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To B. H. Neumann on the occasion of his 80th birthday

By a divisibility semigroup we mean an algebra (S,-, A ) satisfying (Al) ( S , ) is a semigroup; (A2) (S, A ) is a
semilattice; (A3) x(a A b)y = xay A xby, (A4) a^b=>3x,y:ax = b = ay.

A divisibility semigroup is called representable if it admits a subdirect decomposition into totally ordered
factors.

In this paper various types of representable divisibility semigroups are investigated and characterized,
admitting a representation in general or even a special decomposition, like subdirect sums of archimedean
factors, for instance.

1980 Mathematics subject classification (1985 Revision): 05.

Introduction

A lattice-ordered algebraic structure is called representable if it admits a subdirect
decomposition into totally ordered factors of similar type. So, the question of
representability is of central interest, and there is an abundance of contributions to this
topic (cf. [4]). In particular one finds a dozen of criteria for lattice-ordered groups to be
representable (cf. [1, 9, 10]), due to Lorenzen [15], Sik [18], Byrd [6], Fuchs (verbal
remark, see [9]), and Conrad [9], none of which however works in the lattice-semigroup
case.

As a matter of fact, a criterion for subdirect products of totally ordered factors has
been missing for two decades since L. Fuchs stated his Problem 41 in [10], although it
had been known for some twenty years (cf. [11]), that the subdirect products of totally
ordered factors of a class of lattice-ordered algebras form a variety, see also [12].

Then, in 1984, an answer was given independently in [4] and [17] which even turned
out to be of symptomatical character [4], telling that a lattice-ordered algebra is
representable if and only if its linearily composed polynomials satisfy:

p(a) * q(b)^p(b) v q(a). (0)

The proof has to be done via ideal-congruences, and this might be the reason for the
solution being so late. A lattice-ordered group is considered as /-group, and not as
lattice-^. So congruences are normal subgroups, and nothing else.

In this paper we study divisibility-semigroups, in order to simplify and to replace
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46 B. BOSBACH

condition (0) by further equational and also by structural properties. This will lead to
several representation theorems, the most interesting seeming to be that a divisibility-
semigroup is representable if and only if it satisfies:

eae A faf = (e A f)a(e A / )

which was stated for lattice-groups by L. Fuchs (cf. [9]).

0. Preliminary notions

By a divisibility-semigroup we mean an algebra (S, •, A ) of type (2,2) satisfying

(Al) (S, •) is a semigroup.
(A2) (S, A ) is a semilattice.
(A3) x(a A b)y = xay A xby.
(A4) a ̂  b=>3x, y:ax = b = ya.

Divisibility-semigroups are join-closed (with (a A b) a' = a=>ba! = a v b) and it turns out
that the underlying lattice is distributive and that multiplication distributes over meet
and join from the right and (by duality) from the left.

A divisibility-monoid is called (right) normal if it satisfies in addition:

Va,b3a',b':a' A b' = l,(a A b)a' = a,(a A b)b' = b.

In what follows we shall sometimes be concerned with distributive lattice-semigroups, i.e.
lattice-semigroups satisfying the distributive laws mentioned above. They are called dld-
semigroups in [16].

Let S be a <iW-semigroup. aeS is called positive if it satisfies as^s^sa for all seS.
Obviously the set S+ of all positive elements of S is closed w.r.t. •, A , and v. S itself is
called positive if each of its elements is positive, i.e. if S = S+. As usual S+ is called the
cone of S.

In a divisibility-semigroup the elements x, y of (A4) can always be taken from S+

whence we tacitly shall suppose them to be positive whenever they are involved in
calculations.

There is a most important rule of arithmetic.

Lemma 0.1. In a positive dld-semigroup we have:

a A bc = a A ac A bc = a A (a A b)c = a A b(a A C).

Let S be a dW-semigroup and let ea = a = ae. Then e is called a unit of a. The set of all
units of a is denoted by E(a). If S is even a divisibility-semigroup no E(a) is empty and
in addition one has:
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Lemma 0.2. [2]. Let S be a dld-semigroup. Then each pair a,e with eeE(a) satisfies

a=(e A a){e v a) = (e v a)(e A a).

A divisibility-semigroup need not contain an identity element 1. But, every divisibility-
semigroup S admits a canonical smallest divisibility-semigroup extension S formed by
the set of all (S, A)-endomorphisms of type fh'1 with f = id or f =fa:x->ax or
f = Ja'x->x A ax, and h = Jb with suitable elements a,b. This leads in Z to a = / ? o x a =
xfl (VxeS+). Important elements are the idempotents. More precisely we have:

Proposition 0.3. [2]. In a divisibility-semigroup the idempotents are central and positive.

