
Euro. Jnl of Applied Mathematics: page 1 of 21 c© The Author(s), 2022. Published by Cambridge University
Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.
doi:10.1017/S095679252200016X

1

Parametric approach to promote a
divergence-free flow in the image-based motion

estimation with application to bioirrigation

N A R A T I P S A N T I T I S S A D E E K O R N1, C H R I S T O F M E I L E2,
E R I K B O L L T3, and G E O R G E W A L D B U S S E R4

1Department of Mathematics, University of Surrey, Guildford, UK
email: n.santitissadeekorn@surrey.ac.uk

2Department of Marine Sciences, University of Georgia, Athens, GA, USA
email: cmeile@uga.edu

3Electrical and Computer Engineering and the Clarkson Center for Complex Systems Science, Clarkson University,
Potsdam, NY, USA

email: ebollt@clarkson.edu
4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA

email: waldbuss@coas.oregonstate.edu

(Received 7 December 2020; revised 15 December 2021; accepted 6 May 2022)

Flow fields are determined from image sequences obtained in an experiment in which benthic macro-
fauna, Arenicola marina, causes water flow and the images depict the distribution of a tracer that is
carried with the flow. The experimental setup is such that flow is largely two-dimensional, with
a localised region where the Arenicola resides, from which flow originates. Here, we propose a
novel parametric framework that quantifies such flow that is dominant along the image plane. We
adopt a Bayesian framework so that we can impart certain physical constraints on parameters into
the estimation process via prior distribution. The primary aim is to approximate the mean of the
posterior distribution to present the parameter estimate via Markov Chain Monte Carlo. We demon-
strate that the results obtained from the proposed method provide more realistic flows (in terms of
divergence magnitude) than those computed from classical approaches such as the multi-resolution
Horn–Schunk method. This highlights the usefulness of our approach if motion is largely constrained
to the image plane with localised fluid sources.

Keywords: Optical flow, Inverse problem, Motion estimation
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1 Introduction

Determining motion from image sequences is a common inverse problem encountered in many
natural sciences and engineering fields. Classical approaches such as the Horn–Schunk method
[21] globally impose incompressibility to the entire image, since they are designed primarily
for rigid-motion estimation in image processing or video analysis, and promote flow that varies
smoothly in space. A comprehensive survey of these methods is given in [3, 17]. Variational
methods and algorithms for fluid motions were developed for the geophysical fluid motion
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2 N. Santitissadeekorn et al.

estimation [1, 10, 12, 20, 39]. However, these methods are hardly a hand-in-glove fit for all gen-
eral applications but rather designed with different emphases, e.g., vorticity estimates or temporal
smoothness.

Optical flow approaches have also been used in oceanography, most commonly in the determi-
nation of surface flow from satellite imagery or derived products such as sea surface temperature
[11, 26]. Here, we present an approach that is aimed at the quantification of fluid flow in marine
sediments. Advective flow of porewater in marine sediments can be caused by a number of
mechanisms [40], including (1) deeply sourced buoyancy causing the upward flow observed at
hydrothermal vents or cold seeps (e.g. [4, 6]), (2) flow over topographic features, such as sand
ripples [41] or (3) the activity of benthic macrofauna [50]. Termed bioirrigation, biologically
induced flow can be a major influence on solute exchange between sediment and overlying water
[29], organic matter cycling or sediment cracking [49]. Its impact on sediment biogeochemistry is
evident from observations with planar optodes, revealing the profound, spatially and temporally
dynamic imprint of the activity of macrofauna [34].

Benthic macrofauna are abundant in many marine sediments, with a typical mixing depth of
about 10 cm [7, 44], and operate at scales that are amendable for ex situ laboratory studies.
Bioirrigation is most commonly estimated from tracer concentration profiles, from which it is
quantified as the process required to reconcile the observations with simulated concentration
profiles after accounting for the contribution of diffusion, or known sources and sinks [16, 30].
More recently, fluid flow induced by bioirrigation has been estimated from images using (classi-
cal) correlation and gradient methods [14, 22]. Kaza [22] employed the classical Horn–Schunk
[21] and Lucas–Kanade methods [24], which promote a globally or locally smoothly varying
flow and do not provide a systematic way to measure reliability of a recovered velocity field.

In this study, we expand on that work and introduce a novel approach to quantify porewater
flow induced by the activity of burrowing organisms in marine sediments. Our approach is tai-
lored to the problem at hand in that it does not impose incompressibility to the entire image but
applies a novel parametric approach and includes uncertainty quantification. We use a Bayesian
approach similar to [42, 43], where the velocity field is probabilistically estimated by combin-
ing a model prediction simulated by a given fluid model with an actual observation (i.e. image
sequences) [9, 27, 45]. It avoids the difficult task of deriving the Euler–Lagrange equations to
achieve the desired result. The Bayesian framework also provides an uncertainty quantification of
the estimated flow field that can give insight into the error statistics of the optical flow algorithm.

