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SUMMARY

Crimean-Congo haemorrhagic fever (CCHF) is endemic in the southeast of Iran. This study
aimed to predict the incidence of CCHF and its related factors and explore the possibility of
developing an empirical forecast system using time-series analysis of 13 years’ data. Data from
2000 to 2012 were obtained from the Health Centre of Zahedan University of Medical Sciences,
Climate Organization and the Veterinary Organization in the southeast of Iran. Seasonal
autoregressive integrated moving average (SARIMA) and Markov switching models (MSM) were
performed to examine the potential related factors of CCHF outbreaks. These models showed
that the mean temperature (°C), accumulated rainfall (mm), maximum relative humidity (%) and
legal livestock importation from Pakistan (LIP) were significantly correlated with monthly
incidence of CCHF in different lags (P<0·05). The modelling fitness was checked with data from
2013. Model assessments indicated that the MSM had better predictive ability than the SARIMA
model [MSM: root mean square error (RMSE) 0·625, Akaike’s Information Criterion (AIC)
266·33; SARIMA: RMSE 0·725, AIC 278·8]. This study shows the potential of climate indicators
and LIP as predictive factors in modelling the occurrence of CCHF. Our results suggest that
MSM provides more information on outbreak detection and can be a better predictive model
compared to a SARIMA model for evaluation of the relationship between explanatory variables
and the incidence of CCHF.
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INTRODUCTION

Crimean-Congo haemorrhagic fever (CCHF) is a viral
zoonotic disease with a high mortality rate in humans.
CCHF is a public health problem in many regions of

the world such as Eastern Europe, Asia, the Middle
East and Africa. The ecological complexity of
vector-borne diseases, therapeutic controversy, and
human-to-human transmission of a zoonotic infection
make CCHF an interesting topic for research [1].

There has been a substantial increase in reports of
CCHF virus (CCHFV) over the past 5 years and the
geographical range of CCHFV is the most extensive
of the tick-borne viruses that affect human health
[1–3]. CCHFV can be transferred from endemic to
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non-endemic areas due to carriage of large numbers of
infected ticks by migrating birds and livestock. This
can cause the spread of CCHFV into uninfected areas
[4]. Although there are other species of genera of
ticks which act as vectors of CCHF [5], the genus
Hyalomma has the main role in the transmission cycle
of CCHF, especially in the southeast of Iran [3, 6, 7].

Several studies have discussed the relationship be-
tween climatic factors and the vector’s life-cycle, eco-
logical conditions, and consequent occurrence of
CCHF in human populations [1, 8–10]. On the other
hand, climatic factors may lead to livestock diseases
through their effects on a number of factors including
the range and abundance of vectors and wildlife reser-
voirs, survival of the pathogen in the environment
and farming practice [8, 11]. The changes in climatic
conditions have been suggested as facilitatory factors
for reproduction of the tick population and the conse-
quent increase in the incidence of tick-borne infectious
diseases [1, 11]. Moreover, legal and potentially illegal
animal transportation from neighbouring countries
impose a risk of international spread from endemic
countries to other ones [4, 11, 12]. There are both
legal and illegal livestock transportation and uncon-
trolled population movement between Iran and its
neighbouring countries, Pakistan and Afghanistan
[12]. Therefore, the occurrence of CCHF appears to
be affected by the import of livestock from neighbour-
ing countries [9] and this should be considered in early
warning of CCHF outbreaks.

So far the occurrence of CCHF has been reported
in 23–26 out of 30 provinces of Iran. From 1999
(starting the register of CCHF in Iran) to 2012, the
Sistan-va-Baluchistan province, which is located in
the southeast of Iran, has been recognized as the most
important endemic site of the disease in the country
[3, 13, 14]. In Iran the most affected professions in-
cluded jobs that involved the handling of blood and
organs from infected livestock [3]. Therefore, infected
livestock play a main role in the transmission cycle of
this infection.

