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Infinite Dimensional Representations of
Canonical Algebras

Dedicated to Vlastimil Dlab on the occasion of his 70th birthday.

Idun Reiten and Claus Michael Ringel

Abstract. The aim of this paper is to extend the structure theory for infinitely generated modules over

tame hereditary algebras to the more general case of modules over concealed canonical algebras. Using

tilting, we may assume that we deal with canonical algebras. The investigation is centered around the

generic and the Prüfer modules, and how other modules are determined by these modules.

Introduction

Let Λ be a finite dimensional algebra over a field k. Traditionally one mainly has
considered the Λ-modules which are finitely generated. An early exception were pa-

pers by several authors dealing with modules over the Kronecker algebra. This was
generalized by the second author [R1] to the case of a tame hereditary algebra Λ,
an investigation which was based on the explicit knowledge of the finitely generated
modules as presented in his joint work [DR] with Dlab. As it turned out, there are

striking similarities between the category of all Λ-modules and the category of all
abelian groups (or the category of all R-modules, where R is a Dedekind ring with
infinitely many prime ideals). In particular, the so called generic module and the
Prüfer modules play an important role, as they correspond to the indecomposable

injective R-modules.

The aim of the present paper is to show that the core results of these old inves-
tigations only depend on the existence of a sincere stable separating tubular family,

and not at all on the representation type of the algebra. Hence, in view of the char-
acterization due to Lenzing and de la Peña in [LP], the natural setting is the class
of concealed canonical algebras, which contains the class of tame hereditary alge-
bras, but also many others. An important special class is the better known class of the

canonical algebras, and actually, it is sufficient to deal with this class (with the tubular
family considered to be given by the modules of defect zero), since it is easy to extend
the results to the general class of concealed canonical algebras via a tilting procedure.
Note that such a canonical algebra may be domestic, or non-domestic tame, or wild,

but we will always obtain splitting results which are similar to those known for tame
hereditary algebras. In the special case of a canonical algebra which is non-domestic
tame (thus for all tubular algebras), there are countably many tubular families: any

such family gives rise to corresponding split torsion pairs.
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The key results are, as for tame hereditary algebras, centered around the explicit
description of some modules, which are defined in a similar way as in the tame hered-

itary case: the generic module and the Prüfer modules. In some sense, all other mod-
ules are determined from these, via maps between them. In order to be more explicit,
we need to introduce some notation and terminology.

Given a ring R, we consider usually left R-modules and call them just modules or

also representations of R. The category of all R-modules will be denoted by Mod R,
the full subcategory of the finitely presented ones by mod R. For any class X of
R-modules, we denote by add X its additive closure: it is the smallest full subcat-
egory closed under isomorphisms, direct summands and finite direct sums. Simi-

larly, Add X is the smallest full subcategory closed under isomorphisms, direct sum-
mands and arbitrary direct sums, whereas Prod X is the smallest full subcategory
closed under isomorphisms, direct summands and arbitrary products. Given R-
modules X,Y , we usually write Hom(X,Y ) or Ext1(X,Y ) instead of HomR(X,Y )

or Ext1
R(X,Y ). When dealing with classes X, Y (or full subcategories) of R-modules,

we write Hom(X, Y) = 0 in order to assert that Hom(X,Y ) = 0 for all X ∈ X and
Y ∈ Y, and similarly for Ext1 . For any R-module M, we denote by pd M its pro-
jective dimension and by id M its injective dimension. When dealing with module

classes (or full subcategories), two different types of notations will be used: the mod-
ule classes denoted by script letters such as X, C, Q (or also ω and ω0) will usually be
closed under direct sums (often even infinite direct sums); in contrast, when deal-
ing with an artin algebra, we will use small boldface letters such as x, p, t in order to

denote classes consisting only of indecomposable modules of finite length.
Let Λ be an artin algebra, and assume that there exist classes p, t, q in mod Λ (a

“trisection”) with the following properties: t is a sincere stable separating tubular
family and it separates p from q (see Section 2). Note that an indecomposable Λ-

module of finite length belongs to p or t if and only if it is cogenerated by t. A crucial
result of this paper will be the following: Any (not necessarily finite dimensional) Λ-
module M has a direct sum decomposition M = M0 ⊕ M1, where M0 is cogenerated
by the direct limit closure T of t and M1 is generated by t; in addition, we can assume

that Hom(M1, T) = 0, and then Hom(M1, M0) = 0. We consider the class C of
modules cogenerated by T, thus a finite length module belongs to C if and only if it
is cogenerated by t. It follows that C is the torsionfree class of a split torsion pair in
Mod Λ. We will investigate in detail all the torsion pairs in Mod Λ with the property

that a finite length module is torsionfree if and only if it is cogenerated by t. As we
will see, all these torsion pairs split. Now C is the largest possible torsionfree class
of this kind. Also the largest possible torsion class D of such a torsion pair can be
described easily: it is the class of all modules M with Hom(M, t) = 0. The category

ω = C ∩ D turns out to be of central importance. The main results of the paper
can be expressed in terms of these categories C, D and ω. The objects in ω can be
completely classified: any object in ω is a direct sum of copies of the generic module
G and of Prüfer modules. The class C is determined by ω as {C | Ext1(C, ω) = 0},

and D is determined by ω as {D | Ext1(ω, D) = 0}. Further there are exact sequences
0 → C → V → V ′ → 0 with V ∈ ω and V ′ a direct sum of Prüfer modules, for C
in C, and 0 → V ′ → V → D → 0, with V ′ ∈ Add G and V ∈ ω, for D in D. As a
consequence, the modules in C can be characterized as the kernels of maps in ω, and
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similarly, the modules in D can be characterized as the cokernels of maps in ω. Thus
any Λ-module M is obtained as a direct sum M = M0 ⊕ M1, where M0 is the kernel

and M1 the cokernel of suitable maps in ω: in this way, the category Mod Λ can be
completely described in terms of ω.

When dealing with finite dimensional algebras, one may argue that it is the cat-
egory of finite dimensional representations which is the primary object of interest.

However, the relevance of infinite dimensional representations has been stressed at
various occasions [R1, R8] and here we encounter again such a situation: it is the
subcategory ω which plays the decisive role when studying the cut between t and
q in mod Λ, and as we have noted, ω does not contain a single non-zero finite-

dimensional representation. We will denote by W the direct sum of all the inde-
composables in ω, one from each isomorphism class. This module W allows us to
reconstruct ω (as Add W ), thus the whole category Mod Λ. Clearly, W is a very valu-
able module! This can be phrased quite well in terms of tilting and cotilting theory.

We will use the denomination inf-tilting and inf-cotilting when we deal with the gen-
eral concepts without the restriction of dealing with finite dimensional modules, see
Section 11. Our results show that W is both an inf-tilting module of projective di-
mension one and an inf-cotilting module of injective dimension one (see [BS] for a

different and independent approach to this for cotilting modules). It is also possible
to perform tilting with respect to torsion pairs as in [HRS] to construct new heredi-
tary categories where the objects in ω become enough projective or enough injective
objects.

If we consider the special case of a tame hereditary algebra, most of the results pre-
sented here have been established in [R1], but for Proposition 8.2 (the classification
of torsion pairs) we should refer to unpublished information by Assem and Kerner.
It should be noted that Theorem 7.1 (the existence of the right ω-approximations)

seems to be new even in this case. The proof is inspired by [AB].
We will follow quite closely the presentation given in [R1], using only the struc-

ture theory for finite dimensional representations, and not taking into account the
large amount of information on infinite dimensional representations obtained in the

meantime by various authors. In particular, we will construct the relevant “generic”
module G from scratch. At the end we indicate a different approach using the avail-
able results. The reader should not mind that the text itself avoids all more sophisti-
cated considerations, but this stubborn approach should make it quite transparent to

trace in which way the structure of the category of finite dimensional representations
determines that of all the representations.

The reader may observe that we are reluctant in the use of notions which are not
really necessary for the presentation of the results. There is of course the general

notion of a generic module as introduced by Crawley–Boevey, referring to an inde-
composable module of infinite length, which is of finite length when considered as
a module over the opposite of its endomorphism ring, and the module G in ω is a
typical such module, and the only one inside ω. This is one of the reasons for call-

ing it the canonical generic module in our setting. Then one should mention the
concepts of pure injectivity and algebraic compactness, two notions which describe the
same class of modules by stressing quite different, but equivalent properties. All the
modules in ω clearly have these properties. Since ω is closed under arbitrary finite
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sums, the modules in ω are even what is called Σ-pure injective. It is known that the
endomorphism ring of any indecomposable algebraically compact module is always

a local ring, and this is illustrated very well by our description of the indecomposable
modules in ω. For a detailed study of the algebraically compact modules which be-
long to the wider class l(p) ∩ C we refer to the subsequent paper [R9] by the second
author.

The paper is organized as follows. In Section 1 we give a criterion for a torsion
pair to be split. In Section 2 we recall basic properties of the central algebras in this

paper; the canonical and concealed canonical algebras. In Sections 3–8 we deal with
a canonical algebra Λ and the canonical trisection (p, t, q) of mod Λ. In Section 3
we investigate the two extremal torsion pairs of Mod Λ mentioned above, and give
the structure of the Prüfer modules. The left ω-approximation sequence is estab-

lished in Section 4, and the basic splitting result Ext1(C, D) = 0 is given in Section
5. The structure of ω is presented in Section 6, and the existence of the right ω-
approximation sequences is deduced in Section 7. The structure of ω is investigated
more closely in Section 8. In Section 9 we outline that all these considerations are

valid for any sincere stable separating tubular family, thus for any concealed canon-
ical algebra. Of course, we use tilting functors in order to relate an arbitrary sincere
stable separating tubular family with the canonical trisection of a canonical algebra.
Connections with tilting theory are discussed in Sections 10 and 11. In Section 12 we

provide further comments and indicate another approach to the results in this paper.
A tubular algebra has a lot of sincere stable separating tubular families and as we will
see in Section 13, our considerations allow us to attach a non-negative real number
as a “slope” to any indecomposable infinite dimensional module. In Section 14 we

outline a reformulation of the main results of the paper in terms of cotorsion pairs.

1 Torsion Pairs

The investigations presented in this paper are centered around various torsion pairs

(or, as they are sometimes called, torsion “theories”). We are going to recall the rele-
vant definitions and main properties, and we provide a general method for producing
split torsion pairs.

Let R be a ring. For any class Z of R-modules, we denote by l(Z) the class of all R-
modules M with Hom(M, Z) = 0, and similarly, r(Z) is the class of all R-modules M
with Hom(Z, M) = 0 (let us stress that our notation r(−) and l(−) always refers to

the complete category Mod R as ambient category, the only exception being Section
10 where the ambient category is an arbitrary abelian category).

Lemma 1.1 Let F, G be classes of R-modules. The following conditions are equivalent:

(i) l(F) = G and r(G) = F.
(ii) Hom(G, F) = 0 and any module M has a submodule M ′ ∈ G such that

M/M ′ ∈ F.

If these conditions are satisfied, the pair (F, G) is said to be a torsion pair with
torsionfree class F, and torsion class G. The modules in F are called the torsionfree,
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those in G the torsion modules. It is straightforward to see that the submodule M ′

given in (ii) is uniquely determined by M (provided the torsion pair (F, G) is fixed).

Proof Proof of the equivalence. (i)⇒(ii). Only the last assertion needs a proof.
Thus, let M be an arbitrary R-module. Let M ′ be the sum of images of maps

from a module in G to M. Since G = l(F), G is closed under factors and arbi-
trary sums, so that M ′ is in G. Since G is also closed under extensions, we see that
Hom(G, M/M ′) = 0, so that M/M ′ is in F.

(ii)⇒(i). We show that l(F) ⊆ G. Let N belong to l(F). According to (ii) there
exists a submodule N ′ of N which belongs to G such that N/N ′ belongs to F. But

the assumption that N ∈ l(F) implies that the projection map N → N/N ′ is the
zero map, thus N/N ′

= 0 and therefore N = N ′ ∈ G. Similarly, one shows that
r(G) ⊆ F.

Some readers may wonder about the not quite usual sequence of naming the tor-

sionfree class F first and the torsion class G second — this corresponds to the vision
of drawing arrows and thus non-trivial maps from left to right (whenever possible):
there usually will be many non-zero maps from the objects in F to the objects in G

(but, by definition, none in the other direction), thus F may be considered as “situ-

ated to the left” of G.

The torsion pair (F, G) is said to be split provided Ext1(F, G) = 0, or, equivalently,
provided every module is the direct sum of a module in F and a module in G.

Any class Z of R-modules determines two torsion pairs, namely

(r(Z), lr(Z)) and (rl(Z), l(Z)).

Clearly, lr(Z) is the smallest possible torsion class containing Z, whereas rl(Z) is the
smallest possible torsionfree class containing Z.

Lemma 1.2 Let Z be any class of R-modules. Then an R-module M belongs to lr(Z)

if and only if the only submodule U of M with M/U ∈ r(Z) is U = M. Similarly, an
R-module M belongs to rl(Z) if and only if the only submodule U of M with U ∈ l(Z)
is U = 0.

Proof If M belongs to lr(Z) and U is a submodule of M with M/U ∈ r(Z), then
the projection map M → M/U has to be the zero map, thus U = M. Conversely,

assume that M is an R-module such that the only submodule U with M/U ∈ r(Z)
is U = M. Since (r(Z), lr(Z)) is a torsion pair, the module M has a submodule M ′

which belongs to lr(Z) such that M/M ′ belongs to r(Z). Since M ′ is a submodule of
M with M/M ′ ∈ r(Z), we know by assumption that M ′

= M. But this shows that

M ∈ lr(Z). This proves the first equivalence. The second equivalence is shown in the
same way.
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Given a class Z of R-modules, we denote by g(Z) the class of all R-modules gen-
erated by Z (these are just the factors of direct sums of modules in Z, and by c(Z)

those cogenerated by Z (these are the submodules of products of modules in Z). The
following inclusions are trivial:

g(Z) ⊆ lr(Z) and c(Z) ⊆ rl(Z).

Lemma 1.3 Let Z be a class of R-modules. Then g(Z) = lr(Z) if and only if g(Z)
is closed under extensions. Similarly, c(Z) = rl(Z) if and only if c(Z) is closed under
extensions.

Proof We show the first assertion (the second assertion is shown in the same way).
Note that lr(Z) is closed under extensions, thus the equality g(Z) = lr(Z) implies
that g(Z) is closed under extensions. Conversely, assume that g(Z) is closed under

extensions and let M ∈ lr(Z). We have to show that M belongs to g(Z). Let M ′ be the
sum of all images of maps Z → M with Z ∈ Z, thus M ′ is the maximal submodule
of M generated by Z. We claim that M/M ′ belongs to r(Z). Namely, given a map

f : Z → M/M ′ with Z ∈ Z, let M ′′/M ′ be its image, where M ′ ⊆ M ′′ ⊆ M.
Now M ′ and M ′′/M ′ are generated by Z, thus, by assumption also M ′′ is generated
by Z. But this means that M ′′ ⊆ M ′ and therefore f = 0. Since M ∈ lr(Z) and
M/M ′ ∈ r(Z), the projection map M → M/M ′ is the zero map, thus M = M ′ (of

course, one also may refer to Lemma 1.2). This shows that M belongs to g(Z).