A semigroup is called O-cancellative if it satisfies ax = ay # 0=>x = y and xa =

Lemma 0.4. A divisibility-semigroup S is O-cancellative iff it satisfies

ae = a#0=>e=l and ea = a#0=>e = l,

since ax = ay = a(x A y)=>ax = a(x A y)x' = a(x A y)y' = ay. •

A most important class of divisibility-semigroups is the class of archimedean
divisibility-semigroups.

Definition 0.5. A divisibility-semigroup is called archimedean if it satisfies

In order that a divisibility-semigroup be archimedean it suffices that its cone is
archimedean. Furthermore a fundamental result tells:

Theorem 0.6 [3]. Archimedean divisibility-semigroups are commutative.

We now turn to properties closely connected with representability, also called the
vector property. Here, as an application of (0), we get the criterion:

Proposition 0.7. [4] A lattice-semigroup is representable if and only if it is a dld-
semigroup satisfying xay A ubv^xby v uav where x,y,u,v are taken from S u { l } .

For a divisibility-semigroup S there is no need for an additional element 1 since there
are always enough private units. Furthermore a commutative divisibility-semigroup is
always representable. However, this fails to be true for d/d-semigroups in general,
consult [16], whereas commutative d/d-monoids do have the vector property.
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48 B. BOSBACH

Representability depends on the behaviour of certain substructures, the most impor-
tant being lattice ideals.

Definition 0.8. Let S be a dW-semigroup. A nonempty subset A of S is called an ideal
(filter) if it is an ideal (filter) of (S, A , v). An ideal (filter) A is called irreducible if it
cannot be written as intersection of two ideals (filters) different from A. An ideal A is
called m-ideal if it is multiplicatively closed. It is called invariant if it satisfies xA = Ax. A
filter A is called Rees-filter if it satisfies S- A,AS^A. Finally an ideal is called positive if
it contains at least one positive element.

By definition A is an irreducible ideal if S — A is an irreducible filter. Furthermore it is
folklore that an ideal (filter) P is irreducible if and only if

a A b(a v b)eP=>aeP or beP.

Proposition 0.9. Let S be a dld-semigroup. There are crucial congruences defined via
ideals and filters, respectively.

(I) Let P be an irreducible ideal (filter). Then P generates a congruence via

a = b(P):oxay e P*-+xby e P,

where obviously =(P) is equal to =(S — P). Furthermore S/P is totally ordered if in
addition S satisfies (0).

(F) Let R be a Rees-filter. Then R generates a congruence via

a = b(R):o3xeR:x A a = x /\b.

This implies that in the positive case every xeS generates a congruence mod x by
a = i(x)-»x A a = x A b with S/= =:Sx.

(M) Let M be an m-ideal of S + . Then M generates a left congruence via

a = b(M):o3e, f eM:a^be and b-^

For the sake of decomposition it is necessary to have enough congruences of a given
type, in order to separate each pair a,b, and it is convenient that we may restrict
ourselves to pairs a < b in arbitrary lattice-semigroups and even to positive pairs a < b in
divisibility-semigroups. Furthermore, with respect to irreducible ideals, we may apply
that there are enough regular ideals, i.e. ideals, maximal with respect to not containing a
given element a, and that regular ideals are irreducible.

As a further important class of substructures we present:

Definition 0.10. Let S be a divisibility-monoid. By a solid submonoid of S we mean a
submonoid A whose cone A+ is an m-ideal of S+ and whose elements are exactly all
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ab'1 with a,beA+, b invertible. A solid submonoid P of S is called a prime monoid of S
if it satisfies A n B£P^XsP v B s P (4,£ solid). P is called regular if it is maximal
with respect to not containing some given element a.

Obviously S itself is solid and with a family At of solid submonoids also its
intersection is solid. Hence, every subset M of S generates a smallest solid submonoid
C(M), which in the case of a positive M turns out to be equal to the set of all
x^m1-...mn (HijeM). Furthermore in analogy to the /-group case we have the
propositions:

Proposition 0.11. Let S be a divisibility-monoid. Then the set of all solid submonoids
forms a distributive lattice and in addition complex-multiplication distributes over meet and
join. {For an idea consult [1]).

Proposition 0.12. Let S be a divisibility-monoid. Then every direct decomposition of S+

induces a direct decomposition of the whole in such a way that the direct factors of S are
the solid submonoids generated by the direct factors of S+. (For an idea consult [4]).

In some theorems of this paper we are concerned with direct factors. For this reason
we remark u 1 v.ou A B = 1 .

Definition 0.13. Let S be a divisibility-monoid, and let A^S. Then the polar A1 of A
is defined by

Ax: = {x\VaeA:(l v a)(l A a)"11(1 v x)(l A X ) " 1 } .

Furthermore the bipolar of A is defined by AX1: = (AL)1, and the polar of a singleton
{a} is also written as a1, (compare [4]).