It is clear that an early warning of CCHF outbreaks
based on related factors could prevent outbreaks,
decrease mortality rates, and help to target preventive
actions. An early warning system is a competent tool
for working as a surveillance system for early diag-
nosis of the disease in humans and animals and for
monitoring suspected outbreaks [4].

This study reports the surveillance data collected
during the past 13 years in Sistan-va-Baluchistan
province, and uses the climate findings and legal

livestock importation from Pakistan (LIP) details to
create a basis for making early warnings of CCHF
outbreaks. Specifically, this study attempts to follow
two goals. First, it explores the potential impact of
weather variability and LIP on CCHF incidence
using valuable time-series models. Second, it examines
the difference between the predictive ability of MSM
and SARIMA models.

MATERIALS AND METHODS

Study area

Sistan-va-Baluchistan province is located in the
southeast of Iran, and has common borders with
Pakistan and Afghanistan. Its capital is Zahedan,
which is located between 45° 32′ and 48° E and 34°
47′ and 35° 1′ N. The economy is mainly based on
agriculture and livestock. As a result, a large pro-
portion of the population comes into close contact
with livestock. This provides a high risk of exposure
to CCHF virus. Sistan-va-Baluchistan province
today accounts for one of the driest regions of Iran
with a slight increase in rainfall from east to west
and an obvious rise in humidity in winter. The climate
is tropical with two distinct seasons: a dry season from
April to October, characterized by relatively low rain-
fall from November to March. The climate condition
of this province is similar to the border provinces of
Pakistan and Afghanistan [15]. About 10% of the
population of this province consists of immigrants
from Afghanistan and Pakistan. There is also some
nomadic population in sparse and scattered villages
and their usual occupation is tenting and trading live-
stock [16].

Case definition

A confirmed CCHF case was defined as one with a
positive IgM or IgG serological test (ELISA method)
and/or positive by RT–PCR detection of viral RNA
in the serum sample sent to the Laboratory of
Arboviruses and Viral Haemorrhagic Fevers, Pasture
Institute of Iran, Tehran, Iran [17]. All cases had
been reported and registered according to the surveil-
lance and control programme of CCHF in Iran.
An individual was considered to be a suspect case
when exhibiting sudden onset of fever, myalgia, and
different haemorrhagic manifestations with an epide-
miological background such as a history of tick
bite, handling animal or human blood or tissue.
These suspected cases were screened as probable

840 H. Ansari and others

https://doi.org/10.1017/S0950268814001113 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268814001113


cases whose symptoms include thrombocytopenia
(platelets <150000/mm3), leucopenia [white blood
cell count (WBC) <3000/mm3] or leucocytosis (WBC
>9000/mm3). Finally, any CCHF probable case
whose serum was positive for immunoglobulin
M (IgM) antibodies and/or who was positive by
RT–PCR detection for viral RNA was considered a
CCHF confirmed case. The samples of cases classified
as a probable CCHF are sent to the National
Reference Laboratory [18].

Data collection

The data of all confirmed CCHF cases have been regis-
tered from 2000 to 2012 by the surveillance system
of the Province Health Centre of Zahedan University
of Medical Sciences (ZUMS). This databank is under
the supervision of the Centre for Management of
Communicable Diseases in Iran. However, data from
2013 was used for checking the model’s validity.

The monthly temperature data (°C), the monthly
accumulated rainfall (in mm3), and the monthly
relative humidity (percentage) were collected from the
meteorological organization of Sistan-va-Baluchistan
province. We used the records of two synoptic centres
located in the east (Saravan station) and northeast
(Zabol station) of the province. As the occurrence
of CCHF in Sistan-va-Baluchistan province appeared
to be affected by the import of livestock from neigh-
bouring countries, the data for LIP were collected
from the veterinary organization of Sistan-
va-Baluchistan province and also via searching the
documents related to quarantine during these years.
As the importation of legal livestock requires the
authorization of the Veterinary Organization of Sistan-
va-Baluchistan province, this organization supervised
all legal livestock importation from Pakistan and regis-
tered the number of imported livestock each day.