It will be useful to know conditions so that a subcategory of the form g(Z) is
closed under extensions. From now on, we restrict to the case when R = Λ is an
artin algebra and we will denote the Auslander–Reiten translation in mod Λ by τ . Let

us consider the case when Z = z is a class of modules of finite length.

Lemma 1.4 Let Λ be an artin algebra and z a class of Λ-modules of finite length.
Assume that add z is closed under extensions. If either add z is also closed under factor

modules or if pd Z ≤ 1 for all Z ∈ z, then g(z) is closed under extensions.

Proof We first show the following: Under either assumption, given a finite length

module Y and a submodule X of Y such that both X and Y/X are generated by z,
then also Y is generated by z. Namely, if we assume that add z is closed under factor
modules, then both X and Y/X belong to add z, since they are factor modules of
modules in add z. Thus also Y belongs to add z, since we assume that add z is closed

under extensions. Next, assume that pd Z ≤ 1 for all Z ∈ z. There are surjective
maps π : Z → Y/X and π ′ : Z ′ → X where Z, Z ′ belong to add z. Starting from the
exact sequence 0 → X → Y → Y/X → 0, we can form the induced exact sequence
with respect to π. Using now that pd Z ≤ 1, and that π ′ is an epimorphism, we
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obtain a commutative diagram with exact rows of the following shape:

0 −−−−→ X −−−−→ Y −−−−→ Y/X −−−−→ 0
∥∥∥

x f

x π

0 −−−−→ X −−−−→ Y ′ −−−−→ Z −−−−→ 0
x π ′

x f ′

∥∥∥

0 −−−−→ Z ′ −−−−→ Y ′ ′ −−−−→ Z −−−−→ 0

On the one hand, the map f f ′ is surjective, on the other hand, Y ′′ belongs to add z,
since add z is closed under extensions. This shows that Y is generated by z.

Now consider the general case of an arbitrary Λ-module Y and a submodule X

of Y such that both X and Y/X are generated by z. We have to show that Y is gen-
erated by z. Write Y =

∑
i Yi , where X ⊆ Yi and Yi/X is isomorphic to a factor

module of some module in z. It is sufficient to show that all the Yi belong to g(z).
Thus, without loss of generality, we may assume that Y/X is of finite length. Since

Y/X is of finite length, there is a finite length submodule Y ′ of Y with Y = X + Y ′.
Now, X is the filtered union of submodules Xi of finite length generated by z, thus
there is some i with X ∩ Y ′

= Xi ∩ Y ′. Thus (Xi + Y ′)/Xi ≃ Y ′/(Xi ∩ Y ′) =

Y ′/(X ∩Y ′) ≃ (X + Y ′)/X = Y/X. This shows that Xi + Y ′ is an extension of Xi by

Y/X and both Xi and Y/X are finite length modules generated by z. From our first
considerations, we know that Xi + Y ′ is generated by z, thus also Y =

⋃
i(Xi + Y ′) is

generated by z.

Let q be a class of indecomposable Λ-modules of finite length. We want to find

a criterion for g(q) to be the torsion class of a split torsion pair in Mod Λ. We de-
note by K0(Λ) the Grothendieck group of all finite length Λ-modules modulo exact
sequences. In case δ : K0(Λ) → Z is an additive map and M is a finite length module,
we will write δ(M) for the value taken by δ on the equivalence class of M in K0(Λ).

We say that the class q of indecomposable Λ-modules of finite length is closed
under successors provided given indecomposable Λ-modules M1, M2 of finite length
with Hom(M1, M2) 6= 0, then M1 ∈ q implies M2 ∈ q.

We also consider the following finiteness condition (F): If N is a Λ-module with
Hom(q, N) = 0 and has a submodule U ⊆ N of finite length such that N/U is
generated by q, then N is of finite length.

Finally, let us say that q is numerically determined provided there exists a function
δ : K0(Λ) → Z such that an indecomposable Λ-module M of finite length belongs to
q if and only if δ(M) > 0.

Proposition 1.5 Let Λ be an artin algebra. Let q be a class of indecomposable modules

in mod Λ closed under successors.

(a) If q is numerically determined, then q satisfies the condition (F).
(b) If q satisfies the condition (F), then g(q) is the torsion class of a split torsion pair in

Mod Λ. The corresponding torsionfree class is r(q).
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Proof (a) Assume that q is numerically determined with associated function δ. Let
N be a Λ-module with Hom(q, N) = 0, and let U be a finite length submodule of

N such that N/U is generated by q. Then all submodules N ′ of N of finite length
satisfy δ(N ′) ≤ 0. In particular, we have δ(U ) ≤ 0 and we choose a finite length
submodule U ′ of N with U ⊆ U ′ such that δ(U ′) is maximal. We claim that U ′

= N .
Otherwise, U ′/U is a proper submodule of N/U , and since N/U is generated by q,

there is Q ∈ q and a map f : Q → N/U with image not contained in U ′/U . Let
U ′ ′/U = U ′/U + f (Q) ⊆ N/U . In this way, we have found a submodule U ′′ of N
with U ′ ⊂ U ′′ and such that U ′′/U ′ is a non-zero epimorphic image of a module
in q and thus a non-zero direct sum of modules in q. But the latter condition means

that δ(U ′ ′/U ′) > 0 and therefore δ(U ′) < δ(U ′′), a contradiction to the choice of
U ′. Hence U ′

= N , and consequently N has finite length.

(b) Since add q is closed both under extensions and under factor modules, Lemma
1.4 asserts that g(q) is closed under extensions.

Denote as before by r(q) the class of all Λ-modules L with Hom(q, L) = 0. We
want to show that any exact sequence 0 → X → Y → Z → 0 with X ∈ g(q) and
Z ∈ r(q) splits.

First, consider the case when Z is of finite length. We may suppose that Z is in-
decomposable and also that Z is not projective. If the given map Y → Z is not split

epi, we obtain a commutative diagram where the lower sequence is the almost split
sequence ending in Z

0 −−−−→ X −−−−→ Y −−−−→ Z −−−−→ 0
y f

y
∥∥∥

0 −−−−→ τZ −−−−→ E −−−−→ Z −−−−→ 0

Note that τZ does not belong to q, since q is closed under successors and Z is not
in q. But X is generated by q, thus we see that f has to be the zero map. But this
implies that the lower sequence splits, which is impossible.

In order to take care of the case of Z having arbitrary length, we show the follow-
ing: Given a module Z and a chain of submodules Ui of Z with union U =

⋃
i Ui ,

then, if all Z/Ui belong to r(q), also Z/U belongs to r(q). For the exact sequences
0 → Ui → Z → Z/Ui → 0 give rise to the exact sequence 0 → U → Z →
lim
−→

Z/Ui → 0. Since Hom(q, Z/Ui) = 0 for all i, we have Hom(q, lim
−→

Z/Ui) ≃
lim
−→

Hom(q, Z/Ui) = 0, and hence Hom(q, Z/U ) = 0.

Now, consider the case of Z being of arbitrary length. We may suppose that the
map X → Y is an inclusion map. Let U be the set of submodules U of Y with

X ∩U = 0 and Y/(X +U ) ∈ r(q). Since 0 belongs to U, this set is non-empty. Given
a chain (Ui)i of elements of U, the union U =

⋃
i Ui belongs to U; namely, it is clear

that X ∩ U = 0; and it follows from above that Y/(X + U ) belongs to r(q), since
all Y/(X + Ui) belong to r(q). As a consequence, we may choose a U maximal in U.

Assume X + U is a proper submodule of Y . Let X + U ⊂ Y ′ ⊆ Y with Y ′/(X + U )
being simple. Let Y ′ ′/Y ′ be the largest submodule of Y/Y ′ generated by q. Since
g(q) is closed under extensions, it follows that Y/Y ′ ′ belongs to r(q). As a submodule
of Y/(X + U ) the module Y ′ ′/(X + U ) belongs to r(q). Condition (F) asserts that
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Z ′
= Y ′ ′/(X + U ) is of finite length. According to the first part of the proof, we

know that Ext1(Z ′, X) = 0. Since the embedding X ≃ (X + U )/U ⊂ Y ′ ′/U has

cokernel Z ′, there exists a submodule U ′ of Y containing U with (X + U ) ∩U ′
= U

and (X + U ) + U ′
= Y ′′. We see that X ∩ U ′

= 0 and that Y/(X + U ′) = Y/Y ′ ′

belongs to r(q), thus U ′ belongs to U, a contradiction to the maximality of U . Hence
Y = X + U = X ⊕U , thus the sequence 0 → X → Y → Y/X → 0 splits.

Remark 1.6 Let us note that these considerations can be extended as follows: We
say that a class q of indecomposable modules of finite length is numerically almost
determined provided there exists a function δ : K0(Λ) → Z with the following prop-
erties: (i) If M belongs to q, then δ(M) ≥ 0, and δ(M) > 0 for all but a finite number

of isomorphism classes of modules M in q; (ii) any indecomposable Λ-module M in
mod Λ with δ(M) > 0 belongs to q.

Claim 1.7 If Λ is an artin algebra and q is a class of indecomposable modules in

mod Λ which is closed under successors and numerically almost determined, then q sat-
isfies the condition (F).

Proof Assume that q is numerically almost determined with associated function δ.
Let N be a Λ-module with Hom(q, N) = 0.

We first observe that for any submodule U ′ (of finite length) of N there is a
bound b with the following property: If U ′ ′ is a submodule of N of finite length
with U ′ ⊆ U ′ ′ such that U ′′/U ′ is generated by q and δ(U ′′/U ′) = 0, then the
length of U ′′/U ′ is bounded by b. Namely, let Q1, . . . , Qm be the indecomposable

modules in q (one from each isomorphism class) with δ(Qi) = 0 for 1 ≤ i ≤ m, and
assume that these modules Qi are of length at most d. Let dimk Ext1(Qi ,U ′) ≤ c for
all i. Assume U ′ ⊆ U ′′ ⊆ N is given with U ′ ′ of finite length, U ′ ′/U ′ generated
by q and δ(U ′′/U ′) = 0. If we write U ′′/U ′ as a direct sum of indecomposables,

all these direct summands X belong to q (since q is closed under successors), thus
δ(X) ≥ 0. But these numbers add up to zero, thus we have δ(X) = 0. This shows
that U ′′/U ′ ≃

⊕
i Qti

i , for some natural numbers ti . Now if ti > c for some i, then

dimk Ext1(Qi ,U ′) ≤ c implies that U ′′ has a submodule isomorphic to Qi , in con-
trast to the fact that Hom(Qi, N) = 0. Altogether we see that the length of U ′′/U ′ is
bounded by b = cd.

Now, let U be a finite length submodule of N such that N/U is generated by q and
choose (as in the proof of Proposition 1.5) a finite length submodule U ′ of N with
U ⊆ U ′ such that δ(U ′) is maximal. Consider chains U ′

= U0 ⊆ U1 ⊆ U2 ⊆ . . .
of finite length modules such that the factors Ui/Ui−1 are generated by q and satisfy
δ(Ui/Ui−1) = 0 for all i. We claim that such a sequence stabilizes. For Ui/U0 is
generated by q and δ(Ui/U0) = 0, thus, as we have seen, Ui/U0 is of bounded length,
with a bound only depending on U0. It has the following consequence: Replacing U ′

if necessary by a larger submodule, we may assume in addition that any finite length
submodule U ′′ of N with U ′ ⊆ U ′′ which is generated by q satisfies δ(U ′ ′/U ′) > 0.
This then allows us to complete the proof as above.
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2 (Concealed) Canonical Algebras and Separating Tubular Families

Here we recall some background material on canonical and concealed canonical al-
gebras.

Given a class x of indecomposable modules of finite length, we say that an inde-
composable module M of finite length is a proper predecessor of x provided it does not

belong to x, but there is a sequence of indecomposables M = M0, M1, . . . , Mn with
Hom(Mi−1, Mi) 6= 0 for all 1 ≤ i ≤ n such that Mn belongs to x. Similarly, M is said
to be a proper successor of x provided it does not belong to x, but there is a sequence of
indecomposables M0, M1, . . . , Mn = M with Hom(Mi−1, Mi) 6= 0 for all 1 ≤ i ≤ n

such that M0 belongs to x.

2.1 Separating Tubular Families

See [R2, R4, LP, RS]. Let Λ be an artin algebra, and let t be a sincere stable separating
tubular family. Recall that this means the following: a tubular family consists of all

the indecomposables belonging to a set of tubes in the Auslander–Reiten quiver of
Λ (in particular, all the modules in t are of finite length). Such a tubular family is
said to be stable provided all the tubes are stable, thus provided it does not contain
any indecomposable module which is projective or injective. A family of modules is

said to be sincere provided every simple Λ-module occurs as the composition factor
of at least one of the given modules. Finally, let us say that the tubular family t is
separating provided it is standard, there are no indecomposable modules M of finite
length which are both proper predecessors of t and proper successors of t, and any

map from a proper predecessor of t to a proper successor of t factors through any of
the tubes in t.

Now let t be a separating tubular family. We denote by p the class of indecom-
posables of finite length which are proper predecessors of t, and by q the class of
indecomposables of finite length which are proper successors of t. Then any inde-

composable module of finite length belongs either to p, t or q,
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p t q

and one says that t separates p from q. Note that there are no maps “backwards”:

Hom(t, p) = Hom(q, p) = Hom(q, t) = 0

and any map from a module in p to a module in q can be factored through a module
in t (even through one lying in a prescribed tube inside t). In case t is in addition

sincere and stable, then all the indecomposable projective modules belong to p, the
indecomposable injective modules belong to q. As a consequence, in this case the
modules which belong to p or t have projective dimension at most 1, those which
belong to t or q have injective dimension at most 1. Also note that a stable separating
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tubular family t always yields an exact abelian subcategory add t of mod Λ (and all
the indecomposables in t are serial when considered as objects in this subcategory).

The algebras Λ with a sincere stable separating tubular family are the concealed
canonical algebras. They have been studied in [LM, LP, RS], and we are going to
review the main steps of the construction at the end of this section. The essential in-
gredient for many of our considerations are the defect functions on the Grothendieck

groups K0(Λ).

2.2 The Construction of the Canonical Algebras

See [R4]. Let k be a field. We start with a tame bimodule FMG, thus F, G are division

rings having k as central subfield and being finite-dimensional over k, and M is an
F-G-bimodule with dim FM · dim MG = 4 and such that k operates centrally on M.
This means that Λ0 =

[
F M
0 G

]
is a finite-dimensional tame hereditary k-algebra with

precisely two simple modules, and, up to Morita equivalence, all finite-dimensional

tame hereditary k-algebras with precisely two simple modules are obtained in this
way. A non-zero Λ0-module N is called simple regular, provided τN ≃ N and
End(N) is a division ring. It is well known that there are many simple regular Λ0-
modules; the number of isomorphism classes is max(ℵ0, |k|).

