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Fundamental singularities in the theory

of water waves with surface tension

P. F. Rhodes-Robinson

In this paper the forms are obtained for the harmonic potential

functions describing the fundamental wave-source and multipole

singularities which pertain to the study of infinitesimal

time-harmonic waves on the free surface of water when the effect

of surface tension is included. Line and point singularities are

considered for both the cases of infinite and finite constant

depth of water. The method used is an extension of that which

has been used to obtain these potentials in the absence of

surface tension.

1. Introduction

In Thome [5] a discussion was given of line and point singularities

which have since been used extensively in time-harmonic problems in the

linearized theory of water waves propagating on the free surface (FS)

of water of either infinite or finite constant depth. However, these are

suitable only when the assumption is made that, at the FS , the effect of

surface tension can be neglected. Recent investigations, in particular

Evans [7, 2] and Rhodes-Robinson [4], involve well known problems in

surface waves in which the presence of surface tension has now been

allowed for. Here we give a discussion of the fundamental line and point

singularities, both submerged and in the FS , which have been used in

these and which will be required in future investigations of other

two-dimensional and axisymmetric time-harmonic problems in the theory of

water waves when the effect of surface tension is included. For
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two-dimensional motions, the line singularities considered are a wave

source and multipole singularities. Restriction is made to symmetric (or

'vertical') multipoles, but the corresponding antisymmetric (or

'horizontal') multipoles can be found similarly. For axisymmetric

motions, the point singularities considered are multipole singularities.

The time-harmonic singularities are described by harmonic potential

functions which satisfy a modified FS condition and uniqueness is

ensured by requiring that there are only outgoing surface waves in the far

field. The method used is basically as in [5] and is valid only for

submerged singularities. However, we also give the results for FS

singularities to complete the survey.

2. Statement of the boundary-value problem

We are concerned with the irrotational motion of water with a FS

which is assumed to be an incompressible inviscid fluid, under the action

of gravity and surface tension. The motion is time-harmonic with angular

frequency 0 and due to an oscillating singularity in or below the FS

which produces outgoing waves at infinity. The nature of the singularity

varies: two-dimensional motions will be produced by line singularities,

which may be either a wave source or multipoles, and axisymmetric motions

by point singularities, which are multipoles. Further, the region of

water is of infinite horizontal extent and may be either of infinite depth

or else bounded by a bottom at some finite constant depth h . In each

case, the singularity can be described by a complex-valued harmonic

potential function <j> in which a time factor e is suppressed in the

usual way. If we take an origin 0 in the mean FS and an axis Oy

pointing down into the fluid, then this potential satisfies a

boundary-value problem in which

V24> = 0

in the fluid region, except at the singularity,

K$ + <J> + M<j> = 0 o n y = 0 ,
y yyy y

where K = G2/g and M = T/pg (this linearized FS condition is derived

in Evans [2] and T is the surface tension, p the density and g the

acceleration of gravity; M = 0 in the absence of surface tension), and
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Water waves with surface tension 319

<f> = 0 on y = h ,

when there is a bottom to the fluid region (otherwise V(j> -»• 0 as y •* °°).

These two boundary conditions to Laplace's equation are specific for each

singularity considered. They are supplemented by the two general limiting

conditions that <J> behaves like a typical singular harmonic function near

the singularity, and represents outgoing waves in the far field. These

will be made specific below.

The boundary-value problem is formulated assuming that the

singularity is submerged and not in FS , or on the bottom in the case of

finite depth. Under these conditions a unique solution will be found for

each type of singularity considered, the proofs depending on the use of

appropriate integral representations for singular harmonic functions. We

first discuss line singularities (Section 3) and then point singularities

(Section 4). For each type of singularity we first consider infinite

depth (where useful alternative forms of solution are available) and then

finite depth. The limiting cases as the singularity moves into the FS

are also important and will be discussed briefly (Sections 5, 6).

3. Submerged line singularities

Here we define rectangular coordinates x, y by taking a second axis

Ox in the mean FS . The line singularity is placed at the point (0, Y)

without loss of generality, where Y > 0 for a submerged singularity. We

consider only singularities symmetric in x - namely, a wave source and

vertical multipoles. Also we define cylindrical polar coordinates p, £

based on the singularity position by the equations x = psin? ,

y - Y = pcosS so that the singularities are symmetric in £ .

