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Abstract Motivated by problems in the spectral theory of linear operators, we previously introduced
a new concept of variation for functions defined on a non-empty compact subset of the plane. In this
paper, we examine the algebras of functions of bounded variation one obtains from these new definitions
for the case where the underlying compact set is either a rectangle or the unit circle, and compare
these algebras with those previously used by Berkson and Gillespie in their theories of AC-operators and
trigonometrically well-bounded operators.
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1. Introduction

For a function whose domain is a subset of the plane, there are a number of different ways
of measuring its variation. For applications in operator theory, one is typically interested
in looking at algebras of functions which are defined on the spectrum of some bounded
operator. This leads one to seek a definition which is applicable when the domain is a
compact subset of the plane.

In modelling operators that possess spectral expansions of a conditional nature,
Smart [10] introduced well-bounded operators, which are those operators that admit
a functional calculus for the absolutely continuous functions on some compact interval
of the real line. Well-bounded operators can be thought of as a generalization to Banach
spaces of self-adjoint operators on a Hilbert space. The analogue of unitary operators in
this context, the trigonometrically well-bounded operators, were introduced by Berkson
and Gillespie [5] using the natural definition for functions of bounded variation on the
unit circle. The challenge in providing a suitable analogue of general normal operators
was to find a suitable concept of variation for functions defined on an arbitrary com-
pact plane set. In [4], Berkson and Gillespie used a notion of variation due to Hardy [8]
and Krause [9] to introduce an algebra BVHK(J × K) of function of bounded variation
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on rectangles in the plane, and the corresponding notion of an AC-operator. Motivated
by a desire to extend the theory of well-bounded and trigonometrically well-bounded
operators, Ashton and Doust [3] recently introduced a new definition of variation for
complex-valued functions defined on arbitrary compact subsets σ ⊂ C. This definition
leads to a Banach algebra BV(σ), and a corresponding new class of operators.

It is natural therefore to ask what the relationship is between these earlier concepts of
variation and the one introduced in [3]. We shall show in this paper that

(i) BVHK(J × K) ⊂ BV(J × K);

(ii) the inclusion map BVHK(J × K) ↪→ BV(J × K) is continuous;

(iii) if J and K are non-degenerate, then BVHK(J × K) �= BV(J × K).

We also show that, for the case where σ is the unit circle T, the new definition essentially
reproduces the more classical one. We discuss the operator theoretic consequences of
these results in § 6.

2. BV(σ) for σ ⊂ C compact

Here we shall recall briefly the definition of a function of bounded variation introduced
in [1] and [3]. The reader is referred to [3] for the full details.

By a curve in the plane we shall mean an element of the set Γ = C([0, 1]). If γ1, γ2 ∈ Γ

and if there exists h : [0, 1] → [0, 1], where h is a continuous non-decreasing or non-
increasing surjective function such that γ1(t) = γ2(h(t)) for all t ∈ [0, 1], then we write
γ1 ∼= γ2.

Let γ ∈ Γ . Then t ∈ [0, 1] is said to be an entry point for γ on a line l if either

(i) t = 0 and γ(0) ∈ l, or

(ii) γ(t) ∈ l and for all ε > 0 there exists s ∈ (t − ε, t) ∩ [0, 1] such that γ(s) �∈ l.

Suppose that γ ∈ Γ . We define vf(γ, l) to be the number of entry points of γ on l.
We set vf(γ) to be the supremum of vf(γ, l) over all lines l. We write vfH(γ) for the

supremum of vf(γ, l) over all horizontal lines l, and vfV for the supremum of vf(γ, l) over
all vertical lines. Clearly, vf � vfH and vf � vfV. We write ρ for 1/ vf. If, for example,
vf(γ) = ∞, then we take the convention that ρ(γ) = 0.

For a set of curves {γj}m
j=1 ⊂ Γ we define

vf
( m⋃

j=1

γj , l

)
=

m∑
j=1

vf(γj , l) and vf
( m⋃

j=1

γj

)
= sup

l
vf

( m⋃
j=1

γj , l

)
.

The definitions for vfH, vfV and ρ extend analogously.
Let σ ⊂ C be compact and let l be a line parametrized by R. Then t ∈ R is said to be

an entry point of l on σ if l(t) ∈ σ and, for all ε > 0, there exists s ∈ (t − ε, t) such that
l(s) �∈ σ. Again set vf(σ, l) to be the number of entry points of l on σ and vf(σ) to be
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the supremum of vf(σ, l) over all lines l. Clearly, vf(σ, l) does not depend on the choice
of parametrization of the line l.

Let z0, . . . , zn ∈ C. Write Π(z0, z1, . . . , zn) for the (uniform speed) parametrization of
the curve consisting of line segments joining the points z0, z1, . . . zn. We write

ΓL = {γ ∈ Γ : γ ∼= Π(z0, . . . , zn) for some z0, . . . zn ∈ C}

for the set of all piecewise linear curves.
We shall denote by Λ([0, 1]) the set of all partitions S = {s0 < s1 < · · · sn} ⊂ [0, 1].

Given γ ∈ Γ and S ∈ Λ([0, 1]), set

γS = Π(γ(s1), γ(s2), . . . , γ(sn)) ∈ ΓL.

The piecewise linear curve γS is said to be the S approximation of γ.