Proposition 0.14. Let S be a divisibility-monoid. Then every polar is solid and
moreover a solid submonoid A is a direct factor if and only if A- AL = S, and in this case A
is equal to A11.

Finally we remark on some results which are proved straightforwardly—see also [1].

Lemma 0.15. Let S be a normal divisibility-monoid. P^S is a prime submonoid iff P is
solid and a A b = 1 =>a eP on be P.

Lemma 0.16. Let S be a normal divisibility-monoid. Then each prime submonoid of S
contains a minimal prime submonoid.

Lemma 0.17. Let S be a normal divisibility-monoid. Then each minimal prime submo-
noid M is canonically associated with an ultrafilter of (S+, A , V ) by M—*S + \M which
implies that each minimal prime submonoid MofSis of type M = {xL\x$M}.
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50 B. BOSBACH

Lemma 0.18. Let S be a normal divisibility-monoid. Then each regular submonoid is a
prime submonoid.

1. Subdirectly irreducible divisibility semigroups

There is not too much known about subdirectly irreducible divisibility-semigroups in
general. In the finite case however the situation is a bit better.

We start with a description of the subdirectly irreducible homomorphic images of
arbitrary distributive lattice ordered semigroups.

Proposition 1.1. / / S is a dld-semigroup and S/& is subdirectly irreducible, then 0 is
generated by an irreducible ideal (filter).

Proof. Let a<b be a critical pair. We choose an a containing, 5 avoiding regular
ideal M of S: = S/& with inverse image M in S. Then M is irreducible in S whence M is
irreducible in S.

Furthermore

x = yosxte MosyFe M(s, t e S1)

provides a congruence relation on S, which according to the subdirect irreducibility of S
must be the equality relation.

On the other hand we have

sxfeMosyFeMosxteMosyt eM (s,teSl)

which yields

x©_y-ox=y(M). •

The next result concerns idempotents in subdirectly irreducible divisibility-semigroups.

Proposition 1.2. Let S be a subdirectly irreducible divisibility-semigroup. Then S
contains at most two idempotents.

Proof. Let S be subdirectly irreducible and let we S be idempotent. We define

apb.ols e S: a A SU = b A SU.

and

aab.oau = bu.

It is easily seen that both definitions provide a congruence, and furthermore we get
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au = by=>su v a — u(su v a)

= u(su v b) = su v b.

But from this follows:

apb su A a = su A b . „
and aab and s u v a = s u v o

We now turn to the positive case, proving as a first general result:

Proposition 13. Let S be a positive subdirectly irreducible dld-semigroup. Then in S
there exists a maximum 0 and a unique hyper-atom (co-atom) a which together form a
critical pair.

Proof. Suppose that a<b is critical. Then x<b and x£a implies x A a<x = x A b
whence a and b would be separated in Sx. Therefore we have b=0 and x<b=>x^a. •

Applying 1.3 to the divisibility case we obtain in particular:

Proposition 1.4. Let S be a positive subdirectly irreducible divisibility-semigroup. Then
S is a normal divisibility-monoid and hence totally ordered or containing an orthogonal
pair u*,v* with l # u * - L y * # l . Verifying these properties it will turn out furthermore that
the subset L of all left cancellative elements and the subset R of all right cancellative
elements both form an irreducible m-ideal.

Proof. We start by proving the second assertion. We see immediately that the right
and the left units of the hyper-atom a form irreducible m-ideals because of ax = a or
ax = 0. Furthermore we see that e is a right unit of a iff e is right cancellative, since each
right cancellative c satisfies ac^Oc and since each right unit e of a produces a
congruence separating a and 0, namely x = yoxe = ye.

Hence L and R form irreducible m-ideals and in addition every unit e of a is
cancellative whence S is a monoid.

Suppose now u, v^a and (u A V)U' = U, (M A V)V' = V, U*(U' A V') = U' and v*(u' A V') = V'.
Then u* A V* = \ since («* A V*)(U' A V') = U' A V' and (u A V)U*=(U A V)U*(U' A V') = U

and (u A v)v* = v. Hence u* A v*eRnL whence S is normal on the grounds of right-
left-duality. •

Definition IS. An ideal is called co-regular if it is a complement of a regular filter.

Obviously a co-regular ideal is irreducible and minimal within the set of all
irreducible ideals containing a fixed element a.
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Proposition 1.6. For a positive dld-semigroup the subdirectlly irreducible homomorphic
images correspond uniquely with the co-regular ideals; and thereby with the regular filters.

Proof. Let J be co-regular with respect to a and let J not contain b. Then a is the
uniquely determined hyper-atom in S: = S/J, since otherwise S\J would not be maximal
w.r.t. not containing a. Consider now a subdirectly irreducible homomorphic image S
with a T^O. Here {0} is the image of {0} and both {0} and{0} are regular filters with
respect to the corresponding hyper-atoms. This means S^S/J^S. Hence S/J is
subdirectly irreducible.