Statistical analyses

Simple (unadjusted) analyses were conducted for
response and each explanatory variable as univariate
analysis. Cross-correlation coefficients were used to
compute a series of correlations between explanatory
variables (climate factors and LIP) and the incidence
of CCHF over a range of time lags. A time lag was
defined as the time span between explanatory-variable
observation and the incidence of CCHF (e.g. in this
study the correlation between CCHF incidence and
mean temperature at lag 1 is the correlation between

number of CCHF cases in this month and mean
temperature in the previous month).

SARIMA model

As both CCHF incidence and weather variables exhib-
ited strong seasonal variation and fluctuations in their
annual means, the seasonality was adjusted by first
seasonally differencing the series, replacing each
observation by the difference between itself and the ob-
servation a year ago (i.e. seasonal component was re-
moved by a seasonal differencing: Zt –Zt – s (where
Zt=values of the time series at time t andZt – s=values
of the time series at time t−12months). Four stepswere
undertaken in the modelling as follows.

First, the variance of the series was stabilized by
natural logarithm transformation. The dependent
variable, LIP and accumulated rainfall were log trans-
formed. Then, prior to modelling, both CCHF inci-
dences and explanatory variables were transformed
into a stationary input series [19]. Second, SARIMA
models were developed using the log-transformed
monthly incidence of CCHF. The log transformation
facilitated the assumption of normally distributed
responses. Seven main parameters were selected
when fitting the SARIMA (p,d,q)(P,D,Q)s model:
the order of autoregression (p) and seasonal autore-
gression (P), the order of integration or regular differ-
encing (d) and seasonal integration or seasonal
differencing (D), and the order of moving average
(q) and seasonal moving average (Q), and the length
of seasonal period (s). To identify the order of moving
average and autoregressive parameters, the structure
of temporal dependence of stationary time series is
assessed by the analysis of autocorrelation (ACF)
and partial autocorrelation (PACF) functions, re-
spectively. The selection of SARIMA processes was
conducted using Akaike’s Information Criterion
(AIC). Of all the models tested, a SARIMA (1,0,1)
(0,1,1)12 model was found to best fit the data [19].

The explanatory variables with different lags
(delayed effects) were found to correlate with CCHF
cases using cross-correlation coefficients as univariate
analysis. The regression SARIMA model was fitted
with climate variables and LIP as external regressors
to CCHF incidence.

Third, the ACF of residuals and the Ljung–Box test
were used to check if the assumption were met [19].
Finally, the best final model was selected using AIC,
which measures how well the model fits the series
and the validity of the models was checked by fitting
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with data from 2013. The root mean square error
(RMSE) for models was also assessed. The RMSE is
equal to the square root of the mean of the differences
between true and predicted values [19].

Markov switching model (MSM)

Although we can control for seasonality and trend,
when the occurrence of outcome is not linear (such as
CCHF occurrence in this study) or the research is ana-
lysing surveillance data from small geographical areas
with health conditions that are rare, the Box–Jenkins
SARIMA model is not recommended [20]. On the
other hand, MSM is one of the time-series models
that is used for modelling nonlinear outcomes.

The MSM [21] belongs to the family of
state-space models. There are two types of equations
in this model: measurement equations and transition
equations. The measurement equation defines how
hidden states affect the observable random variables.
The transition equation defines how the state variables
evolve over time. The observable random variables in
the MSM depend on their historical values as well as
the hidden state variables. This setting makes the
MSM more suitable for time-series-related problems.
A simple MSM can be written as:

yt = a0,0 + a0,1St + (a1,0 + a1,1St)yt−1 + ei, (1)
P(St = j|St−1 = i) = Pij, (2)
St ; (0, 1), (3)
et � N(0, σ2), (4)
Equation (1) defines how the hidden state variable St

controls the dynamics of the observable random
variable yt. In a non-outbreak period (St=0), yt is de-
termined by a drift term a0,0 and the autoregressive
parameter a1,0. If an outbreak occurs (St=1), the
drift term increases to a0,0+a0,1 and the autoregressive
parameter increases to a1,0+a1,1 (assuming a0,1 50
and a1,1 50). Equation (2) indicates that the hidden
states evolve following a Markov process with tran-
sition probability Pij. Pij is the probability of state
j at time t conditional to state i at time t – 1.