2 Data description and image preparation

A thin (ant-farm style) aquarium (0.22 m height × 0.445 m width × 0.022 m depth) was set up to
study the effect of macrofauna on porewater flow. The aquarium was filled with approximately
0.16 m of near-shore muddy sand type sediment overlain by seawater. After letting the sediment
settle for 1 week, a lugworm, Arenicola marina, an abundant macrofauna in the coastal ocean of
Europe and North America, was placed in this aquarium. Lugworms are a few centimetres long,
and are subsurface deposit feeders who pump water through their burrows into the sediment (e.g.
[35]), acting as ecosystem engineers [47]. Lugworm inject fluid into the sediment by inducing a
peristaltic tail-to-head moving pumping wave [36]. This is done at the feeding pocket, located
at the dead end of their J-shaped burrows. When the lugworms are pumping, water is moved
through this structure and then injected into the sediment at the dead end. In previous work,
A. marina has been modelled with radius of the feeding pocket of 2.5 mm [32]. Given this small
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Parametric approach for a divergence-free flow in image-based motion estimation 3

FIGURE 1. Real RGB images depicting spatial tracer distribution in a 0.22 m × 0.445 m × 0.022 m
aquarium where bioirrigation is simulated at the relative times t0 = 0 s, t1 = 190 s and t2 = 390 s.

size, we describe this as a point source of water originating from outside the modelled domain
consistent with observations and brought to the injection location via a burrow that is behind the
experimentally observational plane. For the short time interval (on the order of minutes) covered
by the images analysed in this study, the burrow structure and injection location are considered
constant. Qualitatively, flow velocities decrease with distance form the injection site and depend
on the spatial variations in sediment permeability. As lugworms pump intermittently [54], the
resulting flow velocities are temporally variable.

The lugworm was allowed to acclimate for 7 days. During this time, water supply was
maintained and air was bubbled in the overlaying water. The aquarium was maintained in the
dark.

The flow induced by the lugworm’s activity was visualised by adding fluorescein, a dissolved
fluorescent tracer, through a thin pipette to a location in the sediment close to where the bur-
rowing animal resided. Its redistribution in the sediment – caused by pumping of the arenicolid
worm – was captured as a series of high-resolution images of the fluorescent flow tracer. The
aquaria was illuminated with blue led lights at an approximate wavelength of 450 nm, and a
yellow barrier ‘photographic gel’ filter was used to reduce the blue light captured in the images.
A 1 g per liter of fluorescein was added to a 32 ppt reagent grade NaCl solution to match the
density of the resident pore water (fluid). RGB (red, green, blue) images were captured with a
Fujifilm FinePix S5Pro model at resolution 2848 × 4256 pixels every 10 s. These images are
subsequently referred to as real RGB images, and 3 out of the 41 images analysed are displayed
in Figure 1.

The use of a thin aquarium ensures that animal activity leads to a flow visible on the aquarium
surface and the assumption of a two-dimensional optical flow. Thus, the incompressible 2D flow
is expected to be largely divergence free, except near the location where the fluid is injected,
which may not be parallel to the image plane.

The real RGB images are converted to eight-bit grey scale using the linear combination [51]

F(x, y, t) = 0.2989R(x, y, t) + 0.5870G(x, y, t) + 0.1140B(x, y, t), (2.1)

where R(x, y, t), G(x, y, t) and B(x, y, t) denote red, green and blue colour channel intensities. The
coefficients in (2.1) using the Luma rec 601 conversion implemented in the MATLAB rgb2gray
command. Arrays arising from (2.1) are subsequently referred to as real grey scale images, and
a subset of them are depicted in Figure 2. Importantly, the tracer concentration C is proportional
to F.

As we aimed at the quantification of flow in the subsurface, our analyses are carried out on
the area delineated in red in Figure 2 only, thus removing the overlying water (top 0.16 m) and
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FIGURE 2. False color gray scale images, whose intensities are obtained using the linear combination in
(2.1) with red, green and blue color channels depicted in Figure 1, and cropping boundaries overlaid on top
in red.

a small area near the bottom and sides of the aquarium, where the external lighting led to visi-
ble variations in brightness that might negatively impact optical flow computations. This image
cropping reduces resolution to 1600 × 3680, resulting in > 11 million velocity components at
the pixel level. To lower computational burden, the real grey scale images were down-sampled
by a factor of eight using bilinear interpolation to a resolution of 200 × 460.

3 Mathematical modeling

Consider the Fokker–Planck equation in (3.1), where C(x, y, t) denotes tracer concentration,

u(x, y, t) is the velocity vector, and ∇ =
[

∂
∂x

∂
∂y

]T
is the gradient operator [31, 32].

(φC)t = ∇ · (φDe∇C − φuC). (3.1)

Let φ(x, y, t) denote sediment porosity, the ratio of void to total volume, on the order of 0.7 in
sandy sediments inhabited by Arenicola marina. Here, it is assumed to be a spatio-temporally
constant (for simplicity), so that

Ct = ∇ · (De∇C − uC
)

. (3.2)

The scalar De ∈R in (3.2) denotes the effective diffusion of the sediment, and is given by

De = D
1 − 2 lnφ

, (3.3)

where D ∈R is the molecular diffusion coefficient in aqueous solution. For fluorescein,
D = 4.25 × 10−10 m2 s−1 so that De = 2.48 × 10−10 m2 s−1 [13]. Consider the Péclet number
given by

Pe = �‖u‖2

De
, (3.4)

where � > 0 is a length scale and ‖ · ‖2 denotes a Euclidean norm. Advection is the more
prominent solute transport mechanism when Pe � 1. Now � is O(10−2

)
m, in line with the

dimensions of the aquarium from which the real RGB images arise. Also, previous research
suggests that the flow speed ‖u‖2 of water induced by bioirrigating Arenicola marina is approx-
imately O(10−6

)
m s−1− O(10−5

)
m s−1 [22, 48]. This, alongside the earlier definitions of
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porosity and diffusion coefficient, indicates that Pe � 1. This motivates the assumption that dif-
fusion is negligible, particularly in the region of interest in the vicinity of the burrow, so that
(3.2) can be rewritten as

−Ct = ∇ · (uC). (3.5)

We will assume incompressibility and the condition ∇ · u = 0, whose validity for the current
context was discussed in previous research [22, 48]. It then follows that

−Ct = C∇ · u + u · ∇C.