Lemma 2.1. Let γ ∈ Γ and suppose vf(γ) < ∞. Then limS∈Λ([0,1]) ρ(γS) = ρ(γ).

Let γ ∈ Γ and let ∅ �= σ ⊂ C be compact. We say that {zi}n
i=1 is a partition of γ

over σ if zi ∈ σ for all i and if there exists {s0 < s1 < · · · sn} ⊂ [0, 1] such that zi = γ(si)
for all i. Let Λ(σ, γ) be the lattice of partitions of γ over σ.

Let f : σ 	→ C and let γ ∈ Γ . We define the variation along the curve γ by

cvar(f, γ, σ) = cvar(f, γ) = sup
{zi}n

i=1∈Λ(σ,γ)

n−1∑
i=1

|f(zi+1) − f(zi)|.

Lemma 2.2. Let f : σ → C. Let γ1, γ2 ∈ Γ and suppose that γ1 ∼= γ2. Then we have
cvar(f, γ1) = cvar(f, γ2).

Definition 2.3. Let f : σ → C. Then variation of f on σ is defined to be

var(f, σ) = sup
γ∈Γ

ρ(γ) cvar(f, γ).

Here we take the convention that if γ ∈ Γ is such that ρ(γ) = 0 and if cvar(f, γ) = ∞,
then ρ(γ) cvar(f, γ) = 0.

In practice, Γ is usually too large a set to work with. As the next lemma shows, one
can replace Γ by ΓL.

Lemma 2.4. Let f : σ → C. Then

sup
γ∈ΓL

ρ(γ) cvar(f, γ) = sup
γ∈Γ

ρ(γ) cvar(f, γ).

Note that, for subintervals of R, this new definition agrees with the standard one.

Proposition 2.5. Let f ∈ BV([0, 1]). Then

var[0,1] f = sup
γ∈Γ

ρ(γ) cvar(f, γ).

For f : σ → C, set ‖f‖BV(σ) = ‖f‖∞ + var(f, σ). The functions of bounded variation
with domain σ are defined to be

BV(σ) = {f : σ 	→ C : ‖f‖BV(σ) < ∞}.

Theorem 2.6. (BV(σ), ‖ · ‖BV(σ)) is a Banach algebra.
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3. A comparison of BV(J × K) and BVHK(J × K)

Let J × K = [a, b] × [c, d] ⊂ R2 ∼= C be a fixed rectangle. For functions on such sets,
definitions of bounded variation and absolute continuity were given by Hardy and Krause,
and these definitions were used by Berkson and Gillespie [4] to define AC operators. The
functions of bounded variation in the Hardy–Krause sense form a Banach algebra which
we denote BVHK(J × K). Both BV(J × K) and BVHK(J × K) are isomorphic to BV(J)
if K is degenerate (that is K = [c, c]). It is natural to ask about the relationship between
BV(J × K) and BVHK(J × K), since this will determine how the operator theory based
around these new function algebras compares with the established theory. In this section
we shall show that BVHK(J × K) forms a subset of BV(J × K) and that the inclusion is
proper if J and K are non-degenerate. The operator theoretic consequences of this are
discussed in § 6.

We say that {si, tj}n,m
i,j=1 is a partition of J ×K if {si}n

i=1 ∈ Λ(J) and {tj}m
j=1 ∈ Λ(K).

The set of partitions of J × K is denoted Λ(J × K). Let

S = {si, tj}n,m
i,j=1 ∈ Λ(J × K), T = {s′

i, t
′
j}

n′,m′

i,j=1 ∈ Λ(J × K).

Then T is said to be a refinement of S if {s′
i}n′

i=1 is a refinement of {si}n
i=1 and {t′j}m′

j=1
is a refinement of {tj}m

j=1. We then write S � T . We shall write S ∨ T for the partition
with the least number of elements which is a refinement of both S and T .

Let f : J × K → C and let S = {si, tj}n,m
i,j ∈ Λ(J × K). Define

ω(f, S) =
n−1,m−1∑

i,j=1

|f(si, tj) − f(si+1, tj) + f(si+1, tj+1) − f(si, tj+1)|.

The two-dimensional variation in the Hardy–Krause sense is defined as

varHK(f, J × K) = sup
S∈Λ(J×K)

ω(f, S).

The norm

‖f‖BVHK = |f(a, c)| + var(f(· , c), J) + var(f(a, ·), K) + varHK(f, J × K)

is equivalent to that introduced by Berkson and Gillespie [4]. The functions of bounded
variation in the Hardy–Krause sense are defined to be

BVHK(J × K) = {f : J × K → C : ‖f‖BVHK < ∞}.

For properties of this Banach algebra see [4,7].
It is an important fact that if f ∈ BV(J) is real valued, then there exist f1, f2 ∈ BV(J)

such that f = f1 − f2, f1 and f2 are non-decreasing functions,

‖f1‖BV(J) � ‖f‖BV(J) and ‖f2‖BV(J) � ‖f‖BV(J).

One of our aims in this section is to show an analogous result for f ∈ BVHK(J × K).
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Functions of bounded variation on the intervals J and K extend in a natural way to
functions of bounded variation on the rectangle J ×K. Given f : J → C and g : K → C,
define u(f), v(g) : J × K → C by u(f)(x, y) = f(x) and v(g)(x, y) = g(y). It is easy to
see that if f ∈ BV(J) and g ∈ BV(K), then u(f), v(g) ∈ BVHK(J × K) with

‖f‖BV(J) = ‖u(f)‖BVHK and ‖g‖BV(K) = ‖v(g)‖BVHK .

