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1. Introduction

The calculation of the steady state thermal stresses in an isotropic elastic
half space or slab with traction free faces has been the subject of several
investigations. Steinberg and McDowell (1), using an extension of the
Bousinesq-Papkowitch method of isothermal elasticity, first derived the now
well-known result that in such a body which contains no heat sources there
exists a plane state of stress parallel to the boundary planes. Sneddon and
Lockett (2) approached this class of problems by direct solution of the equations
of thermoelasticity using a double Fourier integral transform method, the
results being transformed to Hankel type integrals in the case of axial symmetry.
A further approach due to Nowinski (3) exploits the fact that in steady state
thermoelasticity each component of the displacement vector is a biharmonic
function which can be expressed as a combination of harmonics. However,
possibly the most economical method of solution of this type of problem is
that of Williams (4) who expressed the displacement vector in terms of two
scalar potential functions, one of which is directly related to the temperature
field. The same principle has also been used by Fox (5) in treating thermo-
elastic distributions in a slab containing a spherical cavity.

Recently Martin and Payton (6) have considered a mathematically more
complicated " mixed boundary condition " problem which arises in the study
of thermal stresses in a missile heat shield. Here one face of an infinite slab
of finite thickness is rigidly held while the other face is stress free. The clamped
face is at zero temperature and on the stress free face is imposed a temperature
distribution which varies only in one direction on the face. The problem
then reduces to one of plane strain. The equations of plane strain are solved
directly by means of Fourier transforms, a process which is both algebraically
unwieldy and analytically complicated.

In this paper we shall give a simple treatment of this and other non-axially
symmetric mixed boundary condition problems using a suitable solution of
the equations of thermoelasticity in terms of harmonic functions. In § 2 we
give the basic formulae required and express the displacement vector in terms
of three harmonic functions, the derivative with respect to z of one of these
Ijeing proportional to the temperature field. In § 3 the mixed boundary condition

303

https://doi.org/10.1017/S0013091500008993 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500008993


304 R. SHAIL

slab problem is formulated using a cylindrical polar coordinate system,
the harmonics being expressed as standard type Hankel integrals. The case
of a non-axially symmetric temperature distribution of the form/B(p) cos n(6 + 60)
on the stress free face is treated in detail. In general it is not possible to
evaluate in closed form the integrals occurring in the displacement and stress
components and numerical methods must be used. § 3 concludes with a short
treatment of the axisymmetric analogue of the problem of Martin and Pay ton;
specifically the temperature on z = 1 takes a constant value over a circular
region of radius a, being zero elsewhere.

In § 4 the problem of Martin and Payton is considered and it is shown
that, replacing the Hankel integrals in the harmonics by Fourier integrals,
the problem is mathematically equivalent to that of § 3. In § 5 some further
mixed condition problems are briefly considered in which the rigid fixing of
the zero temperature face is replaced by a frictionless constraint.

2. Basic equations
We consider an isotropic infinite flat elastic slab of finite thickness, one of

whose faces is rigidly held. We choose a set of Cartesian coordinates (x, y, z)
in which the clamped face is the plane z = 0, the origin of coordinates being
at some point O in this plane. We also introduce at O a set of cylindrical polar
coordinates (p, 6, z) and choose our unit of length so that the stress free face
of the slab is z = 1. There is established in the solid a steady temperature field
T(p, 6, z) where T is the deviation of the absolute temperature from the temper-
ature of the solid in a state of zero stress and strain which we take to be zero.
In the absence of body forces or heat sources within the medium the steady
state equations of thermoelasticity are

(l-2f;)V2«+grad[div«-2a(l+>7)r] = 0 (1)

and V2T = 0, (2)

where u is the displacement vector, r\ is Poisson's ratio and a is the coefficient
of linear expansion of the solid. Further, the stress vector Z across an element
of surface area whose normal is parallel to Oz is given by

z =
fc+

(l-2>?) oz
where fi is the modulus of rigidity and k a unit vector along Oz.

We next construct the solution of (1) and (2) most convenient for our
purposes. It is readily verified by direct substitution that a solution of these
equations is given by

«, = 4>k (4)
and

r - l d* (5)
2 ( l + ) f l '
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where $ is a harmonic function. The corresponding stress vector Zx is

Z t = n grad <t>. (6)

A more general solution can now be obtained by adding to (4) an appropriate
Isothermal (T = 0) displacement which (Green and Zerna (7), p. 167) can be
written in terms of harmonic functions i/f and x as

«2 = (3 - 4ri)ij/k - z grad i// + grad x, (7)

the stress vector Z2 being

Z2 = 2/i {(1-2,7) grad $ + dl k-z grad ^ +grad ^ 1 . (8)
( dz dz dz)