If R is any ring, N any R-module with endomorphism ring Dop and n ≥ 1 a natural
number, we denote by R[N, n] the n-point extension of R by N ; it is the matrix ring

R[N, n] =





R N · · · N
0 D · · · D
...

...
. . .

...

0 0 · · · D




.

Since any R-module may be considered (in a natural way) as an R[N, n]-module,
we may iterate this procedure: given a finite sequence N1, . . . , Nt of R-modules and

natural numbers n1, . . . , nt , we may form R[N1, n1] · · · [Nt , nt ].

Let us return to Λ0. Choose t pairwise non-isomorphic simple regular Λ0-mod-
ules N1, . . . , Nt (with endomorphism rings D

op
i ) and natural numbers n1, . . . , nt and

consider Λ
′
= Λ0[N1, n1] · · · [Nt , nt ], a so called squid algebra; its quiver (or better

species) is of the form as shown to the left:

F G
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As shown to the right, we label the two vertices of Λ0 by 0 and 1, and the extension

vertices of the i-th branch by (i, 1), . . . , (i, ni), always from left to right. It is not
difficult to see that I(0) ⊕ I(1) ⊕

⊕
i, j τ

jI(i, j) is a cotilting module; its endomor-
phism ring is denoted by Λ and the algebras Λ obtained in this way are the canonical
algebras.
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Given the canonical algebra Λ, let us write down the (canonical) defect function
δ : K0(Λ) → Z. Note that Λ has a unique simple projective module S and a unique

simple injective module S ′. The defect δ(M) of a Λ-module M is calculated in terms
of the Jordan–Hölder multiplicities [M : S] and [M : S ′], as follows:

δ(M) =






[M : S ′] − [M : S], if dimk S ′
= dimk S,

2[M : S ′] − [M : S], if dimk S ′ > dimk S,
[M : S ′] − 2[M : S], if dimk S ′ < dimk S.

If we denote by t the class of all indecomposable Λ-modules M with δ(M) = 0, then

t is a stable separating tubular family, separating the class p of all indecomposable
modules M with δ(M) < 0 from the class q of all indecomposable modules M with
δ(M) > 0. We call this triple (p, t, q) the canonical trisection of mod Λ.

2.3 The Construction of the Concealed Canonical Algebras

Let Λ be a canonical algebra, with canonical trisection (p, t, q). Let T be a tilting
module which belongs to add p (since all the modules in p have projective dimension
at most 1, to be a tilting module means in addition that Ext1(T, T) = 0 and that there
is an exact sequence 0 → ΛΛ → T ′ → T ′ ′ → 0 with T ′, T ′′ ∈ add T). Then, by

definition, Λ
′
= End(T)op is a concealed canonical algebra. We note that the tilting

functor F = Hom(T,−) sends t to a sincere stable separating tubular family t ′ in
mod Λ

′, and as it has been shown in [LM, LP], all sincere stable separating tubular
families are obtained in this way.

3 Two Extremal Torsion Pairs in Mod Λ

In the next sections, let Λ be a canonical algebra and (p, t, q) its canonical trisection.
In this section we introduce two torsion pairs in Mod Λ which will turn out to be
split, both having the property that the indecomposable torsion modules of finite

length are just the modules in q. We also introduce and investigate the class of Prüfer
modules.

3.1 The Torsion Pair (C, Q)

As we have mentioned, the category q is closed under successors. Since it is also

numerically determined, we are able to apply Proposition 1.5. Thus, if we denote
C = r(q) and Q = g(q), then (C, Q) is a split torsion pair in Mod Λ.

3.2 The Torsion Pair (R, D)

Let D = l(t); note that D can also be described as D = {M | Ext1(t, M) = 0}.
Namely, the objects T in t have projective dimension 1, thus we have Ext1(T, M) ∼=
D Hom(M, τT) (here, D = Homk(−, k) is the duality with respect to the base field
k). Since t consists of stable tubes, the Auslander–Reiten translation is bijective on
the isomorphism classes in t.
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Since D = l(t), it is the torsion class of a torsion pair in Mod Λ, namely of (R, D),
where R = r(D) = rl(t) is the smallest torsionfree class containing the class t. As we

have mentioned above, we may describe R also as follows: A module M belongs to R

if and only if the only submodule U of M with Hom(U , t) = 0 is U = 0. (Later we
will see that this torsion pair is also split.)

The two torsion pairs (C, Q) and (R, D) are related as follows:

R ⊆ C and Q ⊆ D.

These two assertions are equivalent, thus it is sufficient to verify one of them. But
actually, both follow directly from the assertion Hom(q, t) = 0.

There is the following straightforward characterization of these two torsion pairs
as the extremal ones when dealing with all the torsion pairs of Mod Λ with prescribed
distribution of the finite dimensional modules: we deal with the torsion pairs (X, Y)
with t ⊂ X and q ⊂ Y.

The two torsion pairs (R, D) and (C, Q) have the property that the finite di-

mensional indecomposable torsionfree modules are those in p and t, whereas
the finite-dimensional indecomposable torsion modules are those in q. If (X, Y)
is an arbitrary torsion pair in Mod Λ such that the finite dimensional indecom-
posable torsionfree modules are those in p and t, or, equivalently, such that the

finite dimensional indecomposable torsion modules are those in q, then

R ⊆ X ⊆ C and Q ⊆ Y ⊆ D.

3.3 The Intersection ω of C and D

Let ω = C ∩ D.
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C D

A complete description of ω and its relation to C and D is one of the aims of the
paper.

3.4 The Torsion Modules T

Let T = C ∩ g(t), these are the modules in C generated by t. We stress that every

module in T is the union of modules in add t and that T = lim
−→

t, the direct limit closure
of add t. Namely, if M = lim

−→
Mi is the direct limit of a directed system of modules

Mi in add t, then M obviously belongs to g(t); since Hom(Y, M) = lim
−→

Hom(Y, Mi)
for any finitely generated module Y , we also see that Hom(Y, M) = 0 for Y ∈ q, thus

M also belongs to r(q) = C. And conversely, if we assume that M is generated by t,
then M is the union of all its submodules Mi which are images of maps from modules
in add t to M, and this is a directed system. As a factor module of a module in add t,
any Mi is a direct sum of modules in t and in q. If we assume in addition that M
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belongs to r(q), then all the Mi belong to add t. This shows that M is the union of a
directed system of submodules which belong to add t.

Since add t is an exact abelian subcategory of mod Λ, it follows that T is an exact
abelian subcategory of Mod Λ. In particular, T is closed under kernels, images and
cokernels, and also under direct sums.

3.5 The Prüfer Modules

Of special interest are the so called Prüfer modules. They are constructed as follows:
The full subcategory add t given by the finite direct sums of modules in t is an abelian
length category. Every module in t has a unique composition series when considered

inside this subcategory add t; its length is called the regular length; the modules in t

of regular length 1 are just the simple objects of add t (we call them the simple objects
of t).

The isomorphism classes in t are indexed by pairs consisting of a natural number r
and (the isomorphism class of) a simple object S in t. We will denote the correspond-
ing Λ-module by S[r]. It is the unique module in t with regular length r and having
S as a submodule. For any simple object S in t, there is a sequence of inclusion maps

S = S[1] → S[2] → · · · → S[r] → · · · ,

and we denote by S[∞] the direct limit of this sequence. This is the Prüfer module
with regular socle S.

We note the following: As an object in T, any Prüfer module S[∞] belongs to C.

Since S[∞] is injective in T, we have in particular Ext1(T, S[∞]) = 0 for any object
T in t, thus S[∞] also belongs to D. This shows: The Prüfer modules belong to ω. We
can strengthen this assertion as follows: The direct sums of Prüfer modules are just the
injective objects of the abelian category T, and every object in T has an injective envelope

(see [R1]). Let us denote ω0 = T ∩D, then this is the full subcategory of all injective
objects of T. Thus ω0 is the full subcategory of all direct sums of Prüfer modules.

Given a module M, we denote by tM the maximal submodule of M generated by t,

thus t(M/tM) = 0 for any module M. We use Lemma 1.4 in order to see that the
class of modules g(t) generated by t is closed under extensions. As a consequence, the
pair (F, g(t)) where F = r(t), is a torsion pair (but this is a torsion pair which is not
split).

3.6 The Analogy

The notation introduced above should remind the reader of the analogous situation
when dealing with the category Mod R, where R is a Dedekind ring, say a Dedekind
ring with infinitely many maximal ideals. The torsion pair in Mod R which we have

in mind is the usual one: the torsion modules are those R-modules M where every
element is annihilated by some non-zero ideal, the torsionfree R-modules are those
with zero torsion submodule. In our situation of dealing with a canonical algebra Λ,
we consider the torsion pair (F, g(t)); note that it is the subcategory C of Mod Λ

https://doi.org/10.4153/CJM-2006-008-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-008-1


194 I. Reiten, C. M. Ringel

which shows strong similarity to Mod R, thus we reserve the symbol T for the inter-
section of g(t) with C. The module class D should be interpreted as the “divisible”

modules, the module class R as the “reduced” ones.

4 The ω-Coresolution of the Modules in C

In this section we show that there are ω-coresolutions for the modules in C, with
ω = C ∩ D as before.

Theorem 4.1 For every Λ-module M, there exists a minimal left ω-approximation,
M → Mω , and its cokernel belongs to ω0. This minimal left ω-approximation is injective

if and only if M belongs to C.
If M belongs to F, then Mω belongs to F. If M belongs to T, then Mω belongs to T.

Part of the theorem may be reformulated as follows: For any M ∈ C, there is an

exact sequence

0 → M
f
→ Mω → T → 0

with Mω ∈ ω and T ∈ ω0, such that f is a minimal left ω-approximation. In this way,
one obtains a characterization of the modules in C as follows: The modules in C are
the kernels of epimorphisms in ω.

Since (C, Q) is a split torsion pair, the module M is a direct sum of a module in
C and a module in Q. For M ∈ Q, the minimal left ω-approximation Mω has to be
zero, since Hom(q, C) = 0. For the proof of Theorem 4.1, it is sufficient to construct
a minimal left ω-approximation for the modules in C. First, we construct an exact

sequence
0 → M → Mω → T → 0

where Mω is in ω and T ∈ ω0.
For the proof we will need a splitting result which later will be incorporated into

our basic splitting theorem (Theorem 1.2):

Lemma 4.2

Ext1(T, D) = 0.

Proof This is an immediate consequence of the fact that T = lim
−→

t.

Proof of Theorem 4.1 As we have mentioned, we can assume that M belongs to C.
Take a universal extension

0 → M
µ ′

→ M ′ π ′

→ T ′ → 0,

with T ′ a direct sum of simple objects in t and let ǫ be its equivalence class in

Ext1(T ′, M). The universality means the following: given a simple object S in t, then
first, any element of Ext1(S, M) is induced from ǫ by a map S → T ′, and second,
that π ′ f = 0 for any map f : S → M ′. Note that the first of these conditions can be
reformulated as saying that Ext1(S, µ ′) = 0.
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Take an injective envelope u : T ′ → T in the abelian category T, thus T ∈ ω0.
The cokernel of u belongs to T, thus it has projective dimension at most 1 since it

is a direct limit of finite length modules of projective dimension 1. It follows that
the map Ext1(u, M) is surjective, thus there exists a commutative diagram with exact
rows

0 −−−−→ M
µ ′

−−−−→ M ′ π ′

−−−−→ T ′ −−−−→ 0
∥∥∥ u ′

y u

y

0 −−−−→ M
µ

−−−−→ Mω
π

−−−−→ T −−−−→ 0

Since M and T belong to C and C is closed under extensions, we see that Mω belongs
to C.

In order to show that Mω belongs to D, it is enough to show that Ext1(S, Mω) = 0

for all simple objects in t (then clearly Ext1(T ′ ′, Mω) = 0 for any object T ′ ′ in t).
The maps µ, π yield an exact sequence

Ext1(S, M)
Ext1(S,µ)
−−−−−→ Ext1(S, Mω)

Ext1(S,π)
−−−−−→ Ext1(S, T),

and the last term is zero, since T is injective in T. Thus the map Ext1(S, µ) is sur-
jective. However, this map Ext1(S, µ) factors through Ext1(S, µ ′) = 0. Thus we

conclude that Ext1(S, Mω) = 0.
It remains to be seen that the map µ is a minimal left ω-approximation. According

to Lemma 4.2, we have Ext1(T, ω) = 0, and thus µ is a left ω-approximation.

In order to show that µ is left minimal, we first show that for a direct sum decom-
position Mω = N ⊕ N ′ with µ(M) ⊆ N we must have N ′

= 0. Thus, consider such

a direct sum decomposition Mω = N ⊕ N ′ with µ(M) ⊆ N . The cokernel T of µ is
isomorphic to N/µ(M) ⊕ N ′. Assume N ′ is non-zero. Since T and therefore N ′ is
isomorphic to a direct sum of Prüfer modules, there is a monomorphism f : S → N ′

with S a simple object of t. The image of f has to lie in the image of u ′, thus there

is f ′ : S → M ′ with f = u ′ f ′. By construction of the universal extension ǫ, the
composition π ′ f ′ is zero, thus f ′

= µ ′ f ′′ for some f ′ ′ : S → M. But this implies
that the image of f = u ′ f ′

= u ′µ ′ f ′ ′
= µ f ′ ′ lies in µ(M) ⊆ N and not in N ′. This

contradiction shows that N ′
= 0.

Now consider a map g : Mω → Mω with gµ = µ. We obtain a commutative
diagram

0 −−−−→ M
µ

−−−−→ Mω
π

−−−−→ T −−−−→ 0
∥∥∥ g

y g ′

y

0 −−−−→ M
µ

−−−−→ Mω
π

−−−−→ T −−−−→ 0

Note that π induces an isomorphism between the kernel of g and the kernel of g ′. In

order to show that g is injective, let us assume to the contrary that Ker g ≃ Ker g ′

is non-zero. Note that the kernel Ker g ′ of g ′ belongs to T, thus there is a simple
object S of T which is contained in Ker g ′ and hence S ⊆ T ′. The isomorphism of
kernels Ker g ≃ Ker g ′ shows that this S may be considered as a submodule of M ′
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with non-zero composition S → M ′ → T ′, but this is a contradiction. Thus g is a
monomorphism.

To see that g is an epimorphism, denote by L its cokernel Cok g. Also for the
cokernels, π induces an isomorphism Cok g → Cok g ′. Since g ′ : T → T is a
split monomorphism, and T ∈ ω0, we see that L ∈ ω0, thus belongs to ω. Using
Ext1(ω, ω) = 0, we see that g is a split monomorphism. But according to the previ-

ous considerations this implies that g is surjective.
Of course, if M belongs to T, then also Mω belongs to T, since T is closed under

extensions. Thus, finally, consider the case when Hom(t, M) = 0. In order to show
that Hom(t, Mω) = 0, it is sufficient to show that Hom(S, Mω) = 0 for any simple

object S in t. Thus, take a nonzero map f : S → Mω . Its composition with π goes
to the socle of T in T, thus f = u ′ f ′ for some f ′ : S → M ′. But by construction
π ′ f ′

= 0, thus f ′
= µ ′ f ′ ′ for some f ′ ′ : S → M. Since we assume that there are no

non-zero maps S → M, it follows that f = 0. Hence Mω is in F.