Let x ∈ R. We define x+ = max{0, x} and x− = min{0, x}. Let f ∈ BVHK(J × K) be
real valued. Set

ω+(f, S) =
n−1,m−1∑

i,j=1

(f(si, tj) − f(si+1, tj) + f(si+1, tj+1) − f(si, tj+1))+

and

ω−(f, S) = −
n−1,m−1∑

i,j=1

(f(si, tj) − f(si+1, tj) + f(si+1, tj+1) − f(si, tj+1))−.

Clearly, ω(f, S) = ω+(f, S) + ω−(f, S). For (x, y) ∈ J × K set

υ+
f (x, y) = sup

S∈Λ([a,x]×[c,y])
ω+(f, S),

υ−
f (x, y) = sup

S∈Λ([a,x]×[c,y])
ω−(f, S).

The following result is immediate.

Lemma 3.1. Let f ∈ BVHK(J × K) be real valued. Then υ+
f (· , c) = υ−

f (· , c) = 0 and
υ+

f (a, ·) = υ−
f (a, ·) = 0.

Lemma 3.2. Let f ∈ BVHK(J × K) be real valued. Fix x ∈ J and fix y ∈ K. Then
the functions υ+

f (x, ·), υ−
f (x, ·), υ+

f (· , y) and υ−
f (· , y) are non-decreasing.

Proof. Let a � x1 � x2 � b. Then Λ([a, x1] × [c, y]) ⊂ Λ([a, x2] × [c, y]). Hence,

υ+
f (x1, y) = sup

S∈Λ([a,x1]×[c,y])
ω+(f, S)

� sup
S∈Λ([a,x2]×[c,y])

ω+(f, S)

= υ+
f (x2, y).

The other claims have similar proofs. �

Lemma 3.3. Let f ∈ BVHK(J × K) be real valued and let (x, y) ∈ J × K. Then

υ+
f (x, y) + υ−

f (x, y) = varHK(f, [a, x] × [c, y]).
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Proof.

varHK(f, [a, x] × [c, y]) = sup
S∈Λ([a,x]×[c,y])

ω(f, S)

= sup
S∈Λ([a,x]×[c,y])

(ω+(f, S) + ω−(f, S))

� sup
S∈Λ([a,x]×[c,y])

ω+(f, S) + sup
S∈Λ([a,x]×[c,y])

ω−(f, S)

= υ+
f (x, y) + υ−

f (x, y).

Fix ε > 0. There exist S1, S2 ∈ Λ([a, x] × [c, y]) such that υ+
f (x, y) � ω+(f, S1) + 1

2ε and
υ−

f (x, y) � ω−(f, S2) + 1
2ε. Then

υ+
f (x, y) + υ−

f (x, y) � ω+(f, S1) + ω−(f, S2) + ε

� ω+(f, S1 ∨ S2) + ω−(f, S1 ∨ S2) + ε

= ω(f, S1 ∨ S2) + ε

� varHK(f, [a, x] × [c, y]) + ε.

�

Lemma 3.4. Let f ∈ BVHK(J × K) be real valued and let (x, y) ∈ J × K. Then

υ+
f (x, y) − υ−

f (x, y) = f(a, c) − f(x, c) + f(x, y) − f(a, y).

Proof. Fix ε > 0. There exists S ∈ Λ([a, x] × [c, y]) such that

ω+(f, S) � υ+
f (x, y) � ω+(f, S) + ε

and

ω−(f, S) � υ−
f (x, y) � ω−(f, S) + ε.

Without loss of generality we can assume that (a, c), (x, y) ∈ S. But, by cancellation of
terms, ω+(f, S) − ω−(f, S) = f(a, c) − f(x, c) + f(x, y) − f(a, y), and so the result fol-
lows. �

Lemma 3.5. Let f ∈ BVHK(J × K) be real valued. Furthermore, suppose for all
(x1, y1), (x2, y2) ∈ J × K, where x1 � x2 and y1 � y2, that f(x2, y2) − f(x1, y2) �
f(x2, y1) − f(x1, y1). Then, for any [x′

1, x
′
2] × [y′

1, y
′
2] ⊂ J × K,

varHK(f, [x′
1, x

′
2] × [y′

1, y
′
2]) = f(x′

1, y
′
1) − f(x′

2, y
′
1) + f(x′

2, y
′
2) − f(x′

1, y
′
2).

Proof. Let
S = {si, tj}n,m

i,j=1 ⊂ Λ([x′
1, x

′
2] × [y′

1, y
′
2]).

By refining if necessary we can assume that (s1, t1) = (x′
1, y

′
1) and (sn, tm) = (x′

2, y
′
2).

By assumption, for each i and j, f(si, tj) − f(si+1, tj) + f(si+1, tj+1) − f(si, tj+1) � 0.
Hence, ω(f, S) = ω+(f, S). There is therefore cancellation of terms in ω(f, S), giving

ω(f, S) = f(x′
1, y

′
1) − f(x′

2, y
′
1) + f(x′

2, y
′
2) − f(x′

1, y
′
2).