The rest follows by 1.1. since the inverse image of a filter regular with respect to a is a
regular filter with respect to a. •

Proposition 1.7. Let S be a commutative subdirectly irreducible divisibility-semigroup.
Then S is a totally ordered, O-cancellative divisibility-monoid.

Proof. First of all S is totally ordered (cf. the remark following 0.7). Let now a<b be
a positive critical pair. Then S/E(a)^S, whence E(a) is a singleton, say {e}. We consider
x^a and xu = x. Then ueE(a), i.e. u=e. Therefore S is a monoid. It remains to verify
that a^y = yu=£0 implies u = e. But this follows since the set F: = {x|£(x)#£(a)} is
empty or forms a Rees-filter with S/F^S. t •

2. Divisibility semigroups

In this paragraph we give some structure theorems on representation.

Theorem 2.1. For a divisibility-semigroup S the following are equivalent:

(i) S is representable.

(ii) xay A ubv^xby v uav.

(iii) S+ is representable.

(iv) E + is representable.

(v) ax A yb^ay v xb.

(vi) eae A faf=(e A f)a(e A / ) .

Proof. (i)<*-(ii) is valid on the grounds of 0.7.
(ii)o(iii) is evident in one direction.

Assume now (iii) to be true and S to be subdirectly irreducible. We consider

xay A ubv, xby v uav.

Obviously (ii) is true, iff for suitable elements a", b"

xa"(a A b)y A ub"(a A b)v^xb"(a A b)y v ua"(a A b)v.

Therefore by 1.4, (ii) is already valid if it is valid for all orthogonal pairs a,b.
Furthermore, choosing suitable elements x', u',
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xay A ubv^xby v uav

can be written as

(x A u)x'ay A (x A u)u'bv^(x A u)x'by v (x A u)u'av

Hence (ii) is already valid if it is valid for all orthogonal pairs a 1 b, x 1 u from which it
follows that (ii) is already valid if it is valid for all orthogonal pairs x J_ u, a _L b, y 1 v.

But this means a fortiori that (ii) holds in all of S if it satisfied in S+.
(iii)o(iv) is an immediate consequence of the fact that a and jS of £ are equal if and

only if x a = x /J for all xeS+. To verify this we apply the more general lemma which
tells that any identity holding in S+ is also valid in S + and which follows from the
implication

xe = x=>x •/(<*!,..., an) = x-/(a1e,...,ane).

We continue by considering (ii), (v), (vi).
(ii)=>(v) is evident.
(v)=>(vi) follows from

eae A faf ^ eaf A eaf = eaf and faf A eae ̂  fae A fae = fae

since

(e A f)a(e A f) = eae A eaf A fae A / a / .

(vi)=>(ii). First of all it suffices to consider the positive case. Hence we may start from
a positive subdirectly irreducible S with hyper-atom a.

This leads to L s R or K s L and thereby to C = L or C = R. To see this assume
. Then there exist an eeL\R and an /e i? \L . But this means

ea = a = af and ae = 0 = fa

which leads to the contradiction

a = (e A /)a(e A / ) = eae A / a / = 0.

So in any case C turns out to be an irreducible m-ideal. In particular this means that
p -L q implies p e C or q e C.

On the other hand, by the proof of (iii)=>(i) we may confine ourselves to orthogonal
pairs x, u; a, b; y, v. But this means that we may start from the special situation

xLu, alb, yLv and aeC.

To gain a further reduction we prove that we may assume in addition
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(x A a) A y=\.

This can be shown as follows:

x A a A y A ybv = l, by (0.1.).

Suppose now (x A a A y)x* = x and (x A a A y)a* = a and (x A a A y)y*=y. We
get x* A a* A y* = 1 by (x A a A .y)(x* A a* A y*) = (x A a A y)eC (recall aeC), and
moreover we have

x*a*y* A ubu = xa>> A ubv

according to 0.1. (Observe x A a A y _L uftu).
Hence

x*a*y* A ubv^x*by* v ua*u

=>xa>1 A ubv = x*a*y* A ubv

^x*by* v ua*v^xby v uat).

Summarizing, we have obtained that we may restrict ourselves to the case

x±u, a±b, yLv, aAxly and aeC.

So by symmetry it is enough to consider the three cases

(l)x,yeC and (2)x,i;eC and (3)u,veC.

Before treating these cases we remark as follows. Let d,g be orthogonal. Then

ceC=>cd A gc^dcd A gcg=c=>c(d A c*gc)=c=>di.c*gc.