= u · ∇C.
(3.6)

The connection between (4.1) and (3.6) are made by assuming that tracer concentration is
proportional to grey scale intensity (i.e. C ∝ F) [22].

4 Horn–Schunck method

For a velocity field to be estimated, a mathematical expression relating it to grey scale intensity
is required. Consider a pair of images, whose grey scale intensities are defined by F0(x, y, t0)
and F1(x, y, t1) for t0 < t1. An optical flow u(x, y, t) = [u(x, y, t) v(x, y, t)]T is an apparent
motion field mapping one image to the next. Conventional optical flow problem relies on the
(pixel) brightness constancy approximation. This is expressed mathematically in (4.1), where
the subscripts x, y and t denote derivatives with respect to the x-axis, y-axis and time [21].

Ft + uFx + vFy = 0. (4.1)

In the current context, this approximation can be justified by requiring the null divergence of the
velocity in (3.5) at every image pixel. This is, however, ill-posed since two velocity components
have to be determined from one equation. To address this issue, a classical Horn–Schunk method
was developed based on a variational principle [21]. In particular, the Horn–Schunck method
further constrains the optical flow to be spatially smooth, which can be expressed mathemati-
cally as

‖∇u‖2
2 + ‖∇v‖2

2 < ∞. (4.2)

Locating the optical flow that minimises (4.1) subject to (4.2), with respect to the spatial region
� that the images depict, can be expressed mathematically as

u = argmin
u

∫
�

(u · ∇F + Ft)
2 + λ2 (‖∇u‖2

2 + ‖∇v‖2
2

)︸ ︷︷ ︸
I

d� (4.3)

where λ ∈R is a smoothing parameter. Following [21], the Euler–Lagrange equations for (4.3)
are given by the following coupled system of partial differential equations (PDEs), where � is
the Laplacian operator,

Fx
(
Fxu + Fyv + Ft

)= λ2�u,

Fy
(
Fxu + Fyv + Ft

)= λ2�v.
(4.4)
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At the image pixel level, the system in (4.4) can be numerically solved in which the Laplacian is
approximated by

�u ≈ u − u, u = 1

12

⎡⎢⎣1 2 1

2 0 2
1 2 1

⎤⎥⎦ ∗ u. (4.5)

The ∗ in (4.5) means a 2D convolution on the image pixel. In other words, u is a local-weighted
average. After substituting the Laplacian approximation in (4.5) into (4.4), we can apply the
Jacobi iteration to obtain the following iterative scheme, where the subscript i denotes iteration
indices,

ui+1 = ui −
Fx

(
Fxui + Fyvi + Ft

)
λ2 + F2

x + F2
y

.

vi+1 = vi −
Fy

(
Fxui + Fyvi + Ft

)
λ2 + F2

x + F2
y

.

(4.6)

The differential nature of the Horn–Schunk method can make it difficult to estimate a large
displacement and not robust to noise. In practice, a multi-resolution frame work (e.g. see [5, 37])
is commonly used to mitigate these issues. This approach is based on an incremental estimate that
refines a previous estimate using finer resolution image at the next higher resolution level, which
is commonly referred to as ‘pyramid’ level. At the top of the pyramid level, the estimation is
carried out at the original resolution. At the lower levels, the image is repeatedly down-sampled
for a pre-specified factor. The details of the multi-resolution Horn–Schunk method is discussed
in Appendix A. The number of pyramid levels is chosen as L= 3 here to obtain the results
below. Ideally, magnitudes of additional terms added to a current correction increment in (A3)
should depend on how faithfully the associated optical flow mimics the unknown true solution.
So if a current correction increment produces an optical flow that almost exactly mimics the
true solution, then magnitudes of additional terms in (A3) at subsequent iterations should be
approximately zero. The magnitudes of the quotients in (A4) can be controlled by the value
of λ.

The smoothing parameter should not be so ‘small’ that these quotients are considered ‘big’ in
regions where contrast is low. Otherwise, optical flow speeds could then temporally increase to
a point where they are viewed as being unrealistically ‘large’. However, the smoothing param-
eter should not be too ‘large’. This could induce an unrealistic high level of spatial smoothing.
By trial and error, the value of λ = 50 is chosen because it appears to be one of the ‘smaller’
smoothing parameter values where flow speeds do not become unrealistically ‘large’ over time.
This is examined by plotting a frequency distribution of flow speeds at each relative time point
in Figure 3.