Lemma 4.3 Assume that M belongs to C and is of finite length. If we write Mω/M as
a direct sum of Prüfer modules, then any Prüfer module occurs with finite multiplicity.

Proof We may assume that M is indecomposable. If M belongs to t, then Mω and
Mω/M are Prüfer modules themselves.

Thus, we may assume that M belongs to p and therefore to F. Let S be a simple
object of t and S[∞] the corresponding Prüfer module. Let n = dimk Ext1(S, M).

We claim that S[∞] occurs in Mω/M with multiplicity at most n. Otherwise, Mω/M
has a submodule of the form Sn+1, say U/M, where U is a submodule of Mω with
M ⊆ U . Since dimk Ext1(S, M) = n, it follows that U has a submodule isomorphic
to S. This is impossible, since Mω belongs to F.

5 The Basic Splitting Result

The aim of this section is to prove the basic splitting result Ext1(C, D) = 0, which

will also have as a consequence that the torsion pair determined by D splits.
Let Λ be a canonical algebra with canonical trisection (p, t, q) of mod Λ and defect

function δ. We say that an indecomposable projective Λ-module P is called a peg
(with respect to δ) provided δ(P) = −1. If Λ is a canonical algebra, then it is easy

to see that a peg exists: if the simple projective module is not a peg, then the sincere
indecomposable projective module turns out to be a peg. More precisely, let P be
the simple projective module and P ′ the sincere indecomposable projective module.
Then P is a peg if and only if dim End P ≤ dim End P ′, and P ′ is a peg if and only if

dim End P ≥ dim End P ′.

Lemma 5.1 Let M belong to ω and let P be a peg. Then M has a submodule U which
is a direct sum of copies of P such that M/U belongs to ω0.

Proof Let U be the set of submodules U ′ of M which are direct sums of copies
of P such that M/U ′ is in C. We consider this set as being partially ordered with
respect to split embeddings. Given a chain inside U, it is not difficult to see that the
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union is again in U. Thus we can apply Zorn’s lemma in order to obtain a maximal
member U of U. We show that M/U belongs to T. Let U ⊆ V ⊆ M such that

V/U = t(M/U ). Thus we have to show that V = M. The module M/V belongs to
F, and also to D, thus to ω. The non-zero modules in ω are sincere. Thus there is a
non-zero homomorphism f : P → M/V . Note that the kernel K of f has to be zero,
since otherwise δ(K) ≤ δ(P) and therefore δ(P/K) = δ(P) − δ(K) ≥ 0. However

since M/V is a module in F, every non-zero submodule of M/V of finite length has
negative defect. Since P is projective, we can lift the homomorphism f : P → M/V
to a homomorphism f ′ : P → M such that f = p f ′, where p : M → M/V is
the canonical map. The image P ′ of f ′ is a submodule of M isomorphic to P and

P ′ ∩ V = 0. In particular, we also have P ′ ∩ U = 0. Let U ′
= P ′ ⊕ U . Then this

is a submodule of M which is a direct sum of copies of P. In order to see that the
factor module M/U ′ belongs to C, one observes that M/U ′ is an extension of the
modules V/U and M/(P ′ + V ). The module V/U is a submodule of M/U , thus it

belongs to C. If M/(P ′ +V ) would contain a module from q as a submodule, then its
inverse image under the projection M/V → M/(P ′ + V ) would have non-negative
defect (being an extension of the module (P ′ + V )/V ≃ P of defect −1 by a module
of positive defect). But this is impossible, since M/V belongs to F. Altogether, we see

that U ′ belongs to U. Since U is a direct summand of U ′, we obtain a contradiction
to the maximality of U . This shows that M/U belongs to T. As a factor module of
M ∈ D, the module M/U also belongs to D, thus to ω0 = D ∩ T.

Theorem 5.2 (Basic splitting result)

Ext1(C, D) = 0.

Proof Let C ∈ C, D ∈ D. Since (C, Q) is a split torsion pair, we can write D =

D ′ ⊕ D ′′ with D ′ ∈ C and D ′ ′ ∈ Q. Also, since (C, Q) is a split torsion pair, we have
Ext1(C, Q) = 0. Thus it is sufficient to show that Ext1(C, D ′) = 0. Note that D ′ as
a direct summand of D belongs to D, thus to ω. This shows that we have to show

Ext1(C, ω) = 0.
First, we show Ext1(ω, ω) = 0. Start with a module M ∈ ω. According to

Lemma 5.1, there is a submodule U which is a direct sum
⊕

I P of copies of a peg
P such that M/U belongs to T. Let N be a second module in ω. On one hand, we

have
Ext1(U , N) = Ext1

(⊕
I

P, N
)
∼=

∏
I

Ext1(P, N) = 0.

On the other hand, Lemma 4.2 asserts that Ext1(M/U , N) = 0. Altogether we con-
clude that Ext1(M, N) = 0.

Now take an arbitrary module M in C, and consider the minimal left ω-approxi-
mation given by Theorem 4.1:

0 → M → Mω → T → 0

with Mω in ω and T ∈ T. Applying the long exact sequence with respect to

Hom(−, N), where N ∈ ω, we get the exact sequence

Ext1(Mω, N) → Ext1(M, N) → Ext2(T, N).
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Since the projective dimension of T is at most one, the last term vanishes. Since Mω

and N both belong to ω, also the first term is zero. Thus Ext1(M, N) = 0. In this way,

we have shown that Ext1(C, ω) = 0, as required. This concludes the proof.

Corollary 5.3 The torsion pair (R, D) splits.

Proof This follows immediately from the inclusion R ⊆ C.

The category Mod Λ consists of three parts:
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ω

C

D

R Q
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and this means the following: any Λ-module M is a direct sum M = M1 ⊕ M2 ⊕ M3

with M1 ∈ R, M2 ∈ ω, M3 ∈ Q, there are no maps “backwards”:

Hom(ω, R) = Hom(Q, R) = Hom(Q, ω) = 0.

and any map from R to Q factors through a module in ω. Also the last assertion
is an immediate consequence of previous results: Given a map h : M → N with
M ∈ R and N ∈ Q, choose a minimal left ω-approximation f : M → Mω. Accord-
ing to Theorem 4.1, the map f is injective and its cokernel T belongs to ω0. Since

Ext1(T, N) = 0 (by Theorem 5.2 or already Lemma 4.2), we conclude that h factors
through f .

Corollary 5.4 We have the following.

(a) pd C ≤ 1 for C in C.
(b) id D ≤ 1 for D in D.

Proof (a) For X in Mod Λ we have Ext2(C, X) ≃ Ext1(C, Ω−1X). Now Ω
−1X is

generated by injective modules, thus belongs to D. Now Ext1(C, D) = 0 shows that
Ext2(C, X) = 0, hence pd C ≤ 1.

(b) This follows similarly, using that all the projective modules belong to C. If X is
any Λ-module, then ΩX belongs to C, thus Ext2(X, D) ≃ Ext1(ΩX, D) = 0.

6 The Structure of ω

In this section we give the structure of the modules in ω.

Theorem 6.1 Let P → Pω be the minimal left ω-approximation of a peg P and let E
be the endomorphism ring of Pω . Then E is a division ring.
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We will denote Pω by G and call it the canonical generic module (or just the generic
module). It will turn out to be independent of the choice of the peg P and we will

characterize G (up to isomorphism) as the only module in ω with endomorphism
ring a division ring.

Proof Let G = Pω . Note that G contains P as a submodule and we denote by

p : G → T = G/P the projection map. We know that T is a direct sum of Prüfer
modules, each occurring with finite multiplicity, see Lemma 6.

Let f : G → G be a nonzero endomorphism. The restriction of f to P is also non-
zero, since otherwise f would yield a non-zero map T → G. However G/P is a direct

sum of Prüfer modules and G belongs to F. Since δ(P) = −1, we conclude that the
restriction of f to P must be a monomorphism, using that the kernel Ker f and the
image f (P) are submodules of G.

Since P + f (P) is a finitely generated submodule of G, there exists a submodule

P ′ of G with P + f (P) ⊆ P ′ such that P ′/P belongs to t. Note that we have δ(P ′) =

δ(P) + δ(P ′/P) = −1. Since P ′ is a submodule of G, it has no non-zero submodules
of non-negative defect, thus P ′ has to be indecomposable.

We claim that P ′/ f (P) belongs to t. The module P ′/ f (P) has zero defect. If we

assume that P ′/ f (P) does not belong to t, then P ′/ f (P) has a submodule of positive
defect and its inverse image in P ′ would yield a non-zero submodule of non-negative
defect, impossible.

Let T ′
= G/P ′, with projection map p ′ : G → T ′. The map f induces maps

f ′ : P → P ′ and f ′ ′ : T → T ′, thus we deal with the following commutative diagram

0 −−−−→ P −−−−→ G
p

−−−−→ T −−−−→ 0
y f ′

y f

y f ′ ′

0 −−−−→ P ′ −−−−→ G
p ′

−−−−→ T ′ −−−−→ 0

and the snake lemma yields an exact sequence

Ker f ′ → Ker f → Ker f ′ ′ → Cok f ′ → Cok f → Cok f ′ ′ → 0.

As we have noted, Ker f ′
= 0. Since f ′ ′ is a map inside T, its kernel and cokernel

both belong to T. Also, we have shown that the cokernel of f ′ belongs to T. This
implies that Ker f and Cok f belong to T. However G is in F, thus Ker f = 0. This
already shows that f is injective. Also, we see that Ker f ′ ′ is a submodule of Cok f ′,
thus of finite length.

We claim that f ′ ′ is surjective. Note that add t is a direct sum of serial categories
add t(λ), with λ in some index set Ω, and each subcategory t(λ) contains only finitely
many isomorphism classes of simple objects. Of course, T is a corresponding direct
sum of categories denoted by T(λ) with λ ∈ Ω. If we decompose T and T ′ accord-

ingly, we obtain direct summands Tλ of T and T ′
λ of T ′ and f ′ ′ maps Tλ into T ′

λ. On
the one hand, T ′

λ is obtained from Tλ by factoring out a subobject in T(λ) of finite
length, thus if we write Tλ and T ′

λ as direct sums of Prüfer modules, the numbers of
direct summands are equal. On the other hand, f ′ ′ induces a map Tλ → T ′

λ with
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kernel of finite length. Altogether this implies that f ′ ′ maps Tλ onto T ′
λ. Thus f ′ ′ is

surjective.

But Cok f ′ ′
= 0 implies that Cok f is of finite length and therefore in t. Since

Hom(G, t) = 0, we see that f itself is surjective.

In this way, we have shown that any non-zero endomorphism of G is invertible,
thus the endomorphism ring of G is a division ring.

Corollary 6.2 The generic module G is embeddable into a direct sum of Prüfer mod-
ules.

Proof Let P be a peg. Choose any Prüfer module, say S[∞] (where S is a simple

object of t). We claim: The module P is embeddable into S[∞]. Let f : P → S[∞] be
a non-zero homomorphism. If the kernel P ′ of f is non-zero, then δ(P ′) ≤ −1
and δ(P) = −1. Since P/P ′ is a subobject of some module S[m] in t, we have
δ(P/P ′) ≤ 0, thus δ(P/P ′) = 0. Now P/P ′ is indecomposable, thus an object in t. It

follows that P/P ′ is a subobject of S[t], where t is the τ -period of S. But Hom(P, S[t])
is finite dimensional, whereas Hom(P, S[∞]) is infinite dimensional. This shows that
there are many monomorphisms P → S[∞].

Starting with a minimal left ω-approximation of P and a monomorphism f : P →
S[∞], we obtain the following commutative diagram with exact rows:

0 −−−−→ P −−−−→ G −−−−→ T −−−−→ 0

f

y f ′

y
∥∥∥

0 −−−−→ S[∞] −−−−→ N −−−−→ T −−−−→ 0

Here T and also S[∞] belong to ω0. It follows that the lower sequence splits and that
N = T ⊕ S[∞] belongs to ω0. With f also f ′ is injective, thus G embeds into an
object of ω0.

Remark 6.3 This statement is quite surprising already in the case of the Kronecker

algebra Λ (this is the path algebra of the quiver with two vertices, say a and b and
two arrows starting at b and ending in a) where the module category Mod Λ shows
a strong resemblance to the category of all abelian groups (or better the category of
all k[T]-modules), with the canonical generic Λ-module G corresponding to Q and

the Prüfer modules corresponding to the Prüfer groups. Of course, in sharp contrast
to the embedding of G into a direct sum of Prüfer modules, there does not exist any
embedding of Q into a direct sum of Prüfer groups!

Theorem 6.4 Any module in ω is a direct sum of Prüfer modules and of copies of the
generic module.

Proof Let M be a module in ω. According to Lemma 5.1, there is a submodule U
which is a direct sum of copies of P such that M/U is a direct sum of Prüfer modules.
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Let U → Uω be the minimal left ω-approximation of U . We obtain a commutative
diagram as follows:

0 −−−−→ U −−−−→ Uω −−−−→ T −−−−→ 0
∥∥∥

y f

y g

0 −−−−→ U −−−−→ M −−−−→ M/U −−−−→ 0

The snake lemma yields an isomorphism of the kernel of f and the kernel of g, as well
as an isomorphism of the cokernel of f and the cokernel of g. Since g : T → M/U
is a map in the exact abelian subcategory T, the kernel and the cokernel of g both
belong to T.

Since U belongs to F, also Uω belongs to F by Theorem 4.1. Thus the only sub-
object of Uω which belongs to T is the zero module. This shows that both f and g are

monomorphisms.

Any factor module of a module in ω belongs to D. Thus the cokernel N of g

belongs to T ∩ D ⊂ ω, and is again a direct sum of Prüfer modules. It follows that
Ext1(N,Uω) = 0, and thus f splits. This shows that M is the direct sum of Uω and N .
Since U is a direct sum of copies of P, we see that Uω is a direct sum of copies of the
generic module G = Pω . Thus M is a direct sum of Prüfer modules and of copies

of G.

Note that all the indecomposable modules in ω have local endomorphism rings:
the endomorphism ring E of the canonical generic module is a division ring (Theo-
rem 6.1), the endomorphism ring of a Prüfer module is a (not necessarily commuta-

tive) discrete valuation ring by uniseriality. As a consequence, the theorem of Krull–
Remak–Schmidt–Azumaya can be used: the direct sum decompositions provided in
Theorem 6.4 are unique up to isomorphisms.

Corollary 6.5 The modules in C are precisely the modules cogenerated by T and also
precisely those modules which can be embedded into a module in ω0.

Proof If a module can be embedded into a module in ω, then it is cogenerated
by Prüfer modules, thus cogenerated by T. The modules in T belong to C and C is

the torsionfree class of a torsion pair, thus any module cogenerated by modules in C

belongs to C. It remains to be shown that any module M in C can be embedded
into a module from ω0. Now according to Theorem 4.1, the module M embeds
into Mω ∈ ω, and according to Theorem 6.4, we know that Mω is a direct sum of

Prüfer modules and of copies of G. We have seen in Corollary 6.2 that G itself can
be embedded into a direct sum of Prüfer modules, thus M can be embedded into a
direct sum of Prüfer modules.

