SOME RINGS OF INVARIANTS THAT ARE COHEN-MACAULAY

LARRY SMITH

ABSTRACT. Let $\rho: G \hookrightarrow GL(n, \mathbb{F})$ be a representation of the finite group G over the field \mathbb{F} . If the order |G| of G is relatively prime to the characteristic of \mathbb{F} or n = 1or 2, then it is known that the ring of invariants $\mathbb{F}[V]^G$ is Cohen-Macaulay. There are examples to show that $\mathbb{F}[V]^G$ need not be Cohen-Macaulay when |G| is divisible by the characteristic of \mathbb{F} . In all such examples dim_{\mathbb{F}}(V) is at least 4. In this note we fill the gap between these results and show that rings of invariants in three variables are always Cohen-Macaulay.

0. Introduction. Let $\rho: G \hookrightarrow GL(n, \mathbb{F})$ be a representation of the finite group G over the field \mathbb{F} . Denote by $\mathbb{F}[V]$ the graded algebra of homogenous polynomial functions on the vector space $V = \mathbb{F}^n$ and let $\mathbb{F}[V]^G$ be the subalgebra of polynomials invariant under the action of G. For a general reference on invariant theory we refer to [7].

The ring $\mathbb{F}[V]^G$ is known to be Cohen-Macaulay if the order of *G* is relatively prime to the characteristic of $\mathbb{F}([5] \text{ or } [7], \text{ Theorem 6.7.8})$ or if dim_{\mathbb{F}}(V) = 2 ([7], Corollary 8.2.3). If the characteristic of \mathbb{F} divides the order of *G* this may fail: see for example [1], [4], or [7], Section 6.7, Example 2. In all of these examples the dimension of *V* is at least 4. In this note we prove that rings of invariants in three variables are always Cohen-Macaulay. This shows that the non-Cohen-Macaulay 20 year old example of Bertin is of minimal dimension.

1. Rings of Invariants in Three Variables. Let $\rho: G \hookrightarrow GL(n, \mathbb{F})$ be a representation of the finite group over the field \mathbb{F} . If \mathbb{F} is a field of characteristic zero then $\mathbb{F}[V]^G$ is always Cohen-Macaulay, so we assume that \mathbb{F} is a field of characteristic $p \neq 0$. The proof of the main result makes use of a reduction to the case of p-groups. (See [2] or [7], Theorem 8.3.1.)

PROPOSITION 1.1. Let \mathbb{F} be a field of characteristic $p \neq 0$ and $\rho: G \hookrightarrow GL(n, \mathbb{F})$ a representation of a finite group G. If $\mathbb{F}[V]^{Syl_p(G)}$ is Cohen-Macaulay then so is $\mathbb{F}[V]^G$.

PROOF. The index $|G : Syl_p(G)|$ is relatively prime to p. Therefore we have the projection operator (see [7], Section 2.4)

$$\pi^{G}_{\operatorname{Syl}_{p}(G)} \colon \mathbb{F}[V]^{\operatorname{Syl}_{p}(G)} \longrightarrow \mathbb{F}[V]^{G}$$

Received by the editors November 25, 1994.

AMS subject classification: 13B99.

[©] Canadian Mathematical Society 1996.

which is an $\mathbb{F}[V]^G$ -module homomorphism such that the composite

(*)
$$\mathbb{F}[V]^G \hookrightarrow \mathbb{F}[V]^{\operatorname{Syl}_p(G)} \xrightarrow{\pi^G_{\operatorname{Syl}_p(G)}} \mathbb{F}[V]^G$$

is the identity. Let $f_1, \ldots, f_n \in \mathbb{F}[V]^G$ be a system of parameters. $\mathbb{F}[V]^{\text{Syl}_p(G)}$ is finitely generated as $\mathbb{F}[V]^G$ -module. Hence $f_1, \ldots, f_n \in \mathbb{F}[V]^{\text{Syl}_p(G)}$ is also a system of parameters for $\mathbb{F}[V]^{\text{Syl}_p(G)}$. By hypothesis $\mathbb{F}[V]^{\text{Syl}_p(G)}$ is Cohen-Macaulay, so by Macaulay's Theorem ([7], Corollary 6.7.7) $f_1, \ldots, f_n \in \mathbb{F}[V]^{\text{Syl}_p(G)}$ is a regular sequence. Therefore by [7], Corollary 6.7.11, $\mathbb{F}[V]^{\text{Syl}_p(G)}$ is a free $\mathbb{F}[f_1, \ldots, f_n]$ -module. It follows from (*) that $\mathbb{F}[V]^G$ is a direct summand of $\mathbb{F}[V]^{\text{Syl}_p(G)}$ as $\mathbb{F}[V]^G$ -module, and hence *a fortiori* as $\mathbb{F}[f_1, \ldots, f_n]$ module. Therefore $\mathbb{F}[V]^G$ is a projective $\mathbb{F}[f_1, \ldots, f_n]$ -module, and hence by [7], Proposition 6.1.1, a free $\mathbb{F}[f_1, \ldots, f_n]$ -module, which makes it Cohen-Macaulay.