A MSM with exogenous variables and modelling of
seasonal effects can be written as:

Yt = a0,0 + a0,1St + (a1,0 + a1,1St)yt−1 + b1
∑12
i=1

sin 2πi
12

( )

+ b2
∑12
i=1

cos 2πi
12

( )+∑k
i=1

civt,i + et,

(5)

where b1
∑12

i=1 sin
2πi
12

( )
and b2

∑12
i=1 cos

2πi
12

( )
are season-

ality control terms and
∑k

i=1 ci vt,i are exogenous and
potential controlling factors. If necessary, lagged inde-
pendent variables can also be included. For example,
we can set vt,1=xt–1, vt,2=xt–2, . . ., vt,n=xt–n. The ex-
pectation maximization (EM) algorithm [22] was
used for model estimation.

However, the probability of outbreak at period
t+1, could be estimated as follows:

P[St+1 = 0] = (1− P11)/(2− P00 − P11),
P[St+1 = 1] = (1− P00)/(2− P00 − P11).

}
(6)

The validity of the MSM was also checked by fitting
with data from 2013. However, the final SARIMA
and MSM models were comparable based on AIC,
RMSE and absolute mean number of cases (number
of predicted cases minus number of observed cases
in 2013). In this model, seasonality was modelled
using a sinusoidal transformation of time, including
both sin(2πi/12) and cos(2πi/12) in the regression mod-
els, where i represents the number of the month (e.g.
January=1, etc.).

The statistical software Stata v. 10 (StataCorp.,
USA) and OxMetrics 6.01 (oxmetrics.net/) was used
for all analyses.

RESULTS

Descriptive analysis

Between January 2000 and December 2012, 647
confirmed CCHF cases were reported from
Sistan-va-Baluchistan province, in the southeast of
Iran. The disease was most common in the months
of May, June, July and August and there was no
clear pattern of decline during these years. The
years 2002, 2008 and 2010 were the worst with
regard to the number of cases and occurrence of
outbreaks. The trend of number of cases from 2000
to 2013 is displayed in Figure 1. The trend of signifi-
cant climate data and LIP during the study period
(the data for climate and LIP from 2000 to 2012
was used for analysing and modelling) are displayed
in Figure 2.

Cross-correlation function

The results of the cross-correlations adjusted for sea-
sonality show that the incidence of CCHF was signifi-
cantly associated with LIP, mean temperature and
maximum monthly relative humidity at lags of up
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Fig. 1. Trend and distribution of confirmed Crimean-Congo haemorrhagic fever cases by month and year, from 2000 to
2013 in southeast of Iran.

Fig. 2. The time series and trend of climate data and legal livestock importation from Pakistan (LIP) from 2000 to 2012
in the southeast of Iran.
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to 2 months. Moreover, significant correlation for
monthly mean temperature was found at a lag of
5 months (reversed) and maximum monthly relative
humidity at lag of 3 month. We also found that the
monthly accumulated rainfall was inversely correlated
with CCHF incidence at a lag of 1 month and directly
correlated to disease incidence at a lag of 5 months.
However, there was no significant correlation between
CCHF incidence and the other variables in any lag
(Table 1).

SARIMA model

The best-fit final SARIMA model (based on AIC and
results of Lrtest) show that first-order autoregression,
first-order moving average, first-order seasonal moving
average, monthly mean temperature at a prior moving
average (lag) of 2 and 5 months, maximum monthly
relative humidity at a lag of 2 months, monthly
accumulated rainfall at a lag of 5 months and LIP
without delay (lag-0), were significantly associated
with CCHF incidence. The model estimated with the
explanatory variables was a better fit than the model
without these variables, in terms of smaller values of
AIC and RMSE (Table 2). Because of collinearity,
the significant climate variables at lag-0 month, was
not included in the multiple SARIMA model. The
Ljung–Box test confirmed that the time-series residuals
were statistically not dependent (P=0·6). Moreover,
autocorrelation functions and histogram of residuals
approved the independence and normality of residuals,
respectively.