Submerged wave source on infinite depth

Here we seek a potential <j> which is harmonic in the half-plane

y > 0 , except at (0, Y) , satisfies the FS condition with surface

tension on y = 0 , and whose gradient tends to zero as y -• °° ; also,

<(> •+ logp as p i \x2 + (z/-r)2]z -»• 0 ,

and
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<J> •* a multiple of e"
K^ + t Kl xl as \x\ -> oo ,

where K is the infinite-depth wave number with surface tension and

satisfies the equation

K ( 1 + M : 2 ) - K = 0 .

To ensure that <$> remains bounded at infinity, we also define

p1 = \x2 + {y+Y)2}2 and try as the appropriate form of the solution

4> = log -^r + <)>' ,

and hence <f>' is a regular harmonic function in y > 0 . But <f>' is

also symmetric in x , and Vcj)' must tend to zero as y -*•<*>. Hence we

try the integral form

= I ~kyc<j>' = A(k)e ^coskxdk ,

where now A(k) must be chosen so that <j> satisfies the FS condition,

and represents outgoing waves at infinity.

Now we have the representation, valid for \x\ > 0 ,

r°° —
_P_= _P C e

log -V = -2 1— sinkysinkYdk .

Hence

\\K + j- + M —Jlog ^-1 = -2 J (l-Mk2)e~k\XKinkYdk (|x| > 0) .

But, since Y > 0 , we may show that

I kZne~k\x\slnkXdk = (-if [ k2ne'^coskxdk (n = 0, 1, ...) ,
'o > o

•ikY -ikY
by putting 2isinW = e - e and rotating the contour in each

integral so formed to contours along the positive and negative imaginary

axes respectively. Therefore,

\\K + 4~ + M —|l°g M = -2 I (l+Mk2)e~kYcoskxdk .
LI ^ 3V3J P Jv=0 Jo
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K + j - + M —]<f>'l = " j [Hl+Mk2) - K\A(k)coskxdk

But

]
and so <(> satisfies the FS condition if

A { k ) o

This introduces a simple pole at k = K on the real axis in the

integral ((>' : if we avoid this by making an indentation of contour below

this pole, we obtain in the usual notation the potential

(3.D r
Jo k(l+Mk2)-K

which ensures that, lastly, the radiation condition is satisfied. For, by

putting 2cosfcc = e ' ' + e ' ' and.rotating the contour in each

integral into contours in the first and fourth quadrants respectively, so

that we must include the residue term at k = K for the first (note that

the two remaining complex-conjugate poles are in the second and third

quadrants), we obtain the outgoing waves

„_. 1 + M K 2 -K{y+Y)+i<\x\ | I
<)>-»-- 2TH. e v ' ' as |x| -*• <*> .

l+3Mc2

An alternative form, valid for |a;| > 0 , which makes explicit the

outgoing waves at infinity is obtained by rotating the contour as above

to contours along the positive and negative imaginary axes respectively,

e(() = log p - - 2 u ' [fe(l-Wfe2)cosfe(iy+y) - Xsinfe(y+y)]dfe

1+3MK2

Submerged wave source on f in i te depth

Here (j) is harmonic on the strip Q < y < h , except at (0,7) ,

satisfies the FS condition with surface tension on y = 0 ., and the

bottom condition on y = h ; also,

(j) ->• logp a s p •+ 0 ,
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and

i< \x\
<j> -»• a multiple of coshK (h-y)e as |a;| •+ °° ,

where K Q is the finite-depth wave number with surface tension and

satisfies the equation

Ko(l+M<2]tanhicofc - K = 0 .

We now t ry as the appropriate form of the solution

<J> = log -4- + [A(k)coshk(h-y) + B(k)sxnhky]coskxdk .
P ' o

Using again the representation, valid for |a;| > 0 ,

-k\x\

P' Jo k

we have

^ - l o g f r ] = - 2 f e ^ ^ (\x\ > 0 )

- 2 . '

by putting 2coskh = e1"""" + e and rotating the contour in each

integral into contours along the positive and negative imaginary axes

respectively, and so <j> satisfies the bottom condition if

2 ^B(k) = , . , , sinhW .kcoshkh

Further, since we found above that

\[K + •£- + M — l l o g 4-1 = -2 f (l+m2)e~kYcoskxdk ,
LI ^ 3y3j PJ^=O Jo

i t follows that <£ satisfies the FS condition if

-2(1+Mk2)

Hl+Mk2)sinhkh-Kcoshkh coshkh
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This now introduces a simple pole at k = K on the real axis, below

which we make an indentation of contour to obtain the potential

( 3' 2 )

= log •&-

-2 f [(l^2
Jo I- k(l+'o *• fc(l+iWc2)sinhWi-.Kcoshfc7z

This has the outgoing waves

•£K \X\o' '
-itiri(l+A/K2)coshK (h-y)coshK (h-Y)e

, ^ o o o I I
m -y — — ^ — ' ^ ~ - — — ^ — - ~ — ^ — ^ — ^ — — ^s IX I "> oo ^

2Kofe(l+WK2)+(i+3MK2)sinh(2Ko^)

obtained similarly as for infinite depth.