Taking the supremum over all S ∈ Λ(J × K) on the left-hand side gives the result. �
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Lemma 3.6. Let f ∈ BVHK(J × K) be real valued and let [x1, x2]× [y1, y2] ⊂ J ×K.
Then

varHK(υ+
f , [x1, x2] × [y1, y2]) = υ+

f (x1, y1) − υ+
f (x2, y1) + υ+

f (x2, y2) − υ+
f (x1, y2)

and

varHK(υ−
f , [x1, x2] × [y1, y2]) = υ−

f (x1, y1) − υ−
f (x2, y1) + υ−

f (x2, y2) − υ−
f (x1, y2).

Proof. To prove the first equality it suffices to show, by Lemma 3.5, that, for all
(x1, y1), (x2, y2) ∈ J × K, where x1 � x2 and y1 � y2,

υ+
f (x2, y2) − υ+

f (x1, y2) � υ+
f (x2, y1) − υ+

f (x1, y1).

For i, j ∈ {1, 2} let Si,j ∈ Λ([a, xi] × [c, yj ]) be such that S1,1 � S1,2 � S2,2 and S1,1 �
S2,1 � S2,2. Then cancellation gives ω+(f, S2,2)−ω+(f, S1,2) � ω+(f, S2,1)−ω+(f, S1,1).
The result now follows by refining S2,2 (and hence all Si,j). The second equality has a
similar proof. �

Lemma 3.7. Let f ∈ BVHK(J × K) be real valued. Then

varHK(υ+
f , J × K) � varHK(f, J × K)

and

varHK(υ−
f , J × K) � varHK(f, J × K).

Proof. This follows immediately from Lemmas 3.1, 3.3 and 3.6. �

Let f ∈ BVHK(J × K) be real valued. Then f is said to have property (UR) (or ‘up
and to the right’) if it satisfies the following conditions:

(i) for each x ∈ [a, b] the function f(x, ·) : K → R is non-decreasing;

(ii) for each y ∈ [c, d] the function f(· , y) : J → R is non-decreasing;

(iii) varHK(f, (x1, x2) × (y1, y2)) = f(x1, y1) − f(x1, y2) + f(x2, y2) − f(x2, y1) for all
(x1, x2) × (y1, y2) ⊂ J × K.

Similarly, we say that f has property (UL) if ‘non-decreasing’ is replaced by ‘non-increas-
ing’ in (ii). Our aim is to show that if f ∈ BVHK(J × K) is real valued, then f = g − h,
where g and h are (UR), ‖g‖BVHK � ‖f‖BVHK and ‖h‖BVHK � ‖f‖BVHK .

Let l = Π(z1, z2). Then l is said to be (UR) if either

(i) Re(z1) � Re(z2) and Im(z1) � Im(z2) or

(ii) Re(z1) � Re(z2) and Im(z1) � Im(z2).

Similarly, l is said to be (UL) if either

(i) Re(z1) � Re(z2) and Im(z1) � Im(z2) or

(ii) Re(z1) � Re(z2) and Im(z1) � Im(z2).
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Line segments parametrized by [0, 1] are either (UL) or (UR), or both. If γ ∈ ΓL, then
we can write γ ∼= l1 ◦ l2 ◦ · · · ◦ ln, where each li is a line segment parametrized by [0, 1].
Then γ is said to be (UL) (respectively, (UR)) if each li is (UL) (respectively, (UR)).
Clearly, if γ1, γ2 ∈ ΓL and γ1 ∼= γ2, then, for example, γ1 is (UR) if and only if γ2 is (UR).
Also, for example, if γ1, γ2 ∈ ΓL are both (UL), then so is their concatenation γ1 ◦ γ2.

Lemma 3.8. Let f ∈ BVHK(J × K) be real valued. Then υ+
f and υ−

f have property
(UR).

Proof. This follows from Lemmas 3.2 and 3.6. �

Lemma 3.9. Let f ∈ BVHK(J × K) be real valued and let g ∈ BV(J). Suppose that
f has property (UR) and g is non-decreasing. f + u(g) then has property (UR).

Proof. Clearly, f + u(g) has properties (i) and (ii). To see that it has property (iii)
we note, for any (x′

1, y
′
1), (x

′
2, y

′
2) ∈ J × K, that

u(g)(x′
1, y

′
1)−u(g)(x′

2, y
′
1)+u(g)(x′

2, y
′
2)−u(g)(x′

1, y
′
2) = g(x′

1)−g(x′
2)+g(x′

2)−g(x′
1) = 0,

and so

(f + u(g))(x′
1, y

′
1) − (f + u(g))(x′

2, y
′
1) + (f + u(g))(x′

2, y
′
2) − (f + u(g))(x′

1, y
′
2)

= f(x′
1, y

′
1) − f(x′

2, y
′
1) + f(x′

2, y
′
2) − f(x′

1, y
′
2).

Hence, if [x1, x2] × [y1, y2] ⊂ J × K, then ω(f +u(g), S) = ω(f, S) for all S ∈ Λ([x1, x2]×
[y1, y2]). So varHK(f + u(g), [x1, x2] × [y1, y2]) = varHK(f, [x1, x2] × [y1, y2]). Then

varHK(f + u(g), [x1, x2] × [y1, y2])

= varHK(f, [x1, x2] × [y1, y2])

= f(x1, y1) − f(x2, y1) + f(x2, y2) − f(x1, y2)

= (f + u(g))(x1, y1) − (f + u(g))(x2, y1) + (f + u(g))(x2, y2) − (f + u(g))(x1, y2).