The selected SARIMA model fitted observed
data from January 2000 to December 2012. To predict
for 2013, the 12 month-step approach showed the
smallest RMSE and the predictions and their confi-
dence intervals were improved after the variables
introduced remained in the final model (Fig. 3).

MSM

We normalized the dependent variable using log
transformation. Based on results of the simple MSM
fitted model, one time lag of CCHF can help to pre-
dict this disease in later time. (Table 3). As stated ear-
lier, the simple MSM is yt=a0,0+a0,1st+(a1,0+a1,1st)
yt–1+et. Therefore, we found that a0,0=0·207, a0,1=
1·24–0·207=1·033, a1,0=0·315, a1,1=0·454–0·315=
0·139. Furthermore, based on the simple model, theT
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transition probabilities can be estimated as follows:

Pij = P00 P01

P10 P11

[ ]
= P00 1− P00

1− P11 P11

[ ]

= 0·7 0·3
0·41 0·59

[ ]
,

where, P00 is the probability of non-outbreak state
at both periods t and t+1, P11 is the probability of
outbreak state at both periods t and t+1, P01 is the
probability of changing the series from non-outbreak
state at period t to outbreak state at period t+1 and

P10 is the probability of changing the series from
outbreak state at period t to non-outbreak state at
period t+1. Based on equation (6) the P(St+1=1) is
as follows:

P[St+1 = 0] = (1− 0·59)/(2− 0.7− 0·59) = 0·57,
P[St+1 = 1] = 0·43.

As our data was up to December 2012, this means
that the probability of an outbreak is relatively low
in January 2013 (1 month later).

Table 2. Regression coefficients of SARIMA (1, 0, 1) (0, 1, 1)12 on the monthly incidence of CCHF in
Sistan-va-Baluchistan, southeast of Iran, 2000–2012 (seasonality controlled with seasonal differencing)

Variables

Model without explanatory
variables (simple SARIMA
model)

Model with explanatory variables (multiple
SARIMA model)

β S.E. P value β S.E. 95% CI P value

Autoregression 0·917 0·064 <0·001 0·865 0·097 0·67 to 1·05 <0·001
Moving average −0·667 0·101 <0·001 −0·567 0·100 −0·76 to −0·37 <0·001
Seasonal moving average −0·744 0·098 <0·001 −0·899 0·180 −1·2 to −0·54 <0·001
Mean temperature_lag1 — 0·004 0·014 −0·023 to 0·03 0·770
Mean temperature_lag2 — 0·033 0·013 0·007 to 0·05 0·015
Mean temperature_lag5 — −0·100 0·030 −0·15 to −0·04 0·001
Maximum relative humidity_lag2 — 0·067 0·020 0·02 to 0·16 0·001
Accumulated rainfall_lag5 — 0·014 0·007 0·0003 to 0·02 0·049
LIP_lag0 0·218 0·095 0·03 to 0·4 0·022
AIC 336·68 278·8
RMSE 0·896 0·725

CCHF, Crimean-Congo haemorrhagic fever; S.E., standard error; CI, confidence interval; LIP, legal livestock importation
from Pakistan; AIC, Akaike’s Information Criterion; RMSE, root mean square error.