Corollary 6.6 If M belongs to F, then Mω is a direct sum of copies of G. If M belongs
to F and has finite length, then Mω is a finite direct sum of copies of G.
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Proof Only the last assertion has to be shown. However, given a left minimal map
X → Y where X is finitely generated and Y =

⊕
i∈I Yi is a direct sum of non-zero

modules Yi , one immediately sees that the index set I has to be finite.

Corollary 6.7 The module G has finite length as an Eop -module, where E is its endo-
morphism ring.

Proof We may identify G as a vector space with the vector space Hom(ΛΛ, G),
and this is an identification of Eop -modules. Let us denote the minimal left ω-ap-
proximation of ΛΛ by N . Then this is a finite direct sum of copies of G, say N ≃ Gn

for some n. The approximation map ΛΛ → N yields an isomorphism

Hom(ΛΛ, G) ≃ Hom(N, G) ≃ Hom(Gn, G) ≃ En,

and all these isomorphisms are isomorphisms of Eop -modules.

7 The ω-Resolution of the Modules in D

Using the previous results we can now obtain ω-resolutions for the modules in D.

Theorem 7.1 For every Λ-module M, there exists a minimal right ω-approximation
Mω → M. Its kernel is a direct sum of copies of the generic module. This minimal right
ω-approximation is surjective if and only if M belongs to D. If M belongs to Q, then Mω

belongs to ω0.

Again, we may reformulate the essential part of the theorem: For any M ∈ Q, there
is an exact sequence

0 → V → Mω g
−→ M → 0

with Mω ∈ ω0 and V a direct sum of copies of the generic module, such that g is a
minimal right ω-approximation. And we obtain a characterization of the modules in
D as follows: The modules in D are the cokernels of monomorphisms in ω.

Proof If M belongs to R, then Hom(ω, M) = 0, thus 0 → M is a minimal right
ω-approximation. If M belongs to ω, then the identity map M → M is a minimal
right ω-approximation.

Thus we may restrict to the case where M belongs to Q. We claim that in this case

M is generated by a direct sum of Prüfer modules. It is sufficient to show this for a
module Q ∈ q. Since the projective cover of Q belongs to p and any map from p to q

factors through t, we only have to show that for S a simple object in t and any natural
number r, any map S[r] → Q can be extended to S[r + 1]. However, this follows

directly from the fact that S[r + 1]/S[r] belongs to t and Ext1(t, q) = 0.
Thus there exists an exact sequence

0 → K
f
−→ N

g
−→ M → 0
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with N ∈ ω0. Let us show that there exists such a sequence where K belongs to F.
Without loss of generality, we can assume that the map f : K → N is an inclusion

map. Let tK be the maximal submodule of K generated by T. Since it is the image of
a map from a module in T to N ∈ T, it follows that tK belongs to T. If we factor out
tK from K as well as from N , we obtain an exact sequence

0 → K/tK → N/tK → M → 0,

where K/tK belongs to F. As a factor module of N inside T, the module N/tK
belongs to ω0. So we can assume that K is in F.

Next, we claim that we even can assume that K is a direct sum of copies of the

generic module. Let h : K → Kω be the minimal left ω-approximation of K and form
the induced exact sequence with respect to h. We obtain a commutative diagram of
the form

0 −−−−→ K
f

−−−−→ N −−−−→ M
g

−−−−→ 0
y h

y h ′

∥∥∥

0 −−−−→ Kω
f ′

−−−−→ N ′ g ′

−−−−→ M −−−−→ 0

with exact rows. The cokernels of h and h ′ coincide. Since by Theorem 4.1, the

cokernel N ′ ′ of h ′ belongs to ω0, then N ′ is an extension of N and N ′′ (indeed, a
split extension), thus it belongs to ω0.

Thus, consider now an exact sequence

0 → K → N
g
−→ M → 0

where K is a direct sum of copies of the generic module and N ∈ ω0. Then the map
N → M is a right ω-approximation, since Ext1(M, K) = 0 due to the basic splitting
theorem. In order to see that g is right minimal, let η : N → N be an endomorphism

with gη = η, thus we deal with the following commutative diagram

0 −−−−→ K −−−−→ N
g

−−−−→ M −−−−→ 0
y η ′

y η

∥∥∥

0 −−−−→ K −−−−→ N
g

−−−−→ M −−−−→ 0

with exact rows. Since K belongs to Add G, the same is true for the kernel and the
cokernel of η ′. Since N belongs to T, the same is true for the kernel and the cokernel
of η. Thus Ker η ′ ≃ Ker η belongs to Add G ∩ T = 0, and also Cok η ′ ≃ Cok η
belongs to Add G ∩ T = 0. This shows that η is an isomorphism.

Corollary 7.2 Assume that M belongs to Q and has finite length. If g : Mω → M is
a minimal right ω-approximation with kernel V , then V is a finite direct sum of copies
of G.
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Proof It is sufficient to show the following: for every finite length module M, the
left Eop -module Ext1(M, G) has finite length, here E is the endomorphism ring of G.

Let Ω(M) be the kernel of a projective cover of M. Then Ext1(M, G) is an epimorphic
image of Hom(Ω(M), G), thus we want to show that Hom(N, G) is of finite length
as an Eop -module, for every Λ-module N of finite length. Choose a free module
F = ΛΛ

n of finite length which maps onto N . Such a map induces an inclusion of

Hom(N, G) into Hom(F, G), and Hom(F, G) is isomorphic to Gn as an Eop -module.
Now use Corollary 6.7.

As a direct consequence of Theorem 7.1 we get the following description of C and
D in terms of ω.

Proposition 7.3

C = {M | Ext1(M, ω) = 0},

D = {M | Ext1(ω, M) = 0},

Proof We show the first equality: The inclusion ⊆ follows from the basic splitting

result. For the inclusion ⊇, let Ext1(M, ω) = 0. Write M = N ′ ⊕ N with N ′ ∈ C

and N ∈ Q. The minimal right ω-approximation yields an exact sequence 0 → K →
Nω → N → 0 where also K is in ω. Since Ext1(N, ω) = 0, we see that N is a direct
summand of Nω, thus N is in ω ⊆ C.

The proof of the second assertion uses the corresponding (dual) arguments.

Proposition 7.4 The class ω consists of the relative injective objects inside C and of the
relative projective objects inside D. This means:

ω = {M ∈ C | Ext1(C, M) = 0} = {M ∈ D | Ext1(M, D) = 0}.

Proof That the modules in ω are relative injective in C and relative projective in D

follows again from the basic splitting result. Conversely, if M ∈ C satisfies

Ext1(C, M) = 0,

then we have in particular Ext1(ω, M) = 0 and therefore M ∈ D. But C∩D = ω. In
a similar way, one obtains the second equality.

Remark 7.5 We should stress that there is an important difference between the
ω-coresolutions and the ω-resolutions. As we know, any module M can be written
as M = M0 ⊕ M1 ⊕ M2 with M0 ∈ R, M1 ∈ ω and M2 in Q. Non-trivial left

ω-approximations do exist for modules in R, non-trivial right ω-approximations for
modules in Q. Whereas the minimal left ω-approximation Mω of a module M ∈ R

may be an arbitrary module in ω, the minimal right ω-approximation of a module
M ∈ Q will be a direct sum of Prüfer modules only.
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There is another substantial difference: let us compare the possible minimal left
ω-approximations Mω and minimal right ω-approximations Mω of finite dimen-

sional modules M. Of course, if M belongs to t, then Mω is a Prüfer module and
Mω

= 0. Consider the remaining indecomposable modules M of finite length. If
M belongs to p, then Mω is a finite direct sum of copies of G and Mω

= 0. If M
belongs to q, then Mω is an infinite direct sum of Prüfer modules and Mω = 0. If

we take into account the cokernel of the monomorphism M → Mω for M ∈ p and
the kernel of the epimorphism Mω → M for M ∈ q, then this strict dichotomy per-
tains: the cokernel of the monomorphism M → Mω will be an infinite direct sum of
Prüfer modules, the kernel of the epimorphism Mω → M will be a finite direct sum

of copies of G. But actually, looking at maps we encounter some astonishing paral-
lelity: it turns out that both the ω-coresolutions of the modules in p as well as the
ω-resolutions of the modules in q, are maps X → Y , where X is a finite direct sum
of copies of G and Y is an infinite direct sum of Prüfer modules. For a module M

in p, we need an epimorphism of this kind, and M will be the kernel. For a module
M in q, we need a monomorphism of this kind, and M will be the cokernel.

Let us consider in detail one special example. Let P be a peg, thus Pω = G. Con-
sider the ω-coresolution of P

0 → P → G → Y → 0,

here Y = G/P is an infinite direct sum of Prüfer modules. Such an embedding of P
into G will remind anyone of the embedding of Z in Q , with Q/Z being an infinite
direct sum of Prüfer groups. But note that there does not exist any embedding of
Q into a direct sum of Prüfer groups, in contrast to Corollary 6.2. Let M be an

indecomposable Λ-module in q with projective dimension pd M = 1 and defect
δ(M) = −1. Then it is easy to see (see the proof of Corollary 7.2) that Ext1(M, G) is
one-dimensional as an Eop -space and therefore the ω-resolution of M is of the form

0 → G → Y ′ → M → 0

with Y ′ a direct sum of Prüfer modules. Of course, Y ′ has to be an infinite direct
sum of Prüfer modules. Thus we obtain an embedding of G into an infinite direct
sum of Prüfer modules, and the cokernel is indecomposable and of finite length. This

strengthens the assertion of Corollary 6.2.

Given an abelian category A, it is quite customary to form the quotient category

A/A0, where A0 is the subcategory of all modules of finite length. In our case, we
look at the quotient category Mod Λ/ mod Λ. Note that any finite dimensional mod-
ule M in p, say with ω-coresolution Mω → Mω/M, yields an isomorphism between
Mω and Mω/M in the quotient category Mod Λ/ mod Λ. Similarly, any finite di-

mensional module M in q, say with ω-resolution V → Mω , yields an isomorphism
between V and Mω in the quotient category Mod Λ/mod Λ. In particular, we obtain
in this way isomorphisms in the quotient category Mod Λ/mod Λ between G and
infinite direct sums of Prüfer modules.
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8 Further Structure of ω

In this section we investigate the maps inside ω and the torsion classes in Mod Λ with
the property that the indecomposable torsion modules of finite length are just the
modules in t.

There are no non-zero maps from a Prüfer module to G, since a Prüfer module be-
longs to T whereas G belongs to F. On the other hand, any Prüfer module is generated
by G. Namely, let S be a simple object of t and p : M → S[∞] a projective cover.
Since M belongs to F, its minimal left ω-approximation Mω is in F ∩ ω = Add G.

If we factor p through Mω, we obtain a surjective map Mω → S[∞]. (Actually, the
construction of G shows that G maps onto (τ t S)[∞] for some t , but any (τ t S)[∞]
maps onto S[∞].) In this way, we obtain a further characterization of D.

Corollary 8.1 We have D = g(G).

Proof Since G belongs to D and D is closed under direct sums and factor modules,
we see that g(G) ⊆ D. On the other hand, the minimal right ω-approximation of
any module in D is surjective, according to Theorem 7.1. Thus D ⊆ g(ω). But any

module in ω is a direct sum of Prüfer modules and copies of G, thus generated by G.

Also, note that add t is a direct sum of infinitely many serial categories add t(λ),
with λ in some index set Ω of cardinality max(ℵ0, |k|). Of course, T is a correspond-
ing direct sum of categories denoted T(λ) with λ ∈ Ω. Let us denote by P(λ) the full
subcategory of all direct sums of copies of the Prüfer modules belonging to T(λ), for
any λ ∈ Ω. Note that for all λ, T(λ) contains only finitely many isomorphism classes

of Prüfer modules, and for all but a finite number of λ only one.
Our three part visualization of Mod Λ can be refined accordingly: Recall that the

modules in ω are direct sums of a module in Add G (the full subcategory of all direct
sums of copies of G) and a module in ω0, and we divide ω0 further into the various

full subcategories P(λ).
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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ω0

Note that the full subcategory ω0 is separating in the following sense: First of all, the
groups Hom(ω0, R), Hom(ω0, Add G), Hom(Q, R), Hom(Q, Add G), Hom(Q, ω0)
all are zero, and second, any map h : N → M from a module N in R or Add G to a
module M in Q factors through a module in ω0 (namely, take a minimal ω-resolution

0 → V → Mω → M → 0; since Ext1(N,V ) = 0, the map h factors through
Mω , but Mω belongs to ω0). The rather strange shape which we use in order to
depict the Add G part of ω should stress that in contrast to ω0 which is separating,
the subcategory Add G does not have a corresponding property.
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Using any decomposition of Ω as the disjoint union of two subsets Ω1, Ω2, we can
write add t as a product of two categories, and this yields a corresponding decom-

position of T = T(Ω1) × T(Ω2) as a product of two categories. Any set-theoretical
decomposition Ω = Ω1∪Ω2 therefore gives rise to a split torsion pair (X(Ω1), Y(Ω2))
in Mod Λ: the modules in X(Ω1) are the direct sums M1 ⊕M2, where M1 is a module
in R and M2 is the direct sum of copies of G and of Prüfer modules belonging to

T(Ω1), whereas the modules in Y(Ω2) are the direct sums M3 ⊕M4, where M3 is a di-
rect sum of Prüfer modules in T(Ω2) and M4 is a module in Q. We have the following
information on torsion pairs.

Proposition 8.2 The only torsion pairs (X, Y) with t ⊂ X and q ⊂ Y are (R, D)
and those of the form (X(Ω1), Y(Ω2)), where Ω is the disjoint union of Ω1 and Ω2. In

particular, all torsion pairs (X, Y) with t ⊂ X and q ⊂ Y split.

Proof Let (X, Y) be a torsion pair with t ⊂ X and q ⊂ Y. In case the generic
module G belongs to Y, all the Prüfer modules S[∞] belong to Y, since they are

factor modules of G, thus Y ⊇ D, but then X = R and Y = D. Now, let us assume
that G does not belong to Y. Denote by Ω2 the set of all λ ∈ Ω such that T(λ) ∩ Y

contains a non-zero module, and let Ω1 = Ω \ Ω2. If λ ∈ Ω2, then Y contains at
least one and thus all the Prüfer modules from T(λ), since all of them are epimorphic

images of a given one. It follows that Y = Y(Ω2) and thus X = X(Ω1).

The lattice of the subcategories Y, where (X, Y) is a torsion pair with t ⊂ X and
q ⊂ Y, looks as follows, where the lower part is order isomorphic to the power set

P(Ω):
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≃ P(Ω)

. . . . . . . . . . .

. . . . . . . . . . .

Let us add the following observations which will be useful in Section 10.

Lemma 8.3 Let Y be in ω. Any monomorphism X → Y with X ∈ ω0 splits. Any
epimorphism Y → Z with Z ∈ Add G splits.