Submerged multipoles on infinite depth

Here <J> is harmonic in the half-plane y > 0 , except at (0, Y)

satisfies the FS condition on y = 0 , and has zero gradient as y •*•

also, since we confine our attention to vertical multipoles,

— as p->-0 ( m = O , l , ...) ,

and

4> -»• a multiple of

We try as solution

Jo
A(k)e-*Vcoakxdk ,

0

and use the representation, valid for y <

Hence

[('+ # - + W
 83

^ 3*, 3-1 p"^1 Jy=O

and i t follows that A(k) i s determined since <J> sat isf ies the FS
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condition. Hence we obtain the potential

(3.3) * = -

The alternative form, valid for \x\ > 0 , which makes explicit the

outgoing waves at infinity is

k2(l-Mk2)2+Kz

(-l)w+1 „ . m+1 1+MK2 -K

Note that we may form a combination of these which is wave-free

(i.e. there are no outgoing waves at infinity),

= K

P

r ^ f km[k(l+Mk2)+K]e-k{y+y)coskxdk (m = 0 , 1 , . . . )
•'o'o

Submerged multipoles on finite depth

Here <(> is harmonic on the strip 0 < y < h , except at (o, Y) ,

satisfies the FS condition on y = 0 , and the bottom condition on

y = h ; also,

as p -»• 0 (m = 0, 1, . . .) ,T m+1

and

i i^K \x\

4> -*- a multiple of coshK (h-y)e as \x\

We now try as solution

^ J
p 'o

Using the representation, valid for y > Y ,

J [A{k)coshHh-y)+B(k)sinh.ky]coskxdk .
'o
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m+1 m!

we have

cos(m+l)g| = : 1 f km+le-k{h-X)c

p m + 1 ly=h ml Jo

and so B{k) is determined since <)> satisfies the bottom condition.

Further, since we found above that

p

it follows that A{k) is determined also since <f satisfies the FS

condition. Hence we obtain the potential

(3.5) , = SO^Lli + i . f Lil!!V^ coskMik ,
'o Hl+Mkz)sirihkh-Kcoshkh

where

P =

and the contour is indented below the simple pole k = K to give the

outgoing waves

o I * i i
+e J •Z-Kol

a;l
coshK Ah-y )e

4. Submerged point singularities

We now define cylindrical polar coordinates R, y , where R is the

distance from Oy . The point singularity is placed at the point

(0, y) , where Y > 0 . We consider only singularities for which Oy is

an axis of symmetry. Also we define spherical polar coordinates p, C

based on the singularity position by the equations R =

y - 1 = pcos^ .
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Submerged multipoles on in f in i te depth

Here <J> i s h a r m o n i c i n t h e h a l f - p l a n e y > 0 , e x c e p t a t ( 0 , Y) , '

sa t i s f i e s the FS condition on y = 0 , and has zero gradient as y -*• °° ;

a l so ,

P (cos?) i
-1 ' -m- - as p E [i?2 + (j/-J)2]2 + o (m = 0, 1, . . . ) ,

and

4> •+ a multiple of e H (KR) as i? •+• °°

We t ry as solution

PjcosS) f» _,
| 4(k)e KyJQ(kR)dk ,

p •'o

and use the representation, valid for y < Y ,

P (cos?) , y
m (-1)

Hence

JI
and it follows that A{k) is determined since (J> satisfies the FS

condition. Hence we obtain the potential

JQ(kR)dk ,

where the contour is indented below the simple pole k = K , which ensures

that the radiation condition is satisfied. For, by putting

2c7 (kR) = H (kR) + H (kR) and rotating the contour in each integral

into contours in the first and fourth quadrants respectively (where

H , H (kR) are respectively small), and including the residue term at

k = K for the first, we obtain the outgoing cylindrical waves
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An alternative form, valid for R > 0 , which makes explicit the

outgoing waves at infinity is obtained by rotating the contour to contours

along the positive and negative imaginary axes respectively,

P (cos?)
* = " , + re

Kote that we may form a combination of these which is wave-free,

P (cos?) P...(cos?) P (cos?)