The number of iterations of (A3) at each pyramid level, denoted by M, also needs to be defined.
The results here are shown for M = 1 as per the following justification. It appears that when using
M > 1, at later relative time points, the only region where flow points downwards is between
the likely location of the organism and the bottom edge of the down-sampled and cropped real
grey scale images. This suggests that there is outflow and no inflow at the top boundary of
these images, which roughly coincides with the sediment–water interface according to Figure 2.
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FIGURE 3. Each column shows the frequency distribution of optical flow speeds obtained by the multi-
resolution Horn–Schunck method for λ = 50 and M = 1.

However, given that the sides and bottom of the aquarium are impermeable, net flow across the
sediment-water interface should be zero. We expect some outflow in the regions near the aquar-
ium walls were cropped due to uneven lighting (Section 2). However, the qualitative assessment
of tracer distribution in the overlying water (Figure 2), indicates that this flow is limited. Thus,
M is chosen to enforce a little inflow at later time points.

Figure 4 reveals undesirably ‘large’ divergence magnitudes where they ought to be compara-
tively ‘small’, i.e., away from the location where the worm activity induces flow (see spreading
arrows near the center of the top left panel). Furthermore, largest velocities are computed away
from this point, with no clear source of fluid flow being discernible. Thus, additional ways of
imposing that divergence magnitudes immediately tend to zero upon departure from the point of
injection are investigated. This is developed in the next section.

5 Derivation of parametric framework

Arenicola marina inject water into the sediment at the dead end of often J-shaped burrows.
Simulations of bioirrigation by the lugworm have shown that flow fields are largely unaffected
by the burrow structure itself [31]. Hence, we consider flow in the sediment being driven by
a fluid source located at a small injection pocket. Away from injection pocket, flow is consid-
ered two-dimensional, parallel to the imaging surface, due to closely spaced front and back wall
of the thin aquarium. Therefore, the condition ∇ · u = 0 in incorporated within the Bayesian
framework through the prior distribution with the exception to this at the point (a, b), where
the organism injects fluid. In particular, we will write an ansatz for the velocity potential
�(x, y, t) of a two-dimensional incompressible point source with strength c > 0 centred on the
point (a, b) ∈R

2, subject to boundary conditions as discussed in Appendix A. The injection
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FIGURE 4. The first column depicts optical flows, denoted by white arrows, arising from the multi-
resolution Horn–Schunck method when λ = 50 and M = 1 at the relative times t0 = 0 s (first row),
t1 = 190 s (second row) and t2 = 390 s (third row). They are overlaid on top of the down-sampled and
cropped real grey scale images associated with those relative times. The second column depicts the associ-
ated divergences. Note that all parts of this figure have been further down-sampled by a factor of four, for
ease of presentation.

point induces fluid expansion with strength c, suggesting that ∇ · u = c. All above requirements
suggest the condition

∇ · u = cδ(x − a, y − b). (5.1)

We can write (5.1) in terms of a velocity potential by using u = ∇�.

�� = cδ(x − a, y − b). (5.2)

To deal with the delta function on the right-hand side of (5.2), we follow the method
demonstrated in [2] to approximate the solution of (5.2) with that of

�� = ν�, (5.3)

https://doi.org/10.1017/S095679252200016X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252200016X


Parametric approach for a divergence-free flow in image-based motion estimation 9

where ν ∈R is an eigenvalue. The ansatz of velocity potential of a two-dimensional incompress-
ible point source with strength c centred on the location (a, b) is given by

�(x, y) = c
2π

ln
√(

(x − a)2 + (y − b)2
)
. (5.4)

We use the separation of variables to solve (5.4), see Appendix B for the outline of the
derivation,

�(x, y) = −
∞∑
j=0

∞∑
k=0

4c

LxLy

[(
kπ
Lx

)2 +
(

(1+2j)π
2Ly

)2
] cos

(
kπ

Lx
a
)

cos

(
(1 + 2j)π

2Ly
b
)

× cos

(
kπ

Lx
x
)

cos

(
(1 + 2j)π

2Ly
y
)

,

(5.5)

where [0, Lx] × [0, Ly] is the area under computation, see Figure B.1. The infinite sums in (5.5) is
approximated with the finite sums with the first Mx terms for the inner sum and My for the outer
sum. In what follows, we choose Mx = My = 200. Utilising the ansatz in (5.5) means that once
the parameters {a, b, c} are estimated, flow at each grid cell can be obtained using the relation
u = ∇�.

6 MCMC for flow field estimation

The relation u = ∇� can be used to rewrite (4.1) in terms of velocity potentials [1, 21, 25].

−Ft = Fx�x + Fy�y. (6.1)

Substituting the finite approximation of (5.5) into (6.1) yields

−Ft≈
My∑
j=0

Mx∑
k=0

4c
LxLyν jk

cos

(
kπ

Lx
a
)

cos

(
(1 + 2j)π

2Ly
b
)[

−Fxkπ

Lx
sin

(
kπ

Lx
x
)

cos

(
(1 + 2j)π

2Ly
y
)

−Fy(1 + 2j)π
2Ly

cos

(
kπ

Lx
x
)

sin

(
(1 + 2j)π

2Ly
y
)]

. (6.2)

This acts as an observation system relating the parameters {a, b, c} contained within the state vec-
tor to observed negated temporal grey scale intensity derivatives. Let z := −Ft and x := [a, b, c]T

and abbreviate (6.2) by

z =H(x). (6.3)