Fig. 3. Observed reported cases of Crimean-Congo haemorrhagic fever (CCHF) and predicted values based on final
selected SARIMA model in the southeast of Iran. The multiple SARIMA (1,0,1)(0,1,1)12 model and 12 months-ahead
values with 95% prediction intervals are presented.
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The best-fit final MSM with explanatory variables
based on regimen change pattern, show that first-
order autoregression (a1,0+a1,1St), monthly mean tem-
perature at a prior moving average or lags of 1 and
2 months, maximum monthly relative humidity at a
lag of 2 months, and LIP at lags of up to 1 month
were significantly associated with CCHF outbreaks.
The MSM estimated with the explanatory variables
was a better fit than the model without these variables,
in terms of smaller values of AIC and RMSE
(Table 3). As the most difference between coefficient
of explanatory variables in outbreak and non-outbreak
functions is due to the LIP variable, this is therefore
the most important factor in causing outbreaks in
the southeast of Iran. The transition probabilities
in multiple MSM are different from simple MSM
and the explanatory variables changed the probability
of outbreaks and their transitions. Similar to simple
MSM (mentioned above), we can calculate the

P(St+1=1) using estimated coefficients in multiple
MSM in Table 3.

The selected MSM fitted observed data from
January 2000 to December 2012. We also present
the 12-month step approach and its confidence inter-
vals (Fig. 4).

Comparison of MSM and SARIMA models

The nature and magnitude of the effect estimates
is not too different for the two methods used in this
study. The selection of variables was based on cross-
correlation function. BothMSMand SARIMAmodels
show that LIP without delay (lag-0), monthly mean
temperature and monthly mean maximum humidity
at a lag of 2 month were significantly associated with
CCHF disease. Moreover, monthly mean temperature
and LIP at a lag of 1 month were significantly asso-
ciated with CCHF disease only in the MSM.

Table 3. Regression coefficients of simple and multiple MSM on the monthly incidence of CCHF in
Sistan-va-Baluchistan, southeast of Iran, 2000–2012 (seasonality controlled with harmonic seasonal factors and
sinusoidal term included in the model). The β coefficients for the variables indicate the effect of explanatory variables
on CCHF incidence in non-outbreak and outbreak periods, respectively

Variables

Simple MSM Multiple MSM

β S.E. P value β S.E. 95% CI P value

Constant(0), a0,0 0·207 0·134 0·120 0·64 0·42 −0·18 to 1·4 0·120
Constant(1), (a0,0+ a0,1) 1·24 0·221 <0·001 1·11 0·53 0·07 to 2·1 0·042
Autoregression (0) (a1,0) 0·315 0·098 0·002 0·22 0·10 0·02 to 0·41 0·036
Autoregression (0), (a1,0+a1,1) 0·454 0·059 <0·001 0·64 0·21 0·22 to 1·05 0·032
Mean temperature_lag1(0) — 0·07 0·35 −0·6 to 0·7 0·831
Mean temperature_lag1(1) — 0·48 0·13 0·22 to 0·73 0·001
Mean temperature_lag2(0) — 0·05 0·03 −0·008 to 0·1 0·112
Mean temperature_lag2(1) — 0·16 0·05 0·06 to 0·2 0·002
Mean temperature_lag5(0) — 0·04 0·03 −0·01 to 0·09 0·071
Mean temperature_lag5(1) — 0·05 0·15 −0·2 to 0·31 0·701
Maximum relative humidity_lag2(0) — 0·09 0·12 −0·14 to 0·32 0·911
Maximum relative humidity_lag2(1) — 0·34 0·12 0·1 to 0·5 0·012
Accumulated rainfall_lag1(0) — 0·03 0·81 −1·5 to 1·6 0·901
Accumulated rainfall_lag1(1) — 0·02 0·02 −0·02 to 0·04 0·112
Accumulated rainfall_lag5(0) — 0·06 0·07 −0·07 to 0·19 0·351
Accumulated rainfall_lag5(1) — 0·01 0·02 −0·02 to 0·05 0·601
LIP_lag0(0) — 0·04 0·19 −0·33 to 0·41 0·812
LIP_lag0(1) — 0·72 0·08 0·56 to 0·87 <0·001
LIP_lag1(0) — 0·01 0·02 −0·03 to 0·05 0·512
LIP_lag1(1) — 0·66 0·06 0·54 to 0·77 <0·001
P00 0·70 0·78
P10 0·41 0·39
AIC 327·1311 266·339
RMSE 0·736 0·625