THEOREM 1.2. Let $\rho: G \hookrightarrow GL(3, \mathbb{F})$ be a representation of the finite group G over the field \mathbb{F} . Then $\mathbb{F}[x, y, z]^G$ is Cohen-Macaulay.

PROOF. From the theorem of Hochster and Eagon, *loc. cit.*, and Proposition 1.1 we may suppose that \mathbb{F} has characteristic $p \neq 0$ and G = P is a finite *p*-group. Since *P* is finite there is no loss in generality in assuming that \mathbb{F} is a Galois field with $q = p^m$ elements.

Let $V = \mathbb{F}^3$ and consider the fixed point set V^P of the action of P on V. There is the decomposition

$$V = V^P \sqcup B_1 \sqcup \cdots \sqcup B_m$$

where $B_1, \ldots, B_m \subset V$ are the nontrivial orbits of P on V (*i.e.*, the orbits with more than one point). Since $q^3 \equiv 0 \equiv |B_i| \mod p$ for $i = 1, \ldots, m$ it follows that $|V^P| \equiv 0 \mod p$. The zero vector is a fixed point so V^P is nonempty, and therefore contains at least qelements, so $\dim_F(V^P) > 0$. Since the action of P in V is faithful $\dim_F(V^P) \neq 3$ and hence $\dim(V^P) = 1, 2$.

If $\dim_{\mathbb{F}}(V^P) = 2$ then every nonidentity element of *P* acts on *V* as a transvection and hence by [6] or [7], Theorem 8.2.13, $\mathbb{F}[x, y, z]^P$ is a polynomial ring, and therefore Cohen-Macaulay. If $\dim_{\mathbb{F}}(V^P) = 1$ then $\operatorname{codim}_{\mathbb{F}}(V^P \subset V) = 2$ so by the theorem of Ellingsrud and Skjelbred [3]

$$\operatorname{codim}(\mathbb{F}[x, y, z]^{P}) \ge 2 + \dim_{\mathbb{F}}(V^{P}) = 3$$

where $\operatorname{codim}(-)$ denotes the homological codimension of -. Since the Krull dimension $\dim(\mathbb{F}[V]^p) = \dim_{\mathbb{F}}(V) = 3$, $\mathbb{F}[x, y, z]^p$ is Cohen-Macaulay.

REFERENCES

- 1. M. -J. Bertin, Anneaux d'invariants d'anneaux de polynômes en caractéristique p, C. R. Acad. Sci. Paris (Série A) 277(1973), 691-694.
- 2. H. E. A. Campbell, I. P. Hughes and R. D. Pollack, *Rings of Invariants and p-Sylow Subgroups*, Can. Math. Bull. 34(1991), 42–47.
- **3.** G. Ellingsrud and T. Skjelbred, *Profondeur d'anneaux d'invariants en caractéristique p*, Comp. Math. **41**(1980), 233–244.

LARRY SMITH

- 4. R. M. Fossum and P. A. Griffith, Complete Local Factorial Rings which are not Cohen-Macaulay in characteristic p, Ann. Sci. École Norm. Sup. (4) 8(1975), 189–200.
- 5. M. Hochster and J. A. Eagon, Cohen-Macaulay Rings, Invariant Theory, and the Generic Perfection of Determinantal Loci, Amer. J. of Math. 93(1971), 1020–1058.
- 6. P S. Landweber and R. E. Stong, *The Depth of Rings of Invariants over Finite Fields*, Proc. New York Number Theory Seminar, 1984, Lecture Notes in Math. Springer, New York, 1987.
- 7. L. Smith, Polynomial Invariants of Finite Groups, A. K. Peters Ltd., Wellesley, MA, 1995.

Mathematisches Institut der Universität Göttingen Bunsenstrasse 3 - 5 D 37073 Göttingen Germany e-mail: larry@cfgauss.uni-math.gwdg.de