We will investigate the uncertainty of the parameters for the three observations of z := −Ft

approximated from the (grey-scale) image pairs at the relative time point (t = 0, t = 10),
(t = 10, t = 20), . . . , (t = 40, t = 50) s. These will be denoted by z(0), z(10), . . . , z(40), respec-
tively. We will assimilate the observation one at a time to sequentially sampling p(x|z(0)),
p(x|z(0), z(10)),. . .,p(x|z(0), . . . , z(40)).
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6.1 Setting likelihood function and prior distribution

To adopt a Bayesian framework, we need to assume a conditional distribution of z given x and
the prior distribution of x. For simplicity, we assume the likelihood function of the observation z
at each time point to have the kernel (i.e. the non-normalised part of the distribution)

p(z|x) ∝ exp

(
−1

2
(z −H(x))T R−1(z −H(x))

)
, (6.4)

where R = σ 2
2 I and I is the identity matrix of an appropriate size. An empirical value of

σ 2
2 = 1 × 10−3 s−2 is adopted here following a numerical experiment on synthetic data with

similar features to our current real-world data [28]. We use the same likelihood function for z at
all time points. The state vector now contains source strengths, and x- and y-coordinates, which
have different physical properties. For the source x-coordinates, the horizontal distance from the
source to the right-hand boundary ã ∈R is to be estimated instead of a, where ã = Lx − a. We
treat these parameters as being probabilistically independent, i.e.,

p(x) = p(̃a)p(b)p(c). (6.5)

The assumption of independence is justified because the organism’s location in the sediment
should not affect the flow it induces, nor does the burrowing depth impact the lateral positioning.

We now describe the choice of the prior distribution at the first time point and will subse-
quently discuss how the prior for later time points are constructed. The marginal prior distribution
for the source strength is assumed to be a Gamma distribution to ensure the positivity. The
prior assumption E[c] = 2 × 10−5 m2 s−1 is made because flow speeds residing approximately
within the interval O(10−6

)
m s−1− O(10−5

)
m s−1, which appear to be induced by bioirrigat-

ing Arenicola marina in previous research [22, 48]. The marginal prior variance is taken to be
Var[c] = 2.5 × 10−11 m4 s−2. It should be ‘large’ enough that it can be reduced when observa-
tions are assimilated, whilst not being so ‘large’ that the information quantified by the marginal
prior mean is overpowered by observations. The marginal prior means are derived from the x-
and y-coordinates of the pixel in the first down-sampled and cropped real grey scale image with
the greatest intensity, because intuitively this seems to be a realistic location of fluid injection.
Let δx = L−1

x and δy = L−1
y . The marginal prior distributions at the first relative time point for the

parameters b is assumed to be a Gaussian distribution with mean E[b] = 0.07 m and variance

Var[b] = 5δy2

2 m2. Finally, consider the parameter ã. A negative value of ã is unrealistic. As such,
a Gamma marginal prior distribution is employed for ã. So we assume a Gamma distribution with
mean E[̃a] = 0.2058 m and variance 9δx2 m2.

Note that the prior mean is set to be ‘small’, with a view to quantifying the fact that the source
lies very close to the right-hand boundary. Their related standard deviations of p(̃a) and p(b) are
‘small’ compared with the width and height of the aquarium to ensure that the source x-and
y-coordinates recovered from the Metropolis–Hastings (MH) sampler remain ‘close’ to the
regions with the greatest intensity. With above prior assumption, the MH sampler can be used to
sample the posterior distribution

p(x|z(0)) ∝ p(z(0)|x)p(̃a)p(b)p(c). (6.6)

The posterior distribution of the parameter vector x given z(0) could then be used as the
prior density for the next observation z(10). However, we only have a sample of the posterior
distribution, not the analytical form. To deal with this issue, we assume the independent prior for
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x when assimilating z(0) and then construct the prior distribution as above by using the posterior
(marginal) mean and variance for each parameter a, b, c given z(0) instead. The process is then
repeated for the rest of the observations.

6.2 Metropolis–Hasting

We use the MH sampler [19] to sample (6.6). The MH algorithm involves accepting or rejecting
a proposed sample with the acceptance probability

γ = min

{
1,

p(x∗|z)
p(xi|z)

p(xi|x∗)
p(x∗|xi)

}
, (6.7)

where x∗ is a (new) proposed sample and p(x∗|xi) is a proposal distribution of x∗ given the current
sample xi. We assume the proposal distribution of the following form

p
(
x∗|xi

)= p
(̃
a∗, b∗, c∗|̃ai, bi, ci

)
= p

(̃
a∗|̃ai

)
p
(
b∗|bi

)
p
(
c∗|ci

)
.

(6.8)

The marginal proposal distribution p
(̃
a∗|̃ai

)
is chosen to be the Gamma distribution with mean ãi

and variance is obtained by pre-multiplying marginal prior variance of ã by a factor of 0.36 here.
The marginal proposal distribution p

(̃
c∗|̃ci

)
is also defined by the Gamma distribution with mean

c̃i and variance is obtained as above. A Gaussian marginal proposal distribution is defined for
source y-coordinates to enforce that injection can realistically take place either above or below
the current chain location. In particular, p(b∗|bi) is a Gaussian distribution with mean bi and
variance is the marginal prior variance of b multiplied by 0.36. The ad hoc choice of the above
pre-multiplying factor is chosen from a trial and error to strike a balance between the acceptance
and convergence rates; when the proposal variance is too ‘small’, only ‘small’ steps can be taken
across the state space and convergence is slow. However, we make no attempt to optimally tune
this factor here.