^ m+\ m+\= K

P

+ l z i i
1 — km\k(l+Mk2) + K\e~Kyy X)J (kR)dk (m = 0 , 1 , . . . )

ml J Q o

Submerged multipoles on f i n i te depth

Here (J) is harmonic on the strip 0 < y < h , except at (0, Y) ,

satisfies the FS condition on y = 0 , and the bottom condition on

y = h ; also,

P (cos?)

and

as p •+ 0 (m = 0, 1, ... ) ,

•*• a multiple of coshK {h-y)E ' [< R) as R

We now try as solution

Pjcos?)

'0

[A(k)coshk(h-y) + B(k)sinhky']Jo(kR)dk .
* n

Using the representation, valid for y > Y ,

m ! -o
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we have

[JL* m i j " a n j - - lf™''0<*B>dfc •
• " p Jz/=?i J o

and so B(k) is determined since (j> satisfies the bottom condition.

Further, since we found above that

i t follows that A{k) is determined also since 4> satisfies the FS

condition. Hence we obtain the potential

-L. L km ^ ^ JAkR)dk ,
m. J °m

where again

P = [Hl+Mk2)+K]e~kYcoshk{h-y)

and the contour is indented below the simple pole k = K Q to give the

outgoing waves

„ K (h-Y) -Kjh-Y J
Q, v o,sinh(2Ko?zJ

as i? •*• °° , obtained s imilar ly as for in f in i t e depth.

5. FS line singularities

Clearly the results of Section 3 are not valid for 7 = 0 . We now

define cylindrical polar coordinates r, 6 based on the singularity

position by the equations x = rsin6 , y = rcos9 so that the potentials

are symmetric in 6 . Then it may be shown that the potentials, where

they exist, are as follows.

FS wave source on in f i n i te depth

tx -,\ A r (1+Mk2)e~ky , „ , . . .(5.1) <p = - i b « coskxdk (y > 0) .
Jo k(l+Mk2)-K
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FS wave source on finite depth

(5.2) 4, = - f (l+M2)coahfc(h-y) coskxdk {y > o) .
•'o / c ( l + 2

FS multipoles on in f in i te depth

The only genuine multipoles correspond to m = 1, 3. ••• ('even1

multipoles)

2n+2
i ' cosfcnafe [n = 0, 1, . . . ; y > 0) .

k(l+Mk2)-K

Multipoles corresponding to m = 0, 2, ... ('odd' multipoles) do not

exist, but in their place there are the singular potentials

<J> = -fo—y~ ̂  ~—~ coskxdk

(5.1+)

(M = 0, 1, ... ; y > 0 unless n = 0)

which compose the wave source and even multipoles.

The wave-free potentials are

( 5 .5 )

+ M ( 2 n + l ) ( 2 n + 2 ) ( 2 n + 3 ) C ° S ^ ) 9 (n = 0 , 1 , . . . ) .

FS multipoles on finite depth

Similarly we have the even multipoles (for n = 0, 1, ...) ,

(5.6) <j> = /2n+1)i r coskxdk (y > 0)

and the singular potentials

(5.7) <t> = /•̂ ,\, >(' ^—Lri^i coskxdk (y > 0 unless n = 0)
V ' " JQ Mi+Mlr21a-ir,tol/h-Xr<r,RYi1fh

which compose the wave source and even multipoles.

For singularities on infinite depth above, alternative forms may be

obtained using
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£ ,2n -ky f°° ,2n -k\x\
-£—£ coskxdk = (-if e [k(.l-Mk2)cosky - Ksinkyjdk

v, k(l+Mk2)-K Jo k2(l-Mk2)2+K2

(n = 0, 1, ... ; \x\ > 0 unless rc = 0) .

6. FS point singularities

Clearly also the results of Section 4 are not valid for X = 0 . We

•now define spherical polar coordinates r, 6 based on the singularity

position by the equations R = rsin9 , y = rcos6 . Then it may be shown

that the potentials' are as follows.

FS multipoles on infinite depth

The only genuine (even) multipoles correspond to m = 0, 2, ... (for

n = 0, 1, ...)

i f ^ W ) - " {y>0)
( 2 n^! >o k{l+Mk2)-K

since (odd) multipoles corresponding to m = 1, 3, ... do not exist,

being replaced by the singular potentials

(6.2) if = , "f-, v, I — J(kR)dk (y > 0 unless n = 0)
r v2n+K~ky
d) —

which compose the even multipoles.