CCHF, Crimean-Congo haemorrhagic fever; MSM, Markov switching model; S.E., standard error; CI, confidence interval;
LIP, legal livestock importation from Pakistan; AIC, Akaike’s Information Criterion; RMSE, root mean square error.
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However, in both SARIMA and MSM models, the
validity of the models was checked by fitting with
data from 2013. When the models were fitted to the
data of 2013, the models were able to predict infec-
tions in that year in an appropriate way (Figs 3, 4);
the peaks and dips of the prediction and infection
curves are in the same direction in both SARIMA
and MSM models. However, the mean number of
cases (number of predicted cases minus number of
observed cases in 2013) (regardless of mathematical
sign) was 0·61 and 0·82 for MSM and SARIMA
models, respectively. Although both models had
reasonable accuracy over the predictive period,
based on AIC and RMSE, the MSM in both simple
and multiple models had slightly better fitted than
the SARIMA model (Tables 2 and 3).

DISCUSSION

Based on our findings in this study there was no clear
pattern of decline in the reported number of CCHF
cases during the past 13 years and a fluctuation was
seen in occurrence of this disease with three peaks in
years 2002, 2008 and 2010. This result is somewhat
similar to previous study conducted in Bulgaria that
describe the trends of CCHF between 1997 and 2009
[10]. However, in a Turkish study the number of
cases increased markedly from 2004 to 2007 [23].

The results of this study (based on two reliable
models) suggest that climate variability (particularly
mean temperature and maximum humidity) and LIP

may have played a significant role in the incidence
of CCHF in the southeast of Iran either directly or
through other unmeasured variables. This result is
relatively similar to previous studies conducted in
Iran and Europe [9, 10]. The predominant effect of
climate variables was observed after a lag of 1 and 2
or 3 months for some climate variables (accumulated
rainfall, mean temperature, maximum relative hu-
midity). However, the predominant effect of LIP
was after a 1-month lag or without delay (lag-0).

In the southeast of Iran, the main routs of trans-
mission for CCHF is contact with blood or tissue
of infected livestock [3]. However, it should be men-
tioned that an increase in reservoir (ticks) activity
and population cause an increase in the source
(infected livestock) of the virus. Therefore, it might
be concluded that climatic variables do not influence
directly the incidence of the disease, but only in-
directly, and through their effect on the life-cycle dy-
namics of both vector and virus and the consequent
infection in livestock. On the other hand, the several
successive phases from tick hatching to appearance
of human cases led to global cumulative lags in our
study (especially in univariate analysis using cross-
correlations).

As stated earlier, although the genus Hyalomma is
not the only vector of CCHF, it has, however, the
main role, especially in the southeast of Iran [6, 7].
As the activity of Hyalomma is not limited to one
specific month and they are found throughout the
year [24], there is a positive relationship between

Fig. 4. Observed reported cases of Crimean-Congo haemorrhagic fever (CCHF) and predicted values based on final
selected MSM in the southeast of Iran. The multiple MSM and 12 month- ahead values with 95% prediction intervals are
presented.
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maximum humidity and temperature with CCHF inci-
dence in different lags. It could be concluded that
increases in heat and moisture in a specific month
could not predict the number of cases in a later
month.

Moreover, this study has demonstrated a reverse re-
lationship between CCHF incidence and average tem-
perature at a lag of 5 months in both univariate and
multiple regression SARIMA models. This means
that the increasing average temperature in October–
November decreased the likelihood of CCHF cases
being reported in the following year. A similar
finding has previously been observed in Turkey and
Bulgaria [10, 25]. The warmer temperatures in winter
and shorter annual cold periods limit development
and increase mortality of tick stages [26].