Proof Decompose Y = Y1 ⊕ Y0 with Y1 ∈ Add G and Y0 ∈ ω0. Now

Hom(X,Y1) = 0,

thus any map X → Y maps into Y0. But clearly any monomorphism in ω0 splits.
Similarly, Hom(Y0, Z) = 0, thus any map Y → Z vanishes on Y0 and induces an
epimorphism Y1 → Z. But any epimorphism in Add G splits. This completes the
proof.
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Lemma 8.4 The subcategories C, D and ω are closed under products.

Proof Since ω = C ∩ D, we only have to consider C and D. It is clear that C is
closed under products, since C is a torsionfree class. For D, we use the description
D = {M | Ext1(t, M) = 0} in order to see it.

9 Concealed Canonical Algebras

Let us outline why the results presented above for the canonical algebras immediately
extend to the more general class of concealed canonical algebras using tilting. As we

have mentioned above, according to [LP] this takes care of any sincere stable separat-
ing tubular family, thus in particular of all the stable separating tubular families of a
tubular algebra.

Recall that the concealed canonical algebras are obtained in the following way: we

start with a canonical algebra Λ with the canonical trisection (p, t, q) and we consider
the subcategories C, D, ω as defined above. Let T be a tilting module which belongs
to p and consider Λ

′
= End(T)op . Then, by definition, Λ

′ is a concealed canonical
algebra. The tilting functor F = Hom(T,−) sends t to a sincere stable separating

tubular family t ′ in mod Λ
′, and all sincere stable separating tubular families are

obtained in this way. The tubular family t ′ separates say p ′ from q ′, here p ′ is the
image of p under F, whereas the modules M ′ in q ′ are extensions of the form

0 → F ′(M1) → M ′ → F(M2) → 0

with M1 ∈ add p, M2 ∈ add q, and F ′
= Ext1(T,−).

As above, we may define

C ′
= r(q ′), Q ′

= g(q ′), and R ′
= rl(t ′), D ′

= l(t ′).

Of course, we also put ω ′
= C ′∩D ′. The generic module G ′ and the Prüfer modules

for Λ
′ are defined as the images of the corresponding Λ-modules under F. But we

may define the Prüfer modules for Λ
′ also directly as unions of chains of indecom-

posable modules in t ′. And we denote by ω ′
0 the full subcategory of all direct sums of

Prüfer modules.

Claim 9.1

(1) The restriction of F gives an equivalence between the categories ω and ω ′. Thus any

object in ω ′ is a direct sum of indecomposable objects and the indecomposables in ω ′

are a generic module and Prüfer modules. This equivalence yields an equivalence of
ω0 and ω ′

0.
(2) Any Λ

′-module is a direct sum of a module in R ′, a module in ω ′ and a module

in Q ′.
(3) For each module C ′ in C ′ there is an exact sequence

0 → C ′ f
−→ X ′ → Y ′ → 0

with Y ′ ∈ ω ′
0 and X ′ ∈ ω ′, where f : C ′ → X ′ is a minimal left ω-approximation.
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(4) For each module D ′ in D ′ there is an exact sequence

0 → X ′ → Y ′ g
−→ D ′ → 0

with X ′ a direct sum of copies of G ′ and Y ′ ∈ ω ′, where g : Y ′ → D ′ is a minimal

right ω-approximation. If D ′ is in Q ′, then Y ′ is in ω ′
0.

(5) Ext1(C ′, D ′) = 0.
(6) C ′

= {C ′ | Ext1(C ′, ω ′) = 0} and D ′
= {D ′ | Ext1(ω ′, D ′) = 0} and ω ′

=

{B ′ ∈ C ′ | Ext1(C ′, B ′) = 0} = {A ′ ∈ D ′ | Ext1(A ′, D ′) = 0}.

(7) pd C ′ ≤ 1 for any C ′ ∈ C ′ and id D ′ ≤ 1 for any D ′ ∈ D ′.
(8) Let Y ′ be in ω ′. Any monomorphism X ′ → Y ′ with X ′ ∈ ω ′

0 splits. Any epimor-
phism Y ′ → Z ′ with Z ′ ∈ Add G ′ splits.

Proof We recall that we denote by r(T) the full subcategory of Mod Λ given by the
modules M with Hom(T, M) = 0, thus (r(T), g(T)) is the torsion pair in Mod Λ

attached to the tilting module T. As usual, we also need the cotilting module T ′
=

F(DΛ) in mod Λ
′ and the full subcategory l(T ′) of all Λ

′-modules N with

Hom(N, T ′) = 0,

so that (c(T ′), l(T ′)) is the torsion pair attached to the cotilting module T ′. Tilting
theory asserts that F yields an equivalence between g(T) and c(T ′) and that F ′ yields

an equivalence between r(T) and l(T ′), see [CF].
Let us look at the eight assertions. Assertion (1) is obvious, since ω is contained in

g(T). In order to verify (2), the essential observation is the following vanishing result

Ext1
(

F(C), F ′(r(T))
)

= 0.

This formula may be shown directly, but one also may prefer to work in the bounded
derived category Db(Mod Λ), see [R3]. It follows from the formula that any Λ

′-mod-
ule is the direct sum of a module in F(C) and a module N which has a submod-

ule N ′ in F ′(r(T)) such that N/N ′ belongs to F(Q). Then it is easy to see that
Hom(N ′, t ′) = 0 = Hom(N/N ′, t ′), so that N ′ and N/N ′ are in D ′, but clearly
not in ω ′. Since q ′ is numerically determined, (C ′, Q ′) is a split torsion pair and
hence N is in Q ′. It follows that F(C) = C ′ by Proposition 1.5. It remains to show

that F(R) ⊆ R ′, or, in other words Hom(q ′, F(R)) = 0. Now Hom(F(q), F(R)) = 0,
since Hom(q, R) = 0 and also Hom(F ′(M1), F(R)) = 0, for M1 ∈ add p.

For (3) we use that F : Mod Λ → Mod Λ
′ restricts to an equivalence from C∩g(T)

to C ′, and from ω to ω ′, together with the corresponding result for Mod Λ.

The proof of Theorem 7.1 generalizes to Λ
′-modules. We need only to observe

that Ext1(ω ′, ω ′) = 0. This follows from Ext1(ω, ω) = 0 by using the inverse equiv-
alence from ω ′ to ω induced by T⊗Λ ′ : Mod Λ

′ → Mod Λ. Hence we get (4).
We have already pointed out that the torsion pair (C ′, Q ′) splits, and it follows

from (2) that the pair (R ′, D ′) splits. Hence we have

Ext1(C ′, Q ′) = 0 = Ext1(R ′, D ′).
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We have also seen that Ext1(ω ′, ω ′) = 0.
We claim that the modules in ω ′ have projective and injective dimension at most

one. The Prüfer modules have projective and injective dimension one, since they
are direct limits of modules in t ′ which have projective and injective dimension one.
Applying the exact sequences in (3) and (4) to C ′

= Λ
′ and D ′

= DΛ
′, we see that

also the generic module G ′ has projective and injective dimension one. Hence the

functors Ext1(M ′,−) and Ext1(−, M ′) are right exact for M ′ ∈ ω ′. Since C ′
= c(ω ′)

by (3) and D ′
= g(ω ′) by (4), it follows that Ext1(C ′, ω ′) = 0 = Ext1(ω ′, D ′). This

proves (5), and (6) now follows easily (see Propositions 7.3 and 7.4). For (7), see the
proof of Corollary 5.4, for (8) that of Lemma 8.3.

10 Inf-Tilting and Inf-Cotilting Modules

In this section we discuss connections with tilting theory, for concealed canonical

algebras. A usual (finite length) tilting module yields a torsion pair, but not all torsion
pairs are obtained in this way. We are going to show that in our situation some
generalization of the concept of a tilting module which allows a tilting module to
be of infinite length is very helpful. In order to distinguish this generalization from

the traditional notion we refer to these modules as “inf-tilting” and “inf-cotilting”
modules.

Up to now, the torsion pairs which we have considered explicitly were torsion pairs
in a complete module category Mod R, where R is any ring. Of course, implicitly, we

also dealt with torsion pairs in categories of the form mod Λ with Λ an Artin algebra.
Indeed, the general concept of a torsion pair (F, G) is defined in an arbitrary abelian
category A; one requires that Hom(G, F) = 0 for all F ∈ F and G ∈ G, that F and G

are closed under isomorphisms and that for every object A ∈ A there exists a short

exact sequence 0 → A ′ → A → A ′ ′ → 0 with A ′ ∈ G and A ′′ ∈ F. From now on,
we will use the operators r(−), l(−), g(−), c(−) in this more general setting, and we
hope that this will not lead to any confusion.

Given an Artin algebra Λ, torsion pairs in the category mod Λ of modules of finite

length occur frequently as being related to a tilting or a cotilting module. Given a
tilting module T of projective dimension at most one, the pair (r(T), g(T)) in mod Λ

is a torsion pair. We say that it is associated with the tilting module T. Similarly,
given a cotilting module T of injective dimension at most one, the pair (c(T), l(T))

in mod Λ is a torsion pair. We say that it is associated with the cotilting module T.
Starting with tilting or cotilting modules, we obtain in this way many torsion pairs,
but there are also interesting torsion pairs (Y, X) in mod Λ which do not appear in
this way. Especially interesting are those where X contains the injective modules or

Y contains the projective modules. In [HRS], these are called tilting and cotilting
torsion pairs, respectively, and it is possible to imitate the usual tilting procedure
passing from Λ to Γ = End(T)op by performing tilting with respect to such a torsion
pair inside the bounded derived category.

An example of a tilting and cotilting torsion pair in mod Λ not associated with
a tilting or cotilting Λ-module is (add(p ∪ t), add q), where Λ is a canonical alge-
bra with canonical trisection (p, t, q) (or more generally any concealed canonical
algebra). Let us turn our attention to arbitrary, not necessarily finitely generated
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modules, and consider the two extremal torsion pairs (R, D) and (C, Q) which are
extensions to Mod Λ of the torsion pair (add(p ∪ t), add q) in mod Λ. We claim

that these torsion pairs are associated to something like tilting and cotilting modules
respectively: we need to work with a generalization of the concept of a tilting or a
cotilting module which allows to deal with infinitely generated modules. Let us refer
here to Colpi–Trlifaj [CT] where these inf-tilting modules of projective dimension at

most 1 have been considered and to Colpi–D’Este–Tonolo [CET] for an investigation
of inf-cotilting modules of injective dimension at most 1, but also to [AC, ATT].

Definition Let R be any ring. An R-module W of projective dimension at most one

will be called an inf-tilting module, provided it satisfies the following two properties:
We have Ext1(W, Add W ) = 0 and there is an exact sequence 0 → Λ → X → Y → 0
with X and Y in Add W . Dually, an R-module W of injective dimension at most one
will be called an inf-cotilting module provided Ext1(Prod W,W ) = 0 and there is an

exact sequence 0 → X ′ → Y ′ → DΛ → 0 with X ′ and Y ′ in Prod W . Here, DΛ

denotes the dual of ΛΛ, this is the minimal injective cogenerator (at least in case Λ is
basic).

Now assume again that Λ is an Artin algebra and let t be a sincere stable tubular
family in mod Λ separating p from q (in particular, Λ is concealed canonical). Let
C = r(q) and D = l(t). The crucial subcategory to be considered is ω = C ∩ D. Let
W0 be the direct sum of all the Prüfer modules in ω, one copy from each isomorphism

class, and let W = G ⊕W0, where G is the generic module in ω.

Proposition 10.1 The module W is an inf-tilting module of projective dimension one,

the modules W and W0 are inf-cotilting modules of injective dimension one and

ω = Add W = Prod W = Prod W0.

Proof The following references are all to Section 9. The fact that W and W0 have
projective dimension one and injective dimension one follows from Claim 9.1(7),

since both modules belong to ω = C ∩ D (and are neither projective nor injective).
Clearly, ω = Add W . According to Lemma 8.4, ω is closed under products, thus

we have Prod W0 ⊆ Prod W ⊆ ω. In order to show ω ⊆ Prod W0, it is sufficient
to verify that any direct sum

⊕
I W with I an infinite index set belongs to Prod W0.

Thus, let I be an infinite index set and consider the product Y =
∏

I W0 of I copies
of W0. We know that Y belongs to ω, thus it is a direct sum of copies of the generic
module and the Prüfer modules. It is sufficient to show that in such a direct sum
decomposition, any indecomposable module occurs with multiplicity at least I. First,

consider a Prüfer module P. We have obvious inclusion maps
⊕

I P →
∏

I P →∏
I W0 = Y. According to Claim 9.1(8), this monomorphism splits. Also, as Krause

[K] has shown (see also [R6]),
∏

I P contains
⊕

I G as a direct summand, thus we
obtain an epimorphism Y =

∏
I W0 →

∏
I P →

⊕
I G. We use the second part of

(8) in order to conclude that
⊕

I G is a direct summand of Y . Altogether we see that⊕
I W is a direct summand of Y .
The remaining assertions now follow easily: Since Add W = ω = Prod W , it fol-

lows from the basic splitting theorem that Ext1(W, Add W ) = 0 = Ext1(Prod W,W )
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and of course also Ext1(Prod W0,W0) = 0. Since ΛΛ belongs to p ⊆ C, its minimal
left ω-approximation yields an exact sequence 0 → Λ → X → Y → 0 with X and

Y in ω = Add W , see Claim 9.1(3). This shows that W is an inf-tilting module of
projective dimension one. Dually, the module DΛ belongs to q ⊆ D, thus its mini-
mal right ω-approximation yields an exact sequence 0 → X ′ → Y ′ → DΛ → 0 with
X ′ and Y ′ in ω = Prod W0 = Prod W , see Claim 9.1(4). Thus both W and W0 are

inf-cotilting modules of injective dimension one.

Note that the torsion pair (R, D) is associated with the inf-tilting module W , since
D = g(W ), and (C, Q) is associated with the inf-cotilting modules W and W0, since
C = c(W ) = c(W0).

Remark 10.2 Note that the torsion pair (R, D) does not seem to be associated
with something like a cotilting module, but all the torsion pairs (X(∁Ω

′), Y(Ω ′)) are,
where Ω

′ is a subset of Ω and ∁Ω
′ is its complement inside Ω. Namely, define T(Ω ′)

as the direct sum of the generic module G, the Prüfer modules S[∞] with S ∈ T(Ω ′)

and the adic modules Ŝ with S ∈ T(∁Ω
′). Then T(Ω ′) is an inf-cotilting module and

X(∁Ω
′) = c(T(Ω ′)). (The adic module Ŝ is the inverse limit of a chain of epimor-

phisms

· · · → [n]S → [n − 1]S → · · · → [2]S → S,

where [n]S is the (uniquely determined) module in t of regular length n which has S
as a factor module, see for example [R5].) In the case of a tame hereditary algebra,
we may refer to [BK] for a description of all the pure injective cotilting modules.

11 Derived Equivalent Categories

In this section we outline the effect of tilting with respect to some of the torsion pairs
considered above inside the derived category Db(Mod Λ).