�

Remark 3.10. The previous lemma also holds if we take g ∈ BV(K), g non-
decreasing, and use v instead of u.

Proposition 3.11. Let f ∈ BVHK(J × K) be real valued. There then exist g, h ∈
BVHK(J × K) such that

(i) f = g − h,

(ii) g and h are (UR), and

(iii) ‖g‖BVHK � ‖f‖BVHK and ‖h‖BVHK � ‖f‖BVHK .
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Proof. There exist f1, f2 ∈ BV(J) such that f(· , c) − f(a, c) = f1 − f2, f1, f2 are
non-decreasing, var(f1, J) � var(f(· , c), J) and var(f2, J) � var(f(· , c), J). There also
exist f3, f4 ∈ BV(K) such that f(a, ·) − f(a, c) = f3 − f4, f3, f4 are non-decreasing,
var(f3, K) � var(f(a, ·), K) and var(f4, K) � var(f(a, ·), K). Set g = υ+

f +u(f1)+v(f3)+
f(a, c) and h = υ−

f + u(f2) + v(f4). Then, by Lemmas 3.8 and 3.9, g and h are (UR). By
Lemma 3.4,

f(x, y) = υ+
f (x, y) − υ−

f (x, y) + f(x, c) + f(a, y) − f(a, c)

= υ+
f (x, y) − υ−

f (x, y) + (f1(x) − f2(x) + f(a, c))

+ (f3(y) − f4(y) + f(a, c)) − f(a, c)

= υ+
f (x, y) + f1(x) + f3(y) + f(a, c) − (υ−

f (x, y) + f2(x) + f4(y))

= g(x, y) − h(x, y).

Also, using Lemma 3.7,

‖g‖BVHK = |g(a, c)| + var(g(· , c), J) + var(g(a, ·), K) + varHK(g, J × K)

= |f(a, b)| + var(f1, J) + var(f3, K) + varHK(υ+
f , J × K)

� |f(a, b)| + var(f(· , c), J) + var(f(a, ·), K) + varHK(f, J × K)

= ‖f‖BVHK .

Similarly, ‖h‖BVHK � ‖f‖BVHK . �

Remark 3.12. Note that, similarly, we can write f = g − h, where g and h have the
same norm inequalities but are (UL) instead of (UR).

Lemma 3.13. Let f ∈ BVHK(J × K) satisfy property (UR). Let {hj}m
j=1 ⊂ ΓL be a

set of horizontal line segments. Suppose that n = vfV(
⋃m

j=1 hj). Then

1
n

m∑
j=1

cvar(f, hj) � ‖f‖BVHK .

Proof. Recall that J × K = [a, b] × [c, d]. The idea of the proof is to replace each
line segment hj by another horizontal line segment h′

j , where the image of each h′
j is

a subset of J × {d}, and to then show the inequality for the h′
j . For 1 � j � m, let

(xj , yj) and (x′
j , yj) be the left and right endpoints of hj . Let h′

j = Π((xj , d), (x′
j , d)) for

each j. Since f is (UR), whenever xj � s � t � x′
j , we have f(t, yj) − f(s, yj) � f(t, d)−

f(s, d) and hence |f(t, yj) − f(s, yj)| � |f(t, d)−f(s, d)|. From this we can conclude that
cvar(f, hj) � cvar(f, h′

j) for all j. Also vfV(
⋃m

j=1 hj) = vfV(
⋃m

j=1 h′
j). Using the same

proof as in Proposition 2.5 we can conclude that

ρV

( m⋃
j=1

h′
j

) m∑
j=1

cvar(f, h′
j) � cvar(f, Π((a, d), (b, d))).
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Hence,

1
n

m∑
j=1

cvar(f, hj) � 1
n

m∑
j=1

cvar(f, h′
j)

� cvar(f, Π((a, d), (b, d)))

= var(f(· , d), J)

� ‖f‖BVHK .

The penultimate step follows by the monotonicity of f(· , d). �

Remark 3.14. A similar lemma holds when {li}m
i=1 are vertical line segments and/or

f has property (UL).

Lemma 3.15. Let f ∈ BVHK(J × K) satisfy property (UR). Let {γj}m
j=1 ⊂ ΓL be

such that γj is (UR) for all j. Then

ρ

( m⋃
j=1

γj

) m∑
j=1

cvar(f, γj) � 2‖f‖BVHK .

Proof. For each j we shall replace γj by horizontal and vertical lines. Using complex
number notation, set

hj = Π(γj(0), Re(γj(1)) + i Im(γj(0)))

and

vj = Π(Re(γj(1)) + i Im(γj(0)), γj(1)).

Since f is (UR) then cvar(f, γj) = cvar(f, hj) + cvar(f, vj). Also note that, for any ver-
tical line l, vf(

⋃m
j=1 γj , l) = vf(

⋃m
j=1 hj , l) and so

ρ

( m⋃
j=1

γj

)
� ρV

( m⋃
j=1

γj

)
= ρV

( m⋃
j=1

hj

)
.