Thus we take for our solution of equations (1) and (2) the expressions

« = (<t> +P*l')k - z grad ij/ + grad x (9)
and

where /? = 3 — 4r\, the associated stress vector being

Z = jtigrad<£+O?-l) grad \j/+2 -Z-k-2z grad — +2 grad—i. (11)
I 5z dz dz)

3. The thermoelastic problem referred to cylindrical polar coordinates
Suppose that the thermoelastic stress system in the slab is set up by a

temperature field which is zero on the clamped face z = 0 and takes a pre-
scribed value fn(p) cos n(0 + 0o) on the traction free face z = 1.. Here n is an
arbitrary positive integer on zero and more general temperature distributions
on z = 1 can be obtained by Fourier superposition. It is easily seen that the
temperature field satisfying these boundary conditions is

f00
T(p, 0, Z) = COSH(0+0O) XA(X) sinh Xz3n{Xp)dX (12)

Jo
where A(X) is determined by the requirement that

fn(p)= \ XA(X) sinh XJn(Xp)dX. (13)
Jo

Thus, using the Hankel inversion theorem,

f00
4(A)sinhA= pfn(p)Jn(Xp)dp; (14)

Jo
further, from (10) the function <f> is found as

foo
0 = 2a(l+?7)cos«(0+0o) A{X) cosh XzJn(Xp)dX. (15)

Jo
E.M.S.—X
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It should be noted that if A(X) is O(X~"~1) or greater at the origin X = 0 the
integrand in (15) becomes singular there. We shall assume here and elsewhere
that such singularities are excluded by the reinterpretation of the integral as
a contour integral with a suitable indentation in the contour at the origin. In
any event all real integrals derived from (15) which represent quantities of
physical interest have integrands which are analytic at X = 0.

In order to solve the elastic problem we now represent the harmonics \j/
and x m (9) as

\ji = cos n(0+0O) I {Pi(X) cosh Xz+P2(X) sinh Xz}Jn(Xp)dX, (16)
Jo

and

X = cos «(0 + 0O) Q(X) sinh XzJn(Xp)dX. (17)

With this choice of \j/ and x the conditions up = ug = 0 on the clamped face
are satisfied identically and the condition uz = 0 on z = 0 gives

2<x(l + rj)A(X)+pP1(X)+2XQ(X) = 0. (18)

On the face z = 1 the mechanical boundary conditions are

V = T9I = az = 0 (19)

where, in the usual notation, rpz, xBz and az are the components of Z in the
directions of p, 0 and z increasing, respectively. Referring to (11), the conditions
?PZ = Tez = 0 on z = 1 lead to the same relation, namely

2a(l +rI)A(X) cosh X+P^ifi-1) cosh X-2X sinh X)

+P2(X){(fi-1) sinh X-2X cosh X}

+2XQ(X)coshX = 0, (20)

and the condition az = 0 on z = 1 gives

2a(l +>/)^(A) sinh X+P1(X){(fi+1) sinh A-2A cosh X}

+P2(A){0S+l)coshA-2Asinh/l} + 2Ae(A)sinhA = 0. (21)

On solving (18), (20) and (21) we find

Pt(X) = - 2<x(l + r()A(X)(p+cosh 2A)/A(21), "j

P2(X)= -2oL(l+r,)A(X)(2X-smh2X)/A(2X), i (22)

and Q(X) = - 2a(l + rj)A(X)(l +4X2+p cosh 21)/AA(2/l) J

where A(x) = l+y?2+x2 + 2/?cosh;c, thus determining the harmonics ^ and
X in terms of the known function A(X). In general, for a given/„(/>), the evalua-
tion of the integrals occurring in the displacement and stress components is
complicated by the existence of the factor {A(2/l)}~1 in the integrands and
it is not possible to find closed forms.

Let us consider briefly the axisymmetric analogue of the problem treated
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in (6). Suppose that the temperature distribution on z = 1 is given by

Then, from (14),

/ sinh A

and the temperature field in the slab is

T(p, z) =
sinh

(23)

(24)

(25)

For given p, a and z the infinite integral in (25) must be evaluated numerically;
an alternative series expansion, rapidly convergent for large p, can be found
by considering the contour integral

where
1c sinh;

, if P<a,

, if p>a.

Here £ = X + ia and the contour C consists of a large semi-circle in the upper
(-half-plane, and the real axis indented in the upper half-plane at the origin.
We find that

[
Jc Q

00

To [l-2a V (-1)""1 sin
\ n = i

2Toa £

) j , p<a,

p>a.

