ > 0, card(t1 − δ, t1 + δ) = ∞. Choose δ as in Theorem 3.4 and, for
each t1 + h ∈ (t1 − δ, t1 + δ)T\{t1}, define

ν1h(t) =
1
h

[y(t, t1 + h) − y(t, t1)].

We will view ν1h as a solution of an IVP at t1.
First, note that

v1h(t1) =
1
h

[y(t1, t1 + h) − y(t1, t1)]

=
1
h

[
y(t1, t1 + h) − y(t1 + h, t1 + h) + y(t1 + h, t1 + h) − y(t1, t1)

]
=

1
h

[
y(t1, t1 + h) − y(t1 + h, t1 + h) + y1 − y1

]
=

1
h

[
y(t1, t1 + h) − y(t1 + h, t1 + h)

]
and

v1h(t2) =
1
h

[y(t2, t1 + h) − y(t2, t1)]

=
1
h

[y2 − y2] = 0.

Let µ = y∆(t1, t1) and εh = y∆(t1, t1 + h) − µ. By continuous dependence, εh → 0 as
t1 + h→ t1. Now y(t, t1) = u(t, t1, y1, µ). Therefore,

ν1h(t) =
1
h

[u(t, t1 + h, y1, µ + εh) − u(t, t1, y1, µ)]

=
1
h

[
u(t, t1 + h, y1, µ + εh) − u(t, t1, y1, µ + εh) + u(t, t1, y1, µ + εh) − u(t, t1, y1, µ)

]
.
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By the mean value theorem on time scales (see [3, page 5]), there exist t1 + τh, t1 + ξh
in (t1 − h, t1 + h)T\{t1} such that

γ(t, u(t, t1 + τh, y1, µ + εh))(t1 + h − t1)
≤ u(t, t1 + h, y1, µ + εh) − u(t, t1, y1, µ + εh)
≤ γ(t, u(t, t1 + ξh, y1, µ + εh))(t1 + h − t1),

where γ is as defined in Theorem 2.3. By the mean value theorem, there exists an
ε̄h ∈ (−ε, ε) such that

u(t, t1, y1, µ + εh) − u(t, t1, y1, µ) = β2(t, u(t, t1, y1, µ + ε̄h))(µ + εh − µ)

where β2 is as defined in Theorem 2.2. Therefore,

γ(t, u(t, t1 + τh, y1, µ + εh)) +
εh

h
β2(t, u(t, t1, y1, µ + ε̄h))

≤ ν1h(t) ≤ γ(t, u(t, t1 + ξh, y1, µ + εh)) +
εh

h
β2(t, u(t, t1, y1, µ + ε̄h)).

Since ν1h(t2) = 0,

min
{
−γ(t2, u(t2, t1 + τh, y1, µ + εh))
β2(t2, u(t2, t1, y1, µ + ε̄h))

,
−γ(t2, u(t2, t1 + ξh, y1, µ + εh))
β2(t2, u(t2, t1, y1, µ + ε̄h))

}
≤
εh

h
≤ max

{
−γ(t2, u(t2, t1 + τh, y1, µ + εh))
β2(t2, u(t2, t1, y1, µ + ε̄h))

,
−γ(t2, u(t2, t1 + ξh, y1, µ + εh))
β2(t2, u(t2, t1, y1, µ + ε̄h))

}
.

Here, β2(t1, u(·)) = 0 and β∆
2 (t1, u(·)) = 1 and, since (1.3) satisfies Property U,

β2(t2, u(·)) , 0. So the limits, as t1 + h→ t1, of the left- and right-hand sides of the
above inequality exist. Thus, by the squeeze theorem,

lim
t1+h→t1

εh

h
=
−γ(t2, u(t2, t1, y1, µ))
β2(t2, u(t2, t1, y1, µ))

:= L.

Therefore, again by the squeeze theorem,

ν1(t) = lim
t1+h→t1

v1h(t) = γ(t, u(t, t1, y1, µ)) + Lβ2(t, u(t, t1, y1, µ)).

By Theorem 2.2, β2(t, u(t, t1, y1, µ)) solves (1.3) along u(t, t1, y1, µ) = y(t, t1, t2, y1, y2).
By Theorem 2.3, γ(t, u(t, t1, y1, µ)) solves (1.3) along u(t, t1, y1, µ) = y(t, t1, t2, y1, y2).
Thus, ν1(t) solves (1.3) along y(t, t1, t2, y1, y2). Finally,

ν1(t1) = lim
t1+h→t1

ν1h(t1)

= lim
t1+h→t1

1
h

[
y(t1, t1 + h) − y(t1 + h, t1 + h)

]
= −y∆(t1, t1)

and
ν1(t2) = lim

t1+h→t1
ν1h(t2) = lim

t1+h→t1
0 = 0,

so ν1(t) satisfies the correct boundary conditions. �
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We conclude by remarking that these results agree with the known cases when
T = R, T = Z, and T = hZ. The results also apply to discrete time scales where µ
is not constant, such as the quantum case. Also, we can apply the results to time scales
that have points where σ(t) = t but [σ(t), σ(t) + δ) 1 T for all δ > 0, such as the point
0 in the time scales T = {1/n : n ∈ N} ∪ {0} and qZ with q > 1.
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