Similarly, ρ(
⋃m

j=1 γj) � ρH(
⋃m

j=1 vj). Hence,

ρ

( m⋃
j=1

γj

) m∑
j=1

cvar(f, γj) = ρ

( m⋃
j=1

γj

) m∑
j=1

(cvar(f, hj) + cvar(f, vj))

� ρV

( m⋃
j=1

hj

) m∑
j=1

cvar(f, hj) + ρH

( m⋃
j=1

vj

) m∑
j=1

cvar(f, vj)

� 2‖f‖BVHK .

The last step follows from Lemma 3.13. �

Theorem 3.16. The inclusion BVHK(J × K) ↪→ BV(J × K) is continuous.
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Proof. It is sufficient to show that if f ∈ BVHK(J × K) is real valued, then we have
var(f, J × K) � 8‖f‖BVHK . Let γ ∈ ΓL. We can write γ as the composition of curves
which alternate between being (UL) and (UR). Without loss of generality assume that
γ ∼= λ1 ◦ µ1 ◦ λ2 ◦ µ2 ◦ · · · ◦λn ◦ µn, where each λi ∈ ΓL is (UL) and each µi is (UR). By
Lemma 2.2, cvar(f, γ) =

∑n
i=1(cvar(f, λi)+cvar(f, µi)). By Proposition 3.11 we can write

f = f1 − g1 = f2 − g2, where f1 and g1 satisfy property (UR) and f2 and g2 satisfy (UL).
Then vf(

⋃n
i=1λi) � vf(γ) and so ρ(

⋃n
i=1λi) � ρ(λ). Similarly, ρ(

⋃n
i=1µi) � ρ(γ). Using

Lemma 3.15 and Proposition 3.11 we have

ρ(γ) cvar(f, γ) = ρ(γ)
n∑

i=1

(cvar(f, λi) + cvar(f, µi))

� ρ(γ)
n∑

i=1

(cvar(f1, λi) + cvar(g1, λi) + cvar(f2, µi) + cvar(g2, µi))

� ρ

( n⋃
i=1

λi

)( n∑
i=1

cvar(f1, λi) +
n∑

i=1

cvar(g1, λi)
)

+ ρ

( n⋃
i=1

µi

)( n∑
i=1

cvar(f2, µi) +
n∑

i=1

cvar(g2, µi)
)

� 2‖f1‖BVHK + 2‖g1‖BVHK + 2‖f2‖BVHK + 2‖g2‖BVHK

� 4 × 2‖f‖BVHK

= 8‖f‖BVHK .

The result now follows from Lemma 2.4. �

Example 3.17. Here we show that if J ×K is non-degenerate, then BVHK(J × K) �

BV(J × K). Without loss of generality, assume that J × K is the unit square. Let A ⊂
J×K be the closed triangle with vertices at 0, 1 and 1+i. We show that χA ∈ BV(J × K)
but χA �∈ BVHK(J × K).

It is easy to see that if B is a half-plane, then var(χB , J × K) � 1 and so χB ∈
BV(J × K). In particular B = {x + iy ⊂ C : x � y} is a half-plane and so χA = χB |J ×
K ∈ BV(J × K).

Fix n ∈ N. Set ti = i/n. Then

S = {ti, tj}n,n
i,j=0 ∈ Λ(J × K).

For each i, χA(ti, ti) − χA(ti+1, ti) + χA(ti+1, ti+1) − χA(ti, ti+1) = 1 − 0 + 1 − 1 = 1.
Hence,

ω(χA, S) �
n−1∑
i=0

|χA(ti, ti) − χA(ti+1, ti) + χA(ti+1, ti+1) − χA(ti, ti+1)| = n.

So varHK(χA, J × K) � n. Hence, χA �∈ BVHK(J × K).
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4. AC(σ) for σ ⊂ C compact

From an operator theoretic point of view, one would like to be able to deduce structural
information about an operator T from bounds on ‖p(T )‖ for p in some small algebra
of functions. Let P denote the set of all complex polynomials. In the case that X is
reflexive and σ(T ) ⊂ R, then a bound of the form ‖p(T )‖ � C‖p‖C(σ(T )) for all p ∈ P
is sufficient to show that T can be written as an integral with respect to a countably
additive spectral measure, whereas a weaker bound of the form ‖p(T )‖ � C‖p‖BV [a,b] for
p ∈ P implies that T has an integral representation with respect to a spectral family
of projections. If the spectrum is not real, then one would not expect to be able to
prove much unless the algebra contains at least P2, the polynomials in two variables (or
equivalently the polynomials in z and z̄). This leads to our definition of the absolutely
continuous functions defined on a non-empty compact subset σ of C.

Definition 4.1. AC(σ), the set of absolutely continuous functions on σ, is defined to
be the closure in BV(σ) of P2.

Note that, by [3, Corollary 3.14], the polynomials are always of bounded variation.
For any non-empty compact subset σ, AC(σ) is a Banach subalgebra of BV(σ). If σ =
[a, b] ⊂ R, then AC(σ) coincides with the usual notion of absolute continuity.