6.3 Convergence diagnosis

In what follows we will run multiple Markov chains, starting in different regions of the state
space, and consider both inter-chain mixing and intra-chain mixing for convergence diagnosis.
Suppose that there are C ∈N Markov chains. Each chain ends up of length Nspin + N, where the
first Nspin particles constitute an initial transient called a spin-up period. The latter N particles
constitute the ensemble that the Metropolis–Hastings sampler generates. The variance of the j-th
Markov chain (for j ∈ {1, . . . , C}) is given by

s2
j = 1

Ñ − 1

Ñ∑
i=1

(
cij − cj

)2
(6.9)

after the Ñ-th particle is obtained. The terms cij and cj denote the i-th member of the j-th Markov
chain

(
for i ∈ {1, . . . , Ñ

})
, and the mean of the j-th Markov chain (respectively). Note that s2

j
is written in terms of source strengths but it can be computed for source x- and y-coordinates as
well. The expression in (6.9) is used to define the within-chains variance, which is given by [18]

W = 1
C

C∑
j=1

s2
j . (6.10)
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The between-chains variance, denoted by B, is defined by [18, 23]

B
Ñ

= 1
C − 1

C∑
j=1

(
cj − c

)2
. (6.11)

The term c in (6.11) denotes the overall mean across all C Markov chains of source strengths. As
suggested in [18, 23], the following ratio

R̂ =
√

Var[̂c|z]

W (6.12)

could be used to judge when a set of Markov chains converges, where

Var[̂c|z] =
(

1 − 1

Ñ

)
W + B

Ñ
. (6.13)

Typically, it is suggested that the MCMC should be run until R̂ < 1.1 [23].

6.4 Results: MCMC

To avoid cluttering the presentation of the result, results are shown only at the relative times
t0 = 0 s, t1 = 20 s and t2 = 40 s. This experiment runs 6 Markov chains and the initial positions
of these chains are independently drawn from the prior distribution explained in Section 6.1.
We decide on using six chains after the fact that we obtained an acceptable value of R̂ in this
experiment. The spin-up period consists of the first 500 particles and the overall length of each
chain, including the spin-up period, is 2000.

Figure 5 depicts evolving Markov chain means for source strengths, x-coordinates and y-
coordinates. For each panel, chain means appear to converge to similar regions of the state
space. Figure 6 depicts Markov chain distributions of source strengths, as well as its x- and
y-coordinates, at the final iteration (excluding the spin-up period) for the relative times points
t0 = 0 s, t1 = 20 s and t2 = 40 s. Their shapes, for each parameter–time combination, appear to
be roughly the same despite some noise. However, this is not always an evidence of ‘good’ intra-
chain mixing because the marginal prior standard deviations defined earlier for b and ã appear to
be ‘small’ compared with the width and height of the aquarium under consideration. For a partic-
ular parameter–time combination, one could argue that Markov chain distributions mimic each
other due to their starting positions being too close together instead of because they all remain
invariant when more particles are obtained.

The within- and between-chains variances are now examined. The evolving R̂ ratios are pre-
sented in Figure 7 at the relative times t0 = 0 s, t1 = 20 s and t2 = 40 s. These appear to satisfy
the condition R̂ < 1.1 as suggested in [23] upon reaching the final iteration. This, alongside
Figures 5 and 6, reasonably suggest that Markov chains have mixed and converged to their
relevant marginal posterior distributions.

There appear to be a number of situations in Figures 8 and 9 where within- and between-
chains variances stabilise after the end of the spin-up period. There seem to be some exceptions
to this as well. For example, the between-chains variances of source strengths at the relative time
t2 = 40 s rapidly increase at later iterations. One possible explanation for this behaviour in the
bottom left-hand panel of Figure 9 is that the posterior variance reduction at earlier times could
potentially produce ‘small’ marginal prior variances. Starting positions of Markov chains could
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FIGURE 5. Evolving Markov chain means for source strengths (first column), x-coordinates (second col-
umn) and y-coordinates (third column). The relative times t0 = 0 s, t1 = 20 s and t2 = 40 s constitute the
first, second and third rows (respectively). The dashed lines denote the end of the spin-up period, which
constitutes the first 500 particles.
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FIGURE 6. Markov chain distributions at the final iteration for source strengths (first column), x-coordinates
(second column) and y-coordinates (third column). The relative times t0 = 0 s, t1 = 20 s and t2 = 40 s con-
stitute the first, second and third rows (respectively). Note that the particles constituting the spin-up period
are ignored.
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Table 1. Markov chain means and standard deviations with respect to both particles and
chains (excluding the spin-up period) for source strengths, and its x-and y-coordinates. These

are obtained using the Metropolis–Hastings sampler and the first five pairs of consecutive
down-sampled and cropped real grey scale images

Relative time (s) ĉ
(
m2 s−1

)
â (m) b̂ (m) sc

(
m2 s−1

)
sa (m) sb (m)