If R is any ring, let Db(Mod R) be its bounded derived category (with shift au-
tomorphisms X 7→ X[n] for all n ∈ Z and homology functors Hn : Db(Mod R) →
Mod R). We always will identify Mod R with the full subcategory of all objects X in
Db(Mod R) with Hi(X) = 0 for i 6= 0. Given a torsion pair (X, Y) in Mod R, there is

an inf-tilting procedure inside Db(Mod R) with respect to this torsion pair. It yields a
new abelian category A which is contained in Db(Mod R), as follows: A = A(X, Y)
is the full subcategory of all objects A of Db(Mod R) such that

H−1(A) ∈ Y, H0(A) ∈ X and Hi(A) = 0 for i /∈ {−1, 0}

(see [HRS]). Under the condition that X contains all projective R-modules or that
Y contains all injective R-modules, it follows that A is derived equivalent to Mod R
and that (Y[−1], X) is a torsion pair in A. In case the torsion pair (X, Y) is split

with pd X ≤ 1 for X in X, and if X contains all the projectives, then the new abelian
category is hereditary (see [HR, HRS]).

Let us now assume again that Λ is a canonical algebra with a stable tubular family
t separating p from q. We consider the subcategories C, D, ω, and so on, as defined
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above, relative to t. In particular, let us look at some of the torsion pairs (X, Y) with
t ⊂ X and q ⊂ Y. It is interesting to observe that some of the exact sequences

in Mod Λ which have been discussed in this paper, can be interpreted as injective
or projective resolutions in the new abelian category A, depending on the choice of
the torsion pair (X, Y) and that the generic module G and the Prüfer modules yield
enough injective or projective objects in A.

Proposition 11.1 The category A = A(C, Q) is a hereditary abelian category derived
equivalent to Mod Λ. The pair (Q[−1], C) is a torsion pair in A. The subcategory ω is

the class of all injective objects in A and A has sufficiently many injective objects.

Proposition 11.2 The category A ′
= A(R, D) is a hereditary abelian category de-

rived equivalent to Mod Λ. The pair (D[−1], R) is a torsion pair in A ′. The sub-

category ω[−1] is the class of all projective objects in A ′ and A ′ has sufficiently many
projective objects.

Proposition 11.3 The category A ′′
= A(X(∅), Y(Ω)) is a hereditary abelian cate-

gory derived equivalent to Mod Λ. The pair (Y(Ω)[−1], X(∅)) is a torsion pair in A ′ ′.
If P is a Prüfer module in Mod Λ, then P[−1] is an indecomposable projective object of
A, whereas the generic module G, considered as an object in A is simple injective. Thus,

A ′ ′ has non-zero projective and non-zero injective objects, but neither sufficiently many
projective objects nor sufficiently many injective objects.

The proofs of these propositions follow quite easily from the above remarks and
the properties of torsion pairs in question which have been established in previous
sections.

Note that in the opposite direction it is shown in [L] that generic modules over

canonical algebras can be investigated by first considering generic sheaves in the cat-
egory of quasicoherent sheaves over weighted projective lines.

12 Additional Comments

In this section we discuss the relationship between split torsion pairs of mod Λ and
Mod Λ. We also indicate briefly a different approach to the study of Mod Λ when Λ

is a canonical algebra, using tame bimodules.

In this paper we have considered in detail the cut of mod Λ between t and q, where
t is a sincere stable tubular family separating p from q:
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One may also try to look at the dual cut between p and t:
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The situation seems to be similar, but it is not! There is a dual cut only when deal-
ing with finite dimensional representations — the behavior of the infinite dimen-

sional modules in this part of the category Mod Λ is far more complicated: indeed,
there do exist many torsion pairs (X, Y) in Mod Λ with p ⊂ X and t ⊂ Y which do
not split (indeed, we do not know any one which splits).

In order to provide at least one example, let us consider again the special case
where Λ is the Kronecker algebra, thus we consider the representations of the quiver

◦ ◦a b
α

β
......
......

.....
......
..........
....
...

................

...........................
...
..
..
..
..
..

................

............................................................
........

.

....
.....
.....
......
.......

..........................................

We consider the torsion pair (X, Y), where X = r(t) and Y = g(t). Note that the
full subcategory M of all representations V with V (β) being an identity map is iso-
morphic to the category of k[T]-modules (an isomorphism is obtained by sending
the k[T]-module M to the representation VM with VM(a) = VM(b) = M, such that

VM(α) is the multiplication by T and VM(β) = 1M). It is quite obvious that the
restriction of the torsion pair (X, Y) to M is just the usual pair of torsionfree and
torsion k[T]-modules and it is well known that there do exist many k[T]-modules
whose torsion submodule does not split off (see [F, Chapter XIV]).

Given such a trisection (p, t, q) of mod Λ, the difference of the two cuts between
p and t on one hand and between t and q on the other hand should not prevent a

detailed study of what lies in between p and q in Mod Λ, namely the subcategory
M(t) = l(p) ∩ r(q). For the case of a tubular algebra Λ and its various trisections
(pw, tw, qw), with w ∈ Q∞

0 , the subcategory M(tw) can be denoted just by M(w).
This subcategory, as well as corresponding subcategories M(w) for w ∈ R∞

0 \Q∞
0

will be studied in Section 13.

Since most of the results in this paper have been shown in [R1] for tame heredi-
tary algebras, it would seem reasonable to establish the general case by reducing the

investigation of the module theory for canonical algebras to that of tame bimod-
ules, where the corresponding assertions are already known. This definitely can be
done. Let P0 = S be the simple projective module and P∞ the projective cover of
the simple injective module S ′. If P = P0 ⊕ P∞, then basic properties of the functor

F = Hom(P) : Mod Λ → Mod Λ0 for Λ1 = End(P)op were investigated in [R4]
for finitely generated modules and can be generalized without problems to arbitrary
modules. One considers the modules C in Mod Λ with F(C ′) 6= 0 for each nonzero
summand C ′ of C , and one can compare crucial properties for C and F(C) in this

case. This allows us to use results for Mod Λ1 and transfer them to Mod Λ. Note
that Λ1 is given by a tame bimodule, namely by Hom(P0, P∞), so that all the rele-
vant properties of the category Mod Λ1 are known for a long time. In particular, in
this way the canonical generic module does not have to be constructed from scratch

for all the canonical algebras, but only for the tame bimodules involved. On the
other hand, we hope that the direct approach presented in this paper helps to trace
the way in which the structure of the category of finite dimensional representations
determines that of all the modules.
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13 Tubular Algebras

Let Λ be a canonical algebra with canonical trisection (p, t, q). Let S be the simple
projective module and S ′ the simple injective module. We denote by Λ0 the fac-
tor algebra of Λ so that mod Λ0 is the full subcategory of all Λ-modules M with

[M :S ′] = 0. Similarly, Λ∞ is the factor algebra of Λ with the property that mod Λ∞

is the full subcategory of all Λ-modules M with [M :S] = 0. Note that both Λ0 and
Λ∞ are hereditary algebras. The representation types of Λ0 and of Λ∞ coincide and
determine the representation type of Λ. Let us review the different cases.

If Λ0 and Λ∞ are of finite representation type, then Λ is a tame concealed alge-

bra, p is a preprojective component, q a preinjective component. This is essentially
the case which has been studied in detail in [R1]. In particular, it has been shown
there that Q = Add q, whereas R is a wild category (see also [R7]). In this case, the
asymmetry between R and Q is best visible.

If Λ0 and Λ∞ are of wild representation type, then Λ is of course also of wild

representation type. In this case, not much is known even for the finite dimensional
Λ-modules, but it should be worthwhile to study this case in more detail in future.

It remains to consider the case where both Λ0 and Λ∞ are of tame representation
type, in this case Λ is said to be a tubular canonical algebra. More generally, we

may consider an arbitrary tubular algebra, these are the concealed canonical algebras
obtained from a tubular canonical algebra by tilting.

From now on, let Λ be a tubular algebra. The structure of mod Λ is known in
detail (see [R2, LP]). There is a preprojective component p0 and a preinjective com-
ponent q∞. We denote by I0 the ideal which is maximal with the property that it

annihilates all the modules in p0 and by I∞ the ideal which is maximal with the
property that it annihilates all the modules in q∞. Then we obtain factor algebras
Λ0 = Λ/I0 and Λ∞ = Λ/I∞ which both are tame concealed algebras (in the case of
a tubular canonical algebra, we recover the factor algebras already introduced). Let t0

be the Auslander–Reiten components of mod Λ which contain regular Λ0-modules,
and t∞ those which contain regular Λ∞-modules. Then both t0 and t∞ are sincere
separating tubular families, but both are not stable (t0 will contain indecomposable
projective modules, t∞ indecomposable injective ones). If we denote by q0 the inde-

composable modules in mod Λ which do not belong to p0 or t0, then t0 separates p0

from q0. If we denote by p∞ the indecomposable modules in mod Λ which do not
belong to t∞ or q∞, then t∞ separates p∞ from q∞. The modules in q0 ∩ p∞ fall
into a countable number of sincere stable separating tubular families tα, indexed by

α ∈ Q+, such that for α < β in Q+ the class tα generates tβ , and also tα is cogen-
erated by tβ . More generally, this generation and cogeneration property holds for all
α < β in Q∞

0 = Q+ ∪ {0,∞}.

Let R∞
0 = R+ ∪ {0,∞}. For any w ∈ R∞

0 , we denote by pw the modules which
belong to p0 or to some tα with α < w, and we denote by qw the modules which

belong to tγ with w < γ or to q∞ (here, α, γ belong to Q∞
0 ). For β ∈ Q∞

0 we
obtain in this way a trisection (pβ , tβ, qβ) of mod Λ, with tβ a tubular family which
separates pβ from qβ , and tβ is stable provided 0 < β < ∞. For w ∈ R∞

0 \ Q∞
0 , the

two module classes pw and qw comprise all the indecomposables from mod Λ.
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Let us turn our attention now to arbitrary, not necessarily finite dimensional mod-
ules. For any w ∈ R∞

0 , let Cw = r(qw) and Bw = l(pw). The subcategories we are

interested in are those of the form

M(w) = Cw ∩ Bw = r(qw) ∩ l(pw),

defined for any w ∈ R∞
0 . The modules in M(w) are said to have slope w. Of course,

for α ∈ Q∞
0 the modules in tα as well as those in ωα have slope α. For non-rational

w, examples of modules in M(w) will be presented at the end of the section.

Theorem 13.1 Any indecomposable Λ-module which does not belong to p0 or q∞ has
a slope. For 0 ≤ w < w ′ ≤ ∞, we have Hom(M(w ′), M(w)) = 0.

Note that the second assertion immediately implies that M(w)∩M(w ′) = 0, thus

if a module has a slope, its slope is a well-defined element of R∞
0 .

Before we start with the proof, let us analyze the two module classes Cw and Bw,
as well as related ones.

13.1 The Torsion Pair (Cw, Qw)

First, we consider Cw = r(qw). Let Qw = g(qw). Note that qw is always closed under

successors, thus (Cw, Qw) is a torsion pair, according to Lemma 1.3 and Lemma 1.4.
For β ∈ Q∞

0 , the torsion pair (Cβ , Qβ) is split.

Proof For β ∈ Q+ and for β = ∞, the module class qβ is numerically determined,
thus we can use Proposition 1.5. The class q0 is never numerically determined, but
it is at least numerically almost determined (the corresponding function δ vanishes
precisely on those modules in q0 which do not have any simple Λ0-module as compo-

sition factor, but there are only finitely many isomorphism classes of indecomposable
modules of this kind). Thus we can use the Remark 1.6.

13.2 The Subcategories ωβ for β ∈ Q+

For β ∈ Q+, the trisection (pβ , tβ , qβ) allows us to use all the previous results of the

paper. In particular, there is a corresponding subcategory ωβ containing a generic
module Gβ as well as Prüfer modules. Actually, there are generic modules Gβ also
for β ∈ {0,∞}, thus for all β ∈ Q∞

0 ; namely, G0 is the generic module of Λ0,
and similarly, G∞ is the generic module of Λ∞. According to Corollary 8.1, we have

l(tβ) = g(Gβ), for β ∈ Q+, and this also holds for β = ∞ (but not for β = 0;
in order to show that l(t∞) = g(G∞), one first should notice that both classes are
contained in Mod Λ∞ and then use Corollary 8.1 for the unique separating tubular
family of mod Λ∞).
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Lemma 13.2 Let α < β in Q∞
0 . Then tα generates Gβ . If in addition 0 < α, then

Gα generates tβ .

Proof In order to show that tα generates Gβ for all 0 ≤ α < β ≤ ∞, consider first
the case 0 < α.

First, we claim that Gβ cannot belong to Cα. Choose γ with α < γ < β and take

an indecomposable module M in tγ . If β < ∞, consider the left ωβ-approximation
M → Mωβ

. Since Mωβ
is a non-zero direct sum of copies of Gβ , there are non-zero

maps M → Gβ . Consider now the case of β = ∞. Since Λ is a coray coextension
of the tame concealed algebra Λ∞, the trisection (p∞, t∞, q∞) is obtained as fol-

lows: q∞ consists of the preinjective Λ∞-modules, whereas p∞ consists of all those
indecomposable Λ-modules N whose restriction N(∞) to Λ∞ is a direct sum of pre-
projective Λ∞-modules. Of course, N(∞) is the maximal factor module of N which
is a Λ∞-module. Note that N(∞)

= 0 only for finitely many Λ-modules and all of

them belong to p0. Since the module M belongs to tγ , and 0 < γ < ∞, we see that
M(∞) is a non-zero preprojective Λ∞-module and therefore Hom(M(∞), G∞) 6= 0.
Since M(∞) is a factor module of M, we conclude that Hom(M, G∞) 6= 0. Always,
M ∈ qα, thus we see that Gβ can not belong to Cα.

Since Gβ cannot belong to Cα, and Gβ is indecomposable, it belongs to Qα. This
shows that there is a direct sum

⊕
i∈I Mi of modules Mi ∈ qα which maps onto Gβ .

However, the projective cover P(Mi) → Mi factors through add tα, thus we see that

any Mi is generated by tα. This shows that Gβ is generated by tα.

If α = 0, then choose 0 < α ′ < β. By the previous considerations, Gβ is generated
by tα ′ . Since tα ′ is generated by t0, we conclude that Gβ is generated by t0.

In order to show the second assertion, note that we deal with 0 < α < β ≤ ∞.
Now tβ ⊂ l(tα) = g(Gα).

Remark 13.3 The first assertion of Lemma 13.2 can be strengthened as follows: If
α < β in Q∞

0 and λ ∈ Ωα, then the class tα(λ) generates Gβ (here Ωα is the index set

for the tubular family tα). This follows from the proof, but can be derived also from
the statement itself: Let α < α ′ < β. Then Lemma 13.2 asserts that tα ′ generates Gβ ,
but it is well known that any tα(λ) generates tα ′ .

Also, let us stress that G0 does not generate tβ for any β ∈ Q∞
0 , since G0 is a Λ0-

module, whereas all the tβ contain modules which are not Λ0-modules. If we denote
by P the direct sum of all indecomposable projective modules in t0, then G0 ⊕ P
generates tβ , for any 0 < β.