We shall now compare our definition of AC(J ×K) with the definition used by Berkson
and Gillespie [4], which corresponds to the Hardy–Krause definition of variation. Let µ

be the Lebesgue measure on C and f : J ×K → C. We say that f is absolutely continuous
in the Hardy–Krause sense if, for each ε > 0, there is a δ > 0 such that for any finite
collection of rectangles {Ri}n

i=1 whose sides are parallel to the axes and whose interiors are
disjoint and such that

∑n
i=1 µ(Ri) < δ, then

∑n
i=1 varHK(f, Ri) < ε. We denote the set

of such functions by ACHK(J × K). The set ACHK(J × K) forms a Banach subalgebra
of BVHK(J × K), and is the closure of P2 in the BVHK(J × K) norm (see [4]). If K

is degenerate, then BVHK(J × K) reduces to the standard algebra AC(J). (See [4, 7]
for properties of ACHK(J × K).) The following result is an immediate consequence of
Theorem 3.16 and the density of the polynomials in both algebras.

Theorem 4.2. The inclusion ACHK(J × K) ↪→ AC(J × K) is continuous.

Remark 4.3. If J × K is non-degenerate, then ACHK(J × K) � AC(J × K). For
example, let J × K = [0, 1] × [0, 1]. Let f be the function J × K → R defined by

f(x, y) =

{
0 if x < y,

x − y if x � y.

Then f is continuous and piecewise planar and so, by [3, Lemma 4.10], f ∈ AC(J × K).
For i, n ∈ N, where i � n, set

Ri,n =
[
i − 1

n
,

i

n

]
×

[
i − 1

n
,

i

n

]
.

Then

lim
n→∞

n∑
i=1

µ(Ri,n) = lim
n→∞

n × 1
n2 = 0.
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But

lim
n→∞

n∑
i=1

varHK(f, Ri,n)

� lim
n→∞

n∑
i=1

∣∣∣∣f
(

i − 1
n

,
i − 1

n

)
− f

(
i

n
,
i − 1

n

)
+ f

(
i

n
,

i

n

)
− f

(
i − 1

n
,

i

n

)∣∣∣∣
= lim

n→∞

n∑
i=1

∣∣∣∣0 − 1
n

+ 0 − 0
∣∣∣∣.

= 1.

Hence, f �∈ ACHK(J × K).

5. A comparison of BVnew(T) and BVold(T)

In [5] Berkson and Gillespie introduced the class of trigonometrically well-bounded
operators. These operators, which have formed an important tool in their study of
operator-valued harmonic analysis, are defined as operators that admit a weakly compact
functional calculus for the absolutely continuous functions on the unit circle in C (or,
equivalently, are of the form eiA, where A is well bounded of type (B)). The concepts of
variation and absolute continuity used in [5] are just the natural extensions obtained by
transferring the usual definitions for an interval in R onto the unit circle. In this section
we show that our new definitions are equivalent to these earlier ones used in this setting.

For f : T → C, let varT(f) = var[0,2π] f(ei(·)). That is

varT(f) = sup
P

n∑
j=1

|f(ωj) − f(ωj−1)|,

where the supremum is taken over all partitions P = {ωj = eiθj }n
j=1 of the circle with

0 = θ0 � θ1 � · · · � θn = 2π. Berkson and Gillespie worked with the following norm and
Banach algebra:

‖f‖BVold = sup
z∈T

|f | + varT(f),

BVold(T) = {f : T → C : ‖f‖BVold < ∞}.

For comparison, we shall write BVnew(T) for the algebra given by the definitions in § 2.
The subalgebras obtained by taking the closures of the trigonometric polynomials in
these algebras will be denoted by ACold(T) and ACnew(T).

Lemma 5.1. For all f : T → C,

varT(f) � 2 var(f, T).
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Proof. Let P = {ωj}n
j=1 be a partition of T. Let γP = Π(ω0, . . . , ωn). Then

cvar(f, γP) =
n∑

j=1

|f(ωj) − f(ωj−1)|

and ρ(γP) = 1
2 . Thus,

varT(f) = sup
P

cvar(f, γP)

= 2 sup
P

ρ(γP) cvar(f, γP)

� 2 sup
γ∈Γ

ρ(γ) cvar(f, γ)

= 2 var(f, T).

�

We note that the value of 2 is sharp in this inequality since, if f is the characteristic
function of a single point in T, then varT(f) = 2 and var(f, T) = 1.

Before proving a reverse inequality, we introduce some notation and terminology.

Definition 5.2. A reparametrization of T is any continuous, orientation preserving
bijection τ : T → T.

Definition 5.3. Let ΓL,T = {Π(z0, . . . , zn) : z0, . . . , zn ∈ T} denote the set of piece-
wise linear curves with vertices on T.

Given f : T → C and any reparametrization τ of T, let fτ = f ◦ τ . Clearly, varT(f) =
varT(fτ ). The reparametrization τ also determines a map ΓL,T → ΓL,T,

γ = Π(z0, . . . , zn) 	→ γτ = Π(τ(z0), . . . , τ(zn)).

Lemma 5.4. Suppose that f and τ are as above and that γ ∈ ΓL,T. Then

(i) vf(γ) = vf(γτ ),

(ii) ρ(γ) cvar(f, γ) = ρ(γτ ) cvar(fτ , γτ ),

(iii) varT f = varT fτ .