Observe that c*gc and cg:c are uniquely determined because c is cancellative. This
leads, by duality, to the implication

ceC=>(d±g =>d±c*gc and dLeg:c) (L)

which means: if d and g are orthogonal and c is cancellative then gc is equal to cs for
some sLd and eg is equal to tc with some tId.

Now we are in the position to treat the cases (1) through (3).

Case (1). Since x,yeC we get by (v) and (L):
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xay A ubv = a*xy A uvb* (with a* 1 b*)

^a*(xy v uv)a* A b*(xy v uv)b*

= xy v uv.

Case (2).

xay A ubv = xay A (M A xay)fr(i> A xay) (0.1.)

= xya* A (u A xay)(v A xa_y)fc* (with a* J_ b*)

^ ( x y v uv)a* A (xy v uv)b*

= xy v uu.

Case (3). First of all (v) implies a2 A x2 = a l a A xlx=(a A X) 2 , which leads by
cancellation to (x*a) (a :x) A (a*x)(x :a) = l. Hence a * x and a:x commute. Therefore we
can calculate:

xay A ubv=(x A a)(a*x)(a:x)(a A x)y A ubv

=(x A a)(a: x)(a * x)y(x A a) A uvb* (x A a ± y, b* 1 a)

^(x A a)(a:x)(xy v uv)(x A a)(a:x) A b*(xy v uv)b*

= xy v uv,

thus completing Case (3) and finishing the proof of 2.1. •

In the preceding theorem representable divisibility-semigroups were characterized by
equations. In a further theorem we shall describe representable divisibility-semigroups
by special substructure-properties which can be done adequately by studying the cone
or more generally by considering the positive case of a divisibility-monoid, since in the
positive case S is turned to a divisibility-monoid by merely adjoining an identity 1.

Theorem 2.2. For a positive divisibility-monoid S the following are equivalent:

(i) S is representable.

(ii) / / J is a co-regular ideal then its kernel

ker(J): = { x | s t e J = > s x t e J }

is irreducible.

https://doi.org/10.1017/S0013091500004995 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004995


56 B. BOSBACH

(iii) / / J is a co-regular ideal the set of all m-ideals between ker (J) and J forms a chain
under inclusion.

(iv) / / J is a co-regular ideal and xeS then the subsets

XL: = {y\x A yeker(J)}

and

XLL := {z | Vy 6 X1: y A Z 6 ker (J)}

satisfy

XLKJXLL = S.

(v) If J is a co-regular ideal then the subsets XL and XLL satisfy

Proof. (i)=>(ii). If S is representable then S/J is totally ordered and thereby T is
A -irreducible. But ker (J) is the inverse image of T. So ker (J) is irreducible, too.

(ii)=>(i). If ker(J) is irreducible then T in S/J is A-irreducible. Hence S/J is totally
ordered on the grounds of 1.4.

(i)=>(iii). Let J be a co-regular ideal. Then S/J is subdirectly irreducible and hence
normal by 1.4.

Consider now two m-ideals A and B between ker(J) and J with aeA\B, beB. Since
S/J is totally ordered ker(J) is irreducible. So, choosing orthogonal elements a',b' with
(a A b)a' = a and (a A b)b' = b we get a' A fc'eker(J) which implies V 6 ker (J) and
thereby (a A b)b' = beA n B, whence B is contained in A.

(iii)=>(i). On the grounds of (iii) the kernels of co-regular ideals are irreducible. Hence,
all we have to show is that there are enough co-regular ideals. But this is evident since
there are enough regular filters.

(i)=>(iv). Let S be represen table and let J be a co-regular ideal. Then S/J = :S is totally
ordered and x1 u xx± = S which yields condition (iv).

(iv)=>(i). Let S be as above. Then the hyper-atom a belongs to xx or to xL± for each
xeS. But this means x = T or xx = {l}. Consequently there cannot exist an orthogonal
pair in S whence S is totally ordered. Therefore condition (i) holds because S has
enough co-regular ideals.

(i)=>(v). Conclude similarly to (i)=>(iv).
(v)=>(i). Assume J to be a co-regular ideal of S and S/J = :S not to be totally ordered.

Then by (v) the hyper-atom a of S is a product of an orthogonal pair x, y which leads to
x2 g a, y2 ^ a and thereby to the contradiction

a = x-_p = x v y = x2 v y2 = x2y2 = a2 = 0.

This completes the final part and thereby the whole of the proof. •
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We continue our investigation by studying special representable divisibility-
semigroups. To this end we give

Definition 23. A divisibility-semigroup S is called real if it is embeddable in
R: = (R°°, + ,min)orE: = R s 0 /{x |x^ l} or E-: = R^°/{x|x> 1}.

As is easily seen 1 is a maximum of E and a hyper-atom of E\

Definition 2.4. Let S be a divisibility-semigroup and J an ideal of S. J is called really
archimedean if it satisfies the implication:

u - t " - v e J ( V n e N ) a n d a b e J => a t b e J .