13.3 The Module Class Bw

For any w ∈ R∞
0 , we have defined Bw = l(pw). By definition, this is the torsion

class of a torsion pair, the corresponding torsionfree class is r(Bw) = rl(pw). For
w = 0, the module class Bw consists of all the modules M which do not have an
indecomposable direct summand in p0.

Lemma 13.4 Let w ∈ R+ ∪ {∞}, then
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Bw =

⋂

v<w

Qv = {M | M is generated by tα for any α ∈ Q with 0 < α < w}

= {M | M is generated by Gα for any α ∈ Q with 0 < α < w}.

Here the v are non-negative real numbers, but it is sufficient to form the intersection
using just a sequence of real numbers v < w which converges to w; similarly, in the last
two descriptions, it is sufficient to consider a sequence of rational numbers α < w which

converges to w.

Proof The second equality of these different descriptions of Bw is straightforward.
The last one follows immediately from Lemma 13.2. Let us show that l(pw) =⋂

v<w Qv. First, assume that M belongs to the intersection, and let N be in pw. We
want to show that Hom(M, N) = 0. There is a rational α with 0 < α < w such
that N belongs to pα. Since M is generated by tα and Hom(tα, pα) = 0, it follows
that Hom(M, N) = 0. Conversely, assume that M belongs to l(pw). Take a rational

α with 0 < α < w. We want to show that M is generated by tα. Choose β rational
with α < β < w. Then tβ ⊂ pw, thus l(pw) ⊆ l(tβ) = g(Gβ). And g(Gβ) ⊂ g(tα),
according to Lemma 13.2. This shows that M is generated by tα.

Proof of Theorem 13.1 For the second assertion, we only note that M(w) ⊆ Cw

and that M(w ′) ⊆ Bw ′ ⊆ Qw, since w < w ′.
For the first assertion, let M be any indecomposable module which does not be-

long to p0 or q∞. Since M is indecomposable and does not belong to q∞, we have

Hom(q∞, M) = 0. Let w be the infimum of all α ∈ Q∞
0 such that Hom(qα, M) = 0.

Since qw =
⋃

w<α qα, it follows that Hom(qw, M) = 0, thus M belongs to Cw. It re-
mains to be shown that M also belongs to Bw. For w = 0, this follows immediately
from our assumption that M is indecomposable and does not belong to p0. Thus,

let w > 0. We have to show that M belongs to Qα for any rational number α with
0 < α < w. Take such an α and assume that M does not belong to Qα. Since (Cα, Qα)
is a split torsion pair and M is indecomposable, we conclude that M belongs to Cα.
Thus Hom(qα, M) = 0. But by the definition of w this implies that w ≤ α, a contra-

diction.

We add a further property of M(w) which is quite useful to know:

Proposition 13.5 The subcategories Cw, Bw and M(w) are closed under products and
direct limits.

We only have to consider the first two subcategories. Now Cw is the torsionfree class
of a torsion pair, thus closed under products. Also, since Cw = r(qw), and qw consists
of finitely generated modules, we see that Cw is closed under direct limits.

Consider now Bw. All the subcategories Qw = g(qw) are closed under direct limits,

thus the same is true for Bw. It remains to be seen that Bw is closed under products.
Assume that there are given modules Mi ∈ Bw and let M =

∏
i∈I Mi .

Consider first the case w > 0. Choose some 0 < β < w in Q . Then all the
modules Mi are generated by Gβ , thus there exist epimorphisms

⊕
I(i) Gβ → Mi for
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some index set I(i). But Add Gβ is closed under products, thus
∏

I(i) Gβ maps onto⊕
I(i) Gβ and therefore

∏
i

∏
I(i) Gβ maps onto

∏
i M(i). Again using that Add Gβ is

closed under products, we see that M is generated by Gβ .

We proceed quite similarly for w = 0. Write ΛΛ = P ⊕ P ′, where P belongs to
p0 and P ′ to t0 (thus P = ΛΛ0). Since Mi does not split off any indecomposable
module from p0, any map P → Mi can be factored through a module in add τ−t P,
for any t ∈ N0. It follows that for any t ∈ N0, all the modules Mi are generated by

Pt = τ−t P ⊕ P ′. This module Pt is a finite dimensional module, thus the products
of copies of Pt are direct sums of copies of Pt . This shows that M itself is generated
by Pt . Now consider an indecomposable module N from p0. There is t ∈ N0 with

Hom(Pt , N) = 0 and this implies that Hom(M, N) = 0. This shows that M cannot
split off a copy of N , as we had to show.

Remark 13.6 Note that in contrast to Bw, the subcategories Qw are not closed under
products.

13.4 Examples

For α ∈ Q∞
0 , examples of modules in M(α) have been mentioned above. Let us now

consider the case of an arbitrary w ∈ R+. In case w is not rational, M(w) cannot
contain any non-zero module of finite length. We are going to provide two recipes
for constructing non-zero modules in M(w).

The First Construction Let α1 > α2 > · · · be a sequence of rational numbers con-
verging to w and choose modules Mi ∈ add tαi

. Then
∏

i Mi/
⊕

i Mi belongs to M(w).

Proof Let M =
∏

i Mi , and M ′
=

⊕
i Mi . Let us show that the maximal submodule

of M which belongs to Qw is M ′. On the one hand, M ′ is generated by qw. On the
other hand, given an indecomposable module N ∈ qw and a non-zero map f : N →
M, then N belongs to some tβ with β > w. Since the sequence (αi)i converges to w,
there is some natural number n with αi < β for all i > n. Thus the image of f is
contained in

∏
i≤n Mi ⊆ M ′. Since (Cw, Qw) is a torsion pair, it follows that M/M ′

belongs to Cw. In addition, we have to show that M/M ′ belongs to Bw. Since Bw

is closed under products, M belongs to Bw. But Bw = l(pw) is closed under factor
modules, thus with M also M/M ′ belongs to Bw.

The Second Construction Let α1 < α2 < · · · be a sequence of rational numbers
converging to w and choose modules Mi ∈ add tαi

with inclusions M1 ⊆ M2 ⊆ · · · .
Then the direct limit lim

−→
Mi belongs to M(w).

Proof All the modules Mi belong to Cw and Cw is closed under direct limits, there-
fore M = lim

−→
Mi belongs to Cw. Consider a rational number α where 0 < α < w.

There exists i with α < αi . Then M j belongs to add qα for all j ≥ i. This shows that
M is generated by qα, and therefore M belongs to Qα. As a consequence, M belongs
to Bw.
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14 Cotorsion Pairs

It seems to be worthwhile to provide a reformulation of parts of the paper in terms
of cotorsion pairs,1 which were introduced (for R = Z) by Salce [S] in 1979, the
corresponding paper is contained in the same volume as [R1]. The paper [R1] has
as one of its main objectives the study of the pair (C, D) obtained from the tubular

family of a tame hereditary algebra, and as we have seen in the present paper, a pair
(C, D) with similar properties is obtained from any sincere stable separating tubular
family. These pairs (C, D) are cotorsion pairs and by now there exist several general

results on cotorsion pairs which explain very well the way in which properties of
(C, D) and of ω = C ∩ D are interrelated. For example, our proof of Theorem
7.1 uses left ω-approximations in order to obtain right ω-approximations, but this
argument is a general feature of complete cotorsion pairs and has to be attributed to

Salce [S].

The aim of this appendix is to recall relevant definitions and results and to outline
properties of the pair (C, D) which are related by general observations concerning
cotorsion pairs. Using the general theory, one should be able to rewrite (and maybe
even squeeze) some of the considerations of the paper. On the other hand, we hope

that the following reformulations may help to see that the pairs (C, D) can serve as
illuminating examples of cotorsion pairs.

Given a class X of R-modules, let us denote by X[1] the class of all R-modules M
with Ext1(X, M) = 0, and by [1]X that of all M with Ext1(M, X) = 0 (the cotorsion
literature prefers to write X⊥ and ⊥X instead of X[1] and [1]X, respectively, but this

notation is in conflict with other conventions concerning the use of the symbol ⊥,
thus we have avoided using the symbol ⊥ altogether; on the other hand, one may
extend our notation to deal with an arbitrary interval I of natural numbers, writing
say XI for the class of all R-modules M with Exti(X, M) = 0 for all i ∈ I). A pair

(A, B) of classes of R-modules is said to be a cotorsion pair provided A =
[1]B and

B = A[1], and in this case, the intersection A ∩ B is called its kernel. Of course,
starting with an arbitrary class X of R-modules, the pair ([1]X, ([1]X)[1]) is a cotorsion
pair, which is called the cotorsion pair generated by X. Similarly, ([1](X[1]), X[1]) is a

cotorsion pair, called the cotorsion pair cogenerated by X.

The starting point for our discussion here is the following result of our paper: Let
Λ be a concealed canonical algebra with trisection (p, t, q) and let C = r(q) and D =

l(t). Also, denote by ω the intersection C∩D. The pair (C, D) is a cotorsion pair, and
it is generated by t and cogenerated by q. Namely, the definitions immediately imply

that D =
[1]t and C = q[1], using the Auslander–Reiten formula, the fact that both t

and q are closed under the Auslander–Reiten translations as well as that t consists of
modules of projective dimension at most 1, whereas q consists of modules of injective
dimension at most 1. Also, the basic splitting theorem (Theorem 5.2, or better Claim

9.1(5)) asserts that C ⊆ [1]D. The reverse implication comes, for example, from

1These reformulations are based on notes Jan Trlifaj wrote for his CRM lectures at Barcelona, October
2002, as well as greatly appreciated conversations the second author had with him and with Lidia Angeleri-
Hügel. Trilifaj’s CRM notes as well as similar notes for the Cortona Workshop 2000 are not published;
however there is a much more reent and complete account in [T]. For some basic notions we should also
refer to the book by Enochs and Jenda [EJ].
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Proposition 7.3, or better Claim 9.1(6): C =
[1]ω ⊆ [1]D. Of course, the last reference

yields also that the cotorsion pair (C, D) is both generated and cogenerated by ω.

14.1 Perfectness

A cotorsion pair (A, B) is called perfect provided the class A is closed under direct
limits. Our definition C = r(q) assures us that the cotorsion pair (C, D) is perfect,
since q consists of finitely generated modules.

14.2 Completeness

A monomorphism f : M → M ′ in Mod R with target M ′ in B and cokernel in A

is called a special B-preenvelope; of course, such a monomorphism is always a left

B-approximation; in case it is also minimal, it is said to be a special B-envelope. An
epimorphism g : N ′ → N with N ′ in A and kernel in B is called a special A-precover.
Such an epimorphism is always a right A-approximation; in case it is also minimal, it
is said to be a special A-cover. The Salce paper [S] provides a proof for the following

important result: Given a cotorsion pair (A, B) in Mod R, then every R-module has
a special B-preenvelope if and only if every R-module has a special A-precover. In
case special B-preenvelopes (and therefore also special A-precovers exist for all R-
modules, the cotorsion pair (A, B) is said to be complete. According to Enochs [E],

given a complete and perfect cotorsion pair (A, B), then any R-module has a special
B-envelope as well as a special A-cover.

Recall that Theorem 4.1 of our paper provides a minimal left ω-approximation for
the modules in C. Since the cokernel of such a map belongs to C, it follows immedi-
ately that it even is a minimal left D-approximation, thus a special D-envelope. Of

course, given a module in D, the identity map is a special D-envelope. According to
Corollary 5.3 (or better Claim 9.1(2)) every R-module is the direct sum of a module
in C and a module in D, thus every R-module has a special D-envelope. This shows
that (C, D) is a complete cotorsion pair. Note that we also have shown the existence

of a special C-cover, for any R-module: For the modules in D, this is asserted in The-
orem 7.1 (or better Claim 9.1(4)); for the modules in C one just takes the identity
map.

For the existence of special D-envelopes and special C-covers one also may refer to

recent investigations of Eklof and Trlifaj [ET]: they have shown that every cotorsion
pair (A, B) generated by a class of algebraically compact modules is both perfect
and complete. Now, all the modules in t are finite dimensional, thus algebraically
compact. Also, all the modules in ω are algebraically compact. But we know that the

cotorsion pair (C, D) is generated by t as well as by ω.

14.3 Resolutions and Coresolutions

Assume that (A, B) is a perfect and complete cotorsion pair in Mod R, and let K =

A ∩ B. Observe that for any module M in A, there exists an exact sequence
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0 → M
d0

−→ M0 d1

−→ M1 d2

−→ · · ·

such that Im(di) → Mi is a minimal left B-approximation, for all i ≥ 0; such a
sequence is called a minimal B-coresolution, it is unique up to isomorphism and all
the modules Mi actually belong to K. In order to show the existence, let d0 : M → M0

be a special B-envelope of M. Then M0 is an extension of M by the cokernel of d0.
Now both modules M and Cok(d0) belong to A, thus M0 belongs to K. Since the
cokernel Cok(d0) belongs to A, we can continue. Dually, for any module N in B,
there exists an exact sequence

· · ·
d2−→ N1

d1−→ N0
d0−→ N → 0

such that Ni → Im(di) is a minimal right A-approximation, for all i ≥ 0. Such
a sequence is called a minimal A-resolution. Again it is unique up to isomorphism,
and all the modules Ni belong to K. In our setting (C, D) the D-coresolution of any

module in C has been exhibited in Theorem 4.1; it is a short exact sequence with
M1 a direct sum of Prüfer modules. The C-resolution of any module in D has been
exhibited in Theorem 7.1; it is a short exact sequence with N1 a direct sum of copies
of the generic module G.

Now assume in addition that the modules in the kernel K = A ∩ B can be clas-
sified by invariants. Then one may use the B-coresolutions for the modules M in
A and the A-resolutions for the modules N in B in order to attach a sequence of

invariants to M, or N , respectively. In our case (C, D), we know that any module in
ω = C ∩ D is a direct sum of copies of the generic module G and of Prüfer modules,
and such a direct decomposition is unique up to isomorphism. Let us denote by S the
set of isomorphism classes of indecomposable modules in ω (the letter S stands for

“spectrum”); there is a special element, say s = 0, which corresponds to the generic
module, the remaining elements of S correspond bijectively to the simple objects in t.

For any s ∈ S and a module M in ω, we denote by µ(s, M) the multiplicity of s in

a direct decomposition of M. Now, given a module M in C, s ∈ S and i ≥ 0, we may
define

µi(s, M) = µ(s, Mi).

Note that these invariants are zero for i /∈ {0, 1}, and also µ1(0, M) = 0 for all M in

C. The invariant µ0(0, M) has been called the rank of the module M in [R1].

Similarly, given a module N in D, s ∈ S and i ≥ 0, we may define

µi(s, N) = µ(s, Ni).

Again, these invariants are zero for i /∈ {0, 1}, and also µ1(s, M) = 0 for all M in C

and s 6= 0.
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[AC] L. Angeleri-Hügel, and F. U. Coelho, Infinitely generated tilting modules of finite projective
dimension. Forum Math. 13(2001), no. 2, 239–250.
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