Some studies have observed that a decrease in
rainfall might produce a more suitable condition for
increased tick activity [26, 27]. We also observed
such a finding in the univariate analysis of the re-
lationship between CCHF incidence and rainfall
with a lag of 1 month. The numbers of cases in the
months (even fromMarch to September where rainfall
is negligible) with low rainfall were more than in the
months with high rainfall.

In the southeast of Iran, most of the patients were
reported from March to August and there are few
cases in the rest of the year. Therefore, the MSM
showed that in both simple and multiple models, P00

and P11 were more than P10 and P01, respectively.
This means the regimen (i.e. outbreak or non-
outbreak periods) is not intended to change. On the
other hand, in both simple and multiple models, P10

was more than P01. This means the prolongation
of non-outbreak periods, lead to a decrement in out-
break probability during the year. This study showed
that LIP is the most important factor in outbreaks
in the southeast of Iran. Moreover, a previous study
showed that the pattern of CCHF distribution on
the other side of the border, i.e. in the Baluchistan
region of Pakistan, is somehow different from results
of our study, with two annual surges in April and
August [28]. On the other hand, the yearly peak in
the number of cases in Sistan-va-Baluchistan province
of Iran follows the first surge of the disease in
Baluchistan province, Pakistan. This is probably due
to transmission of infected immature ticks by rodents,
small animals and birds [1, 29] and infected mature
ticks by livestock imported from Pakistan to Iran
[9]. Therefore, we conclude that, if the livestock im-
portation from Pakistan ceased from March to July,

the probability of CCHF incidence and outbreaks
would decrease and consequently the outbreak period
would be short.

The climate factors do not affect the incidence of
CCHF in humans directly, but the effect of climate
factors on CCHF outbreaks is through their effect
on the vector’s (Hyalomma ticks) life-cycle. On the
other hand, in the southeast of Iran, CCHF is trans-
mitted mainly through contact with blood and body
fluids of infected animals during the viraemic
phase of disease [30, 31]. There is illegal animal
trade and uncontrolled population movements be-
tween Pakistan and Afghanistan (through Quetta
city) [12] and consequently between Iran and
Afghanistan (through Nimroz province); therefore,
LIP could influence CCHF incidence in human popu-
lations directly in this region. Since the health system
is not able to intervene in weather variability, ceasing
LIP in spring and summer, or more suitable quaran-
tine in the border areas, could help to prevent
outbreaks. It should be noted that, in accord with
the results of previous studies, the CCHFV genome
isolated from Iranian patients is similar to that from
Afghanistan and Pakistan that hasa close relationship
with the CCHF Matin strain [2, 3, 12, 32, 33]; there-
fore the migration of CCHFV is free and unrestricted
between Iran and Pakistan [34].

We obtained relatively similar results from two
different time-series models: SARIMA and MSM.
Both methods show a clear association of weather
variables and LIP with CCHF disease in the southeast
of Iran. However, we found that the MSM allowed
for more information about the series and outbreak
detection regarding transition probabilities. On the
other hand, with respect to goodness of fit and predic-
tive accuracy, the MSM was better than SARIMA.
Therefore, the MSM has several advantages com-
pared to the SARIMA model, in particular, its
forecasting capability and its richer information on
time-related changes; but generally, both MSM and
SARIMA modelling are useful for interpreting and
applying surveillance data in disease control and
prevention.

This study has two major strengths. First, to our
knowledge, this is the first time-series study to exam-
ine the relationship between major weather variables
and LIP with CCHF incidence in a most prevalent
area in Iran using valuable time-series models. Our
data demonstrate that in addition to LIP, of all
climate variables, only mean temperature, maximum
relative humidity and rainfall are associated with
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CCHF. Second, we compared two common time-
series analysis methods and found that a MSM fore-
casting model appeared to be more suitable than a
SARIMA model in the assessment of the relationship
between CCHF and some explanatory variables.

Some limitations of this study should also be
acknowledged. The occurrence of CCHF is complex;
CCHF is not only influenced by weather, but by
many other biological, social, and environmental fac-
tors such as change in agricultural activities, ranching,
nomadic population and illegal livestock trading