Let S be as above and let F be a filter. F is called really primary if it satisfies:

a-t-beF=>a-beF or u-?-veF(3u,veS,neN).

Obviously an irreducible ideal is really archimedean iff its complement S—J is a really
primary filter.

Theorem 2.5. For a divisibility-semigroup S the following are equivalent:

(i) S is a subdirect product of real divisibility-semigroups.

(ii) S is a subdirect product of totally ordered archimedean divisibility-semigroups.

(iii) Every principal ideal is the intersection of a family of really archimedean irreducible
ideals.

(iv) Every principle filter is the intersection of a family of really primary filtres.

Proof. (i)=>(ii) is evident.
(ii)=>(i). Let S be totally ordered and archimedean. Then it is easily checked that

every homomorphic image of S is totally ordered and archimedean, too. So S can be
decomposed into O-cancellative totally ordered archimedean divisibility-semigroups, i.e.
according to Holder [13] and Clifford [7] into subsemigroups of R' and E". Observe
that subdirectly irreducible positive components have a hyper-atom.

(i) or (ii) => (iii) and (iv). Let S be a subdirect product of real divisibility-semigroups.
Then for every pair a<b there exists an index i with i(a)<i(b), and the ideal
Pf: = {x i(x)^i{a)} is irreducible and really archimedean. Similarly we see that the filter
F,: = {x i(x)^i(b)} is irreducible and really primary. But this means that there are
enough ideals and enough filters to verify (iii) and (iv).

(iii)o(iv) is valid by Definition 2.4.
(iii) or (iv)=>(i) and (ii). We start from (iii). Then S is archimedean and hence

commutative. Indeed, teS+ and f"^a (VneN) and a<at would imply the existence of a
really archimedean ideal P with aeP and (thereby) t"eP (VneN), but at$P.
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Let now P be an irreducible really archimedean ideal of S and suppose F"^c(VneN)
in S: = S/P. Then we get

(cseP=>?seP{VneN))=>(cseP=>ctseP)

which means cl=c. Thus we get (iii)=>(ii) whence (iii) or (iv)=>(i) and (ii). •

3. Divisibility monoids

Up till now we have considered divisibility-semigroups in general. Henceforth we shall
consider divisibility-monoids.

This will enable us to apply notions, well-known from lattice-group theory, due to
pioneers like Jaffard and Conrad (cf. [14] and [8]), and well discussed above all by
Bigard, Keimel and Wolfenstein in [1].

Let G be a lattice-group. Recall that a solid submonoid V of G is called a value of a if
V is maximal with respect to not containing a. The set of all values of a is denoted by
val(a). G is called finite-valued if each val(a) (aeG) is finite.

G is called ortho-finite if each bounded orthogonal subset {af | i e 1} of G
(ai = aj v af A at = 1) is finite.

G is called semi-projectable if it satisfies (a A b)L = aL v b1 (Va,beG). G is called
projectable if it satisfies G = ax x a11 (Vae G). G is called strongly projectable if it satisfies
G = C(a)xC(a)1(VaeG). Observe: strongly projectable implies C(a) = a1J:

Obviously each of these notions is based merely on the divisibility-monoid language.
Hence we may adopt them once an identity is present.

Theorem 3.1. For a divisibility-monoid S the following are equivalent:

(i) S is a direct sum of totally ordered divisibility-monoids.

(ii) S is normal, finite-valued, and semi-projectable.

(iii) S is ortho-finite and projectable.

Proof. (i)=>(ii) is obvious.
(ii)=>(iii). First of all each prime submonoid contains exactly one minimal prime

submonoid. To see this, assume P to be prime and A, B to be minimal prime and
contained in P. Then there are elements aeA\B, beB\A which yield an orthogonal pair
a' e A\B, b' e B\/l such that a'L £ B and blj- £ A. But this would lead to

S = (c' A b')± = a'L v b'1 = P.

So we get next that S is ortho-finite since l g a , ^ a (is/) implies: / is finite or there
exists at least one value M containing af and a* (j¥=k), a contradiction which is seen as
above.

Now we show that any regular Afeval(a) is a unique value with respect to some c.
To this end we start from the family {M, | ie /} of all minimal prime submonoids of S,
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not containing a. This set is finite since each M, is uniquely associated with some
K-eval(a). So we have {Mi\ieI} = {M0,Ml,...,Mn} with M0^M and Mt£M
( l g i g n ) . But this leads to some ateMt\M for each iel whence M turns out to be the
unique value of c: = a A aj A ••• A an.