0 1.6574 × 10−5 0.2233 0.0731 4.3387 × 10−6 0.0075 0.0038
10 1.2861 × 10−5 0.2210 0.0729 3.3386 × 10−6 0.0062 0.0034
20 1.0293 × 10−5 0.2209 0.0728 2.3719 × 10−6 0.0049 0.0025
30 9.2769 × 10−6 0.2217 0.0732 1.9131 × 10−6 0.0044 0.0022
40 8.8754 × 10−6 0.2225 0.0739 1.6880 × 10−6 0.0037 0.0019
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FIGURE 10. (Left) The frequency distributions of optical flow speeds at the first 5 image pairs computed
using the multi-resolution Horn–Schunk, see again Figure 3. (Right) The frequency distributions of optical
flow speeds computed using the finite approximation of the ansatz in (5.5), the relation u = ∇� and the
parameter estimates in Table 1.

end up being so ‘close’ together that their evolving means begin to diverge slightly after the
spin-up period has elapsed.

To examine temporal dynamics of optical flows, the flow speed at every grid cell is computed.
The frequency distributions of flow speeds at each relative time point in Figure 10 are then
constructed and compared with those computed by the multi-resolution Horn–Schunk. These
flow speeds are consistent with previous research [22, 48].

The results from the HS and our MCMC approach differ substantially, with a temporally more
variable and slower flow being computed using HS (Figure 10). Active bioirrigation by Arenicola
marina typically occurs over periods of 15 min or longer (e.g. [46, 52]). This suggests that the
estimates of our MCMC approach are superior to those obtained using HS, where pumping is
estimated to vary substantially over a period of less than a minute. Yet porewater pressure time
series measurements reveal variations at high frequencies during periods of pumping, and have
revealed strong variations associated with burrowing and backward pumping [48]. Thus, while
less common and hence less likely to be captured in our image data, variations in flow magnitudes
on timescales shorter than minutes as indicated by the HS approach cannot be ruled out.
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FIGURE 11. Comparison of the optical flow and divergence between using the finite approximation of
the ansatz in (5.5) and Horn–Schunk method in Section 4. The plot shows only the cropped area where
Arenicola marina is active. The white arrows in the first and second columns denote optical flows. From
top to bottom row, the results are shown at the relative times t0 = 0 s, t1 = 20 s and t2 = 40 s, respectively.
They are overlaid on top of the down-sampled and cropped real grey scale images associated with those
relative times. The third and fourth columns depict the associated divergences. Note that the first and second
columns share the same colour scale and likewise for the third and fourth columns.

Contrary to what is expected based on our understanding of the biology of Arenicola marina
which injects fluid at its dead-end burrow, the HS approach shows fastest flow located further and
further away from the location of the burrowing organism over time (Figure 11), largely track-
ing the gradients in the tracer concentration field. In these distal gradient regions, flow is well
constrained by the observational data. The source of flow is the pumping by Arenicola marina,
situated near the injection site. Such an injection site is reflected in the location of the diver-
gence in the MCMC approach, but not in the widely distributed divergence in the HS approach.
Finally, with a localised injection site, flow velocities should decrease away from the source as
the fluid is spreading out. The MCMC approach correctly simulates these properties, whereas
the HS method does not. Thus, our work highlights the importance of the data analysis method
when inferring the flow field. In this example, the comparison with biological knowledge clearly
indicates the advantage of our MCMC approach over traditional methods.

7 Summary and outlook

This work develops a parametric model to estimate the flow velocity in the context of bioirri-
gation. A localised divergence-free flow velocity is desired in the vicinity of the injection point,
which is difficult to achieve with the conventional flow velocity framework method such as the
Horn–Schunk method. We demonstrated that the issue of undesired divergence of the flow veloc-
ity can be significantly mitigated by using the proposed model in combination with MCMC. The
efficacy of the MCMC method in this work indicates the superiority compared to other meth-
ods when applied to general problems associated with localised sources of flow/pressure field
generation.
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Despite the improved result in this initial work, several challenges remain open to overcome.
In particular, the model (3.5) can be inaccurate further away from the injection site where the
effect of diffusion is considerable and has to be taken into account in the model. This must be
addressed if flow velocity estimation has to be extended to the entire area of the image presented
in this work. Taking into account diffusion, or considering reactive tracers that inform our under-
standing of the biogeochemical turnover and efflux of, for example, greenhouse gases such as
CO2, N2O or CH4 from the subsurface would add more parameters, rendering MCMC infeasi-
ble in practice. This should motivate a more advanced (approximate) inference to deal with this
inverse problem, e.g., iterative Ensemble Kalman filter (IEnKF) for solving inverse problems
[8, 15, 38]. Another direction to further improve the estimate by setting up a model to allow a
temporal-smoothing parameter into the framework instead of using the posterior distribution as
a prior distribution in a subsequent image pair. This will in effect avoid ‘cutting the feedback’
issue discussed in [33].
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Appendix A. Multi-Resolution Horn-Schunk

To illustrate this method, reconsider the grey scale images F0 and F1. For each image, a pyramid
with L levels is constructed. At the topmost level (called level 1), F1

0 and F1
1 are the ‘original’

grey scale images. Resolution is then reduced by a factor of two with each lower level. Suppose
that the prior guess of the optical flow at the bottom pyramid level (i.e. L-th level) is zero. This
is updated first using (4.6). A more refined optical flow at the (L− 1)- th level uL−1 is given by

uL−1 = ũL + δuL−1, (A1)

where δuL−1(x, y, t) is a correction increment and ũL(x, y, t) is obtained by up-sampling uL. A
correction increment is obtained by considering the following optimisation problem.