(26)

(27)

n = 1

Integration of (25) with respect to z to compute <j> produces a singular
integrand of the type mentioned earlier in this section and hence we must use
instead the contour integral in (26). We have

f
Jcc C sinh

2a(l+f,)Tofz-2a
\

4a(l +ti)Toa ^ (
n = 1

n = 1 M7I

(28)

/17I
p>a.
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Further, from (16), (17), (22) and (24) the harmonics \p and / are given by

2Q cosh fr+(2C-rinh 2Q sinh Cf
Jc £A(2Q sinh i

(29)
and

X = —ia(l+'/)Toa I , ^(O^C) (30)
Jc C A(20 sinh £

from which infinite series expansions can be derived, leading to formulae for
the stress and displacement components analogous to those given in (6).
However, these formulae contain summations over those roots of A(2£) = 0
(see (6)) with positive imaginary parts and from the practical point of view it is
probably better to evaluate numerically the real integral forms of these quantities.
For example, the stress components on the plane z = 0, quantities of particular
physical interest ((6), page 2), are given by

I*00 {(1-0)(1 -cosh
Jo A(2A) sinh.

and

(32)
o A(2/l) sinh A

4. The problem of Martin and Payton
We now apply the solutions (9) and (10) of the thermoelastic equations to

the problem considered by Martin and Payton (6). Again, our analysis is
formal and any apparent singularities at the origin introduced by the manipula-
tion of Fourier integrals are assumed to be removed, without comment, by
suitable modification of the contour of integration.

Relative to the Cartesian axes introduced in § 2 we now suppose that on
the stress free face the prescribed temperature distribution is a function f(x)
of the coordinate x only. The Fourier representation

T(x, z) = - \ a(X)eax sinh XzdX (33)
2rcJ-co

gives zero temperature on the clamped face z = 0 and a(X) is determined by
the equation

/ t o = ~ I " a&)eUx sinh MX. (34)
Fourier inverting,

a(A)sinhA= T f(x)e-ikxdx (35)
J — oo

and the function <t> is found from (10) as

, z) = <l±nl f fW eu> cosh kzdX (36)
n J i
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(If a(X) is 0(1) at X — 0, (36) is an example of a Fourier integral with a singular
integrand referred to above.)

The mechanical boundary conditions to be satisfied are

wx = uT = 0 on z = 0)
(37)

and xxy = <rz = 0 on z = 1J
Thus we represent the harmonics \\i and % as

{PiOl) cosh Az + p2(X) sinh AzV^A (38)

and

1= ~\ <lW s inh Xzea*dA, (39)

the condition ux = 0 on x = 0 thereby being satisfied. Application of the
three remaining boundary conditions in (37) leads to equations of the form

(18), (20) and (21) with A(X) replaced by °^-. Thus we find
k

Pl(X) = - 2a(l + t])a(X)(fi + cosh 2A)/AA(2A), ^

P2(X) = - 2a(l + ̂ )a(/l)(22 - sinh 2A)/AA(2A), 1 (40)

and q(X) = -2a(l + >/)a(A)(l + 4A2 +/! cosh 22)//l2A(2A), J

and the Fourier transforms of the displacement and stress components are
readily shown to agree with those calculated in (6) by a much more complicated
procedure.

5. A further class of mixed boundary condition problems
A further class of mixed boundary condition problems arises if, instead of

being rigidly held, the face z = 0 of the slab rests against a rigid frictionless
foundation (i.e. the shear stress and normal component of displacement are
zero on z = 0). It was observed by Sneddon (8) that, if the foundation is
thermally insulated, a prescribed temperature on the stress free face produces
a plane state of stress parallel to the boundary faces. In terms of our solution

AT
the condition — = 0 on z = 0 implies the vanishing of ^ on z = 0, and all

dz
boundary conditions can be satisfied by setting i// = 0 and

dz W

Thus, from (11) we have Z = 0 and

oyH = — 2 — ft+grad/.
dz
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Suppose now that the foundation is maintained at zero temperature. With
a prescribed surface temperature of the form fn(p) cos n(9 + 60), T is again
given by equations (12), (13) and (14), and now a three-dimensional state of
stress results. The boundary conditions are

V = T9Z = MZ = 0 on z = 0,

and TPZ = xez = az = 0 on z = 1.

Representing \ji as in (16) and x by

r
X = cos n(0+0o) {Q^coshAz+ezWsinh^zy^Ap^A, (42)

Jo
the conditions (41) lead to a set of four simultaneous equations for Pu P2,
<2i and Q2 with solution

( j ) ( ) ( 2A-

2a(l+^(A){(j3-

and Q2(X) = - 2a(l +f/)^(A)/A(l +

where S = 2A + sinh 2k. The function E"1 in the integrands of the stress and
displacement components is of common occurrence in thick plate theory;
approximate methods of handling such integrals have been given by Sneddon
((9), p. 476).

Finally, we remark that if the temperature distribution in the slab is that
of § 4, the solution of the thermoelastic problem may be deduced from the
previous paragraph as in § 4, Fourier integrals replacing the Hankel transforms.
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