Suppose finally S # aL x a11. Then aLy.aLL is contained in some M with {M} = val(c),
and since a 1 1 is equal to f\hx (hea1) there exists at least one hL not containing c and
hence contained in M. But this yields a contradiction, since by / i 1 2 a l i we get
heh±L^al which implies

S^M^a1 v hL = (a A h)± = S.

So (ii)=>(iii).
(iii)=>(i). Suppose aeS+ and assume a11 not to be totally ordered. Then there exists

an x in aLL with {1} ^xxl^axl, but x ± 1 # a J - i . This leads to

a-LJ-=x
J-L-(x-Lna1-L)by(0.11)

and thereby to a = ala2 with alsxLL and
We know already a^ ±a2- Now we show ax^a^a2. To this end suppose first a^ = a.

This implies xL1 = aL1, a contradiction. Suppose next a2 = a. This leads to the
implication: n e x 1 = > f l i 2 x i l = > x e f l i n a 1 1 , once more a contradiction. Therefore the
decomposition of a is proper. So, continuing the decomposition procedure, after finitely
many steps we arrive at a = ala2---an with pairwise orthogonal elements ah

generating totally ordered bipolars afL. Consider now two totally ordered bipolars
xLL*yLL. Then zex11 njru-=>z±-L£;C-'-J-ny1-L=>z-L-L = {l}, whence z = l. Therefore the
family of all totally ordered xL1 can be taken to realize a decomposition of S in the
sense of (i). •

For the sake of a further representation theorem we give next:

Definition 3.2. A divisibility-monoid is called strongly archimedean if it satisfies:

Strongly archimedean divisibility-semigroups are totally ordered [5], and according to
Holder's and Clifford's results a (totally ordered) divisibility-monoid is strongly archime-
dean iff it is embeddable in R or E or E\

Now we are ready to present

Theorem 33. For a divisibility-monoid S the following are equivalent:

(i) S is a direct sum of strongly archimedean totally ordered divisibility-monoids.

(ii) The lattice of solid submonoids of S is boolean.
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(iii) S is orthofinite and strongly projectable.

Proof. (i)=>(ii) is nearly obvious.
(ii)=>(iii). If the lattice of solid submonoids is boolean then every solid submonoid is a

direct factor. But furthermore S is also ortho-finite, since C(M) cannot be a direct factor
if M is an infinite set of pairwise orthogonal elements with a e S as an upper bound.

(iii)=>(i). We could apply 3.1. but we wish to give some deeper information. Since
every C(x) is a direct factor, S satisfies a, teS+=>3neN: a A t" = a A r"+1.

Furthermore S is normal. To see this we start from (a A b)a' = a and (a A b)b' = b with
a',b'eS+. It follows b' = b\b'2 with b\eC(a') and b'2eC(a')x. This provides b\^a'n for
some suitable «eN which leads to b\ = b\lb\2- ...b\n with b'u^a' A d ' ( l ^ i ^ n ) . Thus
we get (a A b)b\ = a A b and thereby (a A b)a' = a and (a A b)b'2 = b with a' J. b'2.

Suppose now l<x,y<a" and x£y£x. Then there are orthogonal elements x ' , /#{l}
whence C(a) has a direct decomposition, say C(x')xD. This leads to C(a) = C(al)x
C(a2) with a1±a2, and, by continuing the procedure, after finitely many steps to a
direct decomposition C(a)=XC(xi) where the direct factors C(x.) are directly indecom-
posable and hence totally ordered. Recall now that the lattice of all solid submonoids is
distributive. This yields uniqueness of XC(x,) whence there are only finitely many
totally ordered C(x) with a A x ^ l .

So, taking all totally ordered C(x) we get a family of strongly archimedean
components in the sense of (i). •

4. Hypernormal divisibility monoids

We continue our studies by considering a class of special normal divisibility-monoids.

Definition 4.1. A divisibility-monoid is called hypernormal if it satisfies:

x,yeS+ and ax A ay = a =>3z_Lx:ay = az

x,yeS+ and xa A ya = a=>3z ±x:ya = za.

Lemma 4.2. A divisibility-monoid is already hypernormal iff it satisfies:

eeS+ and ae = a^b =>3xLe:b = ax

eeS+ and ea = a^b=>3xLe:b = xa.

Proof. Assume ax A ay = a and (x A y)y' = y (y'eS+). Then / can be replaced by an
element y* L x A y. Hence z: = y* A y satisfies az = ay (z _L x). •

The hypernormal divisibility-monoid might be something like an optimal common
abstraction of boolean rings (distributive lattices with boolean intervals) and lattice-
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groups. To have a natural example not boolean and not group-like, consider a Bezout-
ring R with identity. Here one has

ax | a => a = axy and az = a(xy — 1 + xyz)

whence the principal ideal semigroup of R is a hypernormal divisibility-monoid.