Alternative forms may be obtained using

,2n+l -fey „ i" k2n+1A: (W?)„ i" k2n+1A: (W?)
=7 (kfl)dfe = ( - i f - 2 Tk(l-Mk2)cosky-Ksinky]dk
° "Jo k2(l-Mk2)2+K2
() (f

k(l+Mk2)-K ° " J o k2(l-Mk2)2+K2

2 n + l , •.
+ vi — e~K2/#UJ(Ki?) (n = 0, 1, . . . ; fl > 0 unless n = 0) .

°
The wave-free potentials are

p (cose) p (cose)

^ + (2"+2) 11
(6.3) P ,(cose)

+ M(2n+2)(2n+3)(2n+10 2 ^ + 5 (n = 0, 1, ...) .
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FS multipoles on finite depth

Similarly we have the even multipoles (for n = 0, 1, ...)

' ' •'o fe(l+Aft2)sinh

and the singular potentials

(z/ > 0 unless n = 0)

which compose the even multipoles.

7. Conclusion

The required wave-source and multipole potentials obtained herein are

uniform in the parameter U and known results in the absence of surface

tension can be made evident by putting M = 0 . The line singularities

considered are symmetric, but those which are antisymmetric can be

obtained similarly. Also, the point singularities considered are

axisymmetric, but those which are more general can be obtained following

Thome [5].

It should be noted that the FS wave-source and multipole

singularities (where they exist) are not unique, since weaker

singularities can be added. This cannot occur for the submerged

singularities, since the integral terms are regular at the singularity.

Lastly, the wave-free potentials may also be obtained by appropriate

use of the following theorem.

THEOREM. If $ is a harmonic potential function which is zero on

y = 0 . then i> = K$ - $ - A/4> is a harmonic potential function which
tf y yyy
satisfies the FS condition with surface tension on y = 0 .

The proof is straightforward.

In the few surface tension problems considered to date, only

symmetric line singularities have been used. FS singularities on

infinite depth have been employed in Evans [2], an investigation into the

motion due to a half-immersed circular cylinder heaving on water of
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infinite depth, where the velocity potential can be expressed in terms

(for n = 0, 1, 2) of the singular potentials (5.h) which compose the

wave source and even multipoles, and the wave-free potentials (5-5); and

also in Packham [3], the problem of incoming waves on water of infinite

depth in the presence of a vertical cliff, where the solution obtained for

the velocity potential (in the alternative form which makes explicit the

incoming waves) is simply a multiple of the weakest (for n = 0) of the

singular potentials (5.h) which compose the wave source and even

multipoles (note that this remains bounded at the singularity) but with

the indentation of contour now above the simple pole. Submerged

singularities on both infinite and finite depth have been employed in

Rhodes-Robinson [4], a discussion of the vertical wave-maker problem -

first investigated in the absence of surface tension by Sir Thomas

Have lock, where the solution for the velocity potential is obtained by

means of the wave sources (3-1, 3-2) respectively.

No use has yet been made of point singularities. However, in their

survey article Wehausen and Lai tone [6] do give the potential of the first

(for m = 0) of the submerged multipoles C*.l, ^-3) on both infinite and

finite depth (but without proof).

References

[7] D.V. Evans, "The influence of surface tension on the reflection of

water waves by a plane vert ical bar r ie r" , Proa. Cambridge Philos.

Soc. 64 (1968), 795-810.

[2] D.V. Evans, "The effect of surface tension on the waves produced by a

heaving c i rcular cylinder", Proc. Cambridge Philos. Soc. 64

(1968), 833-8U7.

[3] B.A. Packham, "Capillary-gravity waves against a ver t ica l c l i ff" ,

Proa. Cambridge Philos. Soc. 64 (1968), 827-832.

[4] P.F. Rhodes-Robinson, "On the forced surface waves due to a ver t ica l

wave-maker in the presence of surface tension", (to appear).

[5] R.C. Thome, "Multipole expansions in the theory of surface waves",

Proa. Cambridge Philos. Soc. 49 (1953), 707-716.

https://doi.org/10.1017/S0004972700042015 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700042015


Water waves with surface tension 333

[6] John V. Wehausen and Edmund V. Laitone, "Surface waves", Handbuch

der Physik 9, Part 3, 1+1*6-7T8. (Springer-Verlag, Berlin,

Gottingen, Heidelberg, i960).

Victoria University of Wellington,

Wellington, New Zealand.

https://doi.org/10.1017/S0004972700042015 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700042015