Proof. Part (i) follows immediately from the observation that if the chords γ =
Π(z0, z1) and � = Π(w0, w1) intersect, then so do γτ and �τ . Clearly, cvar(f, γ) =
cvar(fτ , γτ ) so this proves (ii). The final statement is obvious. �

Theorem 5.5. For all f ∈ BV(T),

var(f, T) � varT(f).
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Proof. Suppose that γ ∈ ΓL intersects T at γ(s0), . . . , γ(sn) with s0 < s1 < · · · < sn.
(We may assume that n � 1.) Let S = {sj}n

j=0 and let γS = Π(γ(s0), γ(sn)) denote the
S approximation to γ. As in the proof of [3, Lemma 3.1], ρ(γS) � ρ(γ), and so

ρ(γ) cvar(f, γ) � ρ(γS) cvar(f, γS). (5.1)

Now choose a reparametrization τ such that Im(τ(zj)) > 0 for j = 1, . . . , n. Let γ2 =
(γS)τ . Then, by Lemma 5.4,

ρ(γS) cvar(f, γS) = ρ(γ2) cvar(fτ , γ2). (5.2)

Define f3 : [−1, 1] → C, f3(t) = fτ (
√

1 − t2), and γ3 = Re ◦ γ2. Thus, the image of γ3 is
a subset of [−1, 1]. Clearly, then

vf(γ3) = vfV(γ3) = vfV(γ2) � vf(γ2),

and so ρ(γ2) � ρ(γ3). Note also that cvar(fτ , γ2) � cvar(f3, γ3). Thus,

ρ(γ) cvar(f, γ) � ρ(γ2) cvar(fτ , γ2) (by (5.1) and (5.2))

� ρ(γ3) cvar(f3, γ3)

� var[−1,1] f3 (by [3, Proposition 3.6])

= var[0,π] fτ (ei(·))

� varT fτ

= varT f (by Lemma 5.4).

Taking the supremum over all γ ∈ ΓL gives the result. �

Corollary 5.6. The Banach algebras BVnew(T) and BVold(T) are isomorphic.

Corollary 5.7. The Banach algebras ACnew(T) and ACold(T) are isomorphic.

6. Operator theory

In this section we shall note some of the operator theoretic consequences of the results
in this paper.

We shall say that an operator T ∈ B(X) is an AC(σ) operator if it admits an AC(σ)
functional calculus; that is, if there exists a continuous Banach algebra homomorphism
Ψ : AC(σ) → B(X) such that Ψ(1) = I and Ψ(λ) = T (where, as before, λ is the iden-
tity function λ(z) = z). The theory of AC(σ) operators is pursued more fully in [2]. It
is shown there that much of the theory of well-bounded operators generalizes to cover
AC(σ) operators. For example, compact AC(σ) operators have conditionally convergent
spectral expansions similar to those of well-bounded operators. In another direction,
AC(σ) operators on reflexive spaces (or more generally those for which the AC(σ) func-
tional calculus is weakly compact) admit a family of projections that generalizes the
spectral family of a well-bounded operator.

Berkson and Gillespie [4] defined an operator to be an AC operator if it admits an
ACHK(J × K) functional calculus for some rectangle J × K. It is natural to ask what
the relationship is between these two classes of operator.
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Theorem 6.1. If T ∈ B(X) is an AC(σ) operator, then T is an AC operator (in the
sense of Berkson and Gillespie), and hence there exist commuting well-bounded operators
A, B ∈ B(X) such that T = A + iB.

Proof. Suppose that T is an AC(σ) operator with a functional calculus map Ψ :
AC(σ) → B(X). Let J × K be any rectangle containing σ. Define

Ψ̂ : ACHK(J × K) → B(X)

by Ψ̂(f) = Ψ(f |σ). It follows from Theorem 4.2 and [3, Lemma 4.5] that this map is a
well-defined algebra homomorphism with

‖Ψ̂(f)‖ � ‖Ψ‖ ‖f |σ‖BV(σ) � ‖Ψ‖ ‖f‖BV (J×K) � 8‖Ψ‖ ‖f‖BVHK(J×K).

It follows that T has an ACHK(J × K) functional calculus. �

The splitting into real and imaginary parts is necessarily unique if X is reflexive [4].
There are, however, examples on non-reflexive spaces of AC operators with more than
one splitting of this type (see [6, Example 3.1]). Each such splitting gives a different
ACHK(J × K) functional calculus. The situation for AC(σ) operators is less clear, how-
ever. An AC(σ) operator may still have more than one representation in the form A+iB,
but not all such representations give rise to an AC(σ) functional calculus. In particular,
no example is known of an operator with more than one AC(σ) functional calculus.

It is not difficult to see that the class of AC(σ) operators is in fact strictly smaller
than the class of AC operators. Lemma 4.1 of [3] shows that if T ∈ B(X) is an AC(σ)
operator, then, for all α, β ∈ C, αT + βI is an AC(ασ + β) operator. It follows that the
example from [6] of an AC operator T such that (1 + i)T is not an AC operator also
gives an example of an AC operator that is not an AC(σ) operator (for any σ).

One of the most important subclasses of AC operators has been the family of trigono-
metrically well-bounded operators. The following is a consequence of Corollary 5.7 and
the definition of being trigonometrically well bounded [5].

Theorem 6.2. An operator T ∈ B(X) is a trigonometrically well-bounded operator
if and only if it admits a weakly compact AC(T) functional calculus. In particular, if
X is reflexive, then T is a trigonometrically well-bounded operator if and only if it is an
AC(T) operator.
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