Lemma 4.3. Let S be a hypernormal divisibility-monoid and let J be an invariant
m-ideal of S. Then J generates a congruence and S/J is hypernormal, too.

Proof. J generates a congruence. Assume now du = d^B and b = a v b. Then au^ae
whence a(u A e) = a(u A e)u' (u'sS+) and thereby

b = a(u A e)x

= a(u A e)y' (y' 1 u').

Hence we get

B=a((u A e)y') ((u A e)y') = y J. u.

The rest follows by duality. •

Obviously 4.3. implies that S/J is O-cancellative if it is totally ordered. Now we are in
the position to prove:

Theorem 4.4. For a positive hypernormal divisibility-monoid S the following are
equivalent:

(i) S is representable.

(ii) xa A bx^x(a A b) v (a A b)x.

(iii) a A b = 1 =>xa A bx = x.

(iv) xa± = a1x.

, . , _ , , ., , „ c.La and ex = bx
(v) a,beS and xa A bx = x=>3c,deS:

dxb and xd=xa.

(vi) £ac/i minimal prime submonoid of S is invariant (cf. [6]).

(vii) Each regular invariant m-ideal JofS is prime (cf. [9]).

Proof. (i)=>(ii)=>(iii) is obvious.
(iii)=>(iv). Suppose a 1 b. It follows

xa A i»x = x = xa A xc = x(a A C).
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This implies xc = xc* with c* Lc A a whence z = c* A C satisfies zLa and bx = xz. Thus
we get aLx c xaL and, by duality, xa1 s axx.

(iv)-*>{v). Suppose xa A bx = x. One gets fcx = xu and thereby

xa A bx = x=>xa A xu = x

=>xu = xu*(u* ± a)

=>fcx = xu* = cx(c X a).

So (iv) implies (v).
Let now (v) be valid and suppose a _L b and xfc = dx. Then we get xa A dx — x, whence

by (v) there exists an element c such that ale and ex = dx = xfc. This means xax£axx,
and, by duality, a±x^xa1.

(iv)o(vi). Since each minimal prime submonoid is a union of polars (0.17.) (iv) implies
(vi).

On the other hand, if (vi) is valid, then each m-ideal of S separating a and b contains
a minimal prime submonoid of S, invariant by (vi). Hence (vi) implies (i) and thereby
(iv).

(iv)o(vii). Observe that for invariant m-ideals J condition (iv) is carried over from S
to S/J. To see this, assume (a A b)a' = a, (a A b)b' = b, a! L b', and a ±5. One gets

a A beJ=>xb = x(a A b)b'

= cx(a A b){cLd)

and thereby xB=cx(d 1 c).
But this means that x±yox = l or y=l and consequently that J is prime. Thus

(iv)=>(vii).
On the other hand we have (vii)=>(i)=>(iv). •

The preceding theorem shows how strong hypernormal divisibility-monoids seem to
be. This is confirmed also by the next result, a modification of [1,14.1.2]:

Theorem 4.5. For a hypernormal divisibility-monoid S the following are equivalent:

(i) Each aeS satisfies S = C(a) x C(a)x. (Actually any strongly projectable divisibility-
semigroup is hypernormal, see above).

(ii) S is a subdirect product J~[ S,(i e I) of strongly archimedean factors, satisfying: V/,
SeS+3neN:/(x)"^(x) (Vx 6 supp(/)).

(iii) Va,teS+ 3neN:a A f = a A tn+1.

(iv) Each prime m-ideal is minimal.

Proof. (i)=>(ii). By (i) we have (iii), whence S is commutative. Therefore it suffices to
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prove that the factors S = S/P are strongly archimedean. But this follows from
r<a(VneN)=>3m: (fm)2 = im since S/P is O-cancellative for each prime submonoid P.

(ii)=>(iii) is evident.
(iii)=>(iv). Each prime submonoid P contains a minimal prime submonoid M.

Suppose M^P. Then there exists an xeS+\P satisfying in S/M = :S for every arbitrary
yeP+

But this leads to y = l as above, which means yeM, and thereby P = M.
(iv)=>(i). Suppose C{a)y.C{a)L¥=S. Then (iv) implies that CirfxCia)2- is contained in

some minimal prime submonoid M. But by 0.17 each minimal prime submonoid P of S
is of type P = U{xL \x$P) (cf. [1]). This completes the proof by contradiction. •

5. A final remark

Two natural questions remain unsettled in this paper, namely how to characterize
direct products of totally ordered divisibility-monoids and how to characterize irreduc-
ible representations of divisibility-monoids. So it should be remarked that a solution of
these problems will be given elsewhere in a context which would have extended this
paper unduly.

The clue to these results is the fact that the whole of Chapter 4 and nearly all of
Chapter 7 of Bigard-Keimel-Wolfenstein carry over to normal divisibility-semigroups.
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