δuL−1 = argmin
δuL−1

∫
�

(
δuL−1 · ∇F + Ft

)2︸ ︷︷ ︸
data term

+ λ2(‖∇ (̃
uL + δuL−1

) ‖2
2 + ‖∇ (̃

vL + δvL−1
) ‖2

2

)︸ ︷︷ ︸
regularisation term

d�.

(A2)
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Although (A2) resembles (4.3), there are some differences that require further explanation.
Firstly, the data term in (A2) only involves δuL−1 because ũL ought to already temporally con-
serve grey scale intensity [21]. Secondly, spatially smooth functions are not closed under addition
(depending on their mean). As such, the regularisation term in (A2) involves both ũL and δuL−1.
Finally, the intensity derivatives in (4.3) are derived from the grey scale images F0 and F1 while
in (A2), they are derived from FL−1

0 and FL−1
1

(
x − ũLδt, y − ṽLδt, t1

)
, which can be thought of

a warped image of FL−1
1 towards FL−1

0 under the action of ũL.
Following a derivation analogous to that of (4.6) yields the following iterative Jacobi update

scheme:

δuL−1
i+1 = δu

L−1

i −
Fx

(
Fxδu

L−1

i + Fyδv
L−1

i + Ft + Fy�̃vL
)

λ2 + F2
x + F2

y
+ λ2 + F2

y

λ2 + F2
x + F2

y
�ũL.

δvL−1
i+1 = δv

L−1

i −
Fy

(
Fxδu

L−1

i + Fyδv
L−1

i + Ft + Fx�ũL
)

λ2 + F2
x + F2

y
+ λ2 + F2

x

λ2 + F2
x + F2

y
�̃vL.

(A3)

We can apply (A3) to approximate the solution of (A2). An equivalent form of (A3), which one
finds easier to work with, is given by the following.

δuL−1
i+1 = δu

L−1

i + �ũL −
Fx

(
Fxδu

L−1

i + Fyδv
L−1

i + Ft + Fy�̃vL
)

λ2 + F2
x + F2

y
− F2

x

λ2 + F2
x + F2

y
�ũL.

δvL−1
i+1 = δv

L−1

i + �̃vL −
Fy

(
Fxδu

L−1

i + Fyδv
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i + Ft + Fx�ũL
)

λ2 + F2
x + F2

y
− F2

y

λ2 + F2
x + F2

y
�̃vL.

(A4)

Once ũL and δuL−1 have been recovered, one can then obtain uL−1 using (A1) and up-sample it
to level L− 2. Then another correction increment can be obtained. This process continues until
the topmost level is reached, and flow resolution is the same as that of the ‘original’ images.

Consider another grey scale image F2(x, y, t2), which is then used in conjunction with F1 to
construct another optical flow. Now suppose that temporal dynamics of optical flows arising from
the greyscale images {F0, F1, F2} is unknown, i.e. one cannot write down a model governing
their evolution. Then when considering F1 and F2, and intuitive prior guess of the optical flow
at the bottom pyramid level would be the most recent estimate which has been down- sampled
accordingly. This flow field, or its Laplacian, could be non- zero. If (4.6) was applied at the
bottom pyramid level, then this could falsely suggest that the Laplacian of the ‘incoming’ flow
(i.e. the prior guess) is zero. As such, at subsequent times, the Horn- Schunck method is not
employed at the bottom pyramid level here. The latter of the image pair in question is warped
towards the former under the action of the prior guess and (A3) is applied instead.

Appendix B. Derivation of (5.5)

Solving (5.3) using separation of variables begins with writing the velocity potential being sought
in the form

�(x, y) = X(x)Y(y). (B1)
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FIGURE B.1. A schematic depicting the boundary conditions in terms of a velocity potential. Dynamics
pertaining to the point of injection are neglected.

The pressure boundary conditions are depicted in Figure B.1.
Based on these boundary conditions, the standard separation of variable gives the solution of

the form:

�(x, y) =
∞∑
j=0

∞∑
k=0

θ jk cos

(
kπ

Lx
x
)

cos

(
(1 + 2j)π

2Ly
y
)

. (B2)

To obtain θ jk, we substitute (B2) to (5.2), revealing

cδ(x − a, y − b) =
∞∑
j=0

∞∑
k=0

θ jk

[
−
(

kπ

Lx

)2

−
(

(1 + 2j)π
2Ly

)2
]

cos

(
kπ

Lx
x
)

cos

(
(1 + 2j)π

2Ly
y
)

.

(B.3)
The above equation can be solved to obtain θ jk:

θ jk= 4c
LxLyν jk

cos

(
kπ

Lx
a
)

cos

(
(1 + 2j)π

2Ly
b
)

= − 4c

LxLy

[(
kπ
Lx

)2 +
(

(1+2j)π
2Ly

)2
] cos

(
kπ

Lx
a
)

cos

(
(1 + 2j)π

2Ly
b
)

,
(B4)

This expression for θ jk is substituted back into (B2), revealing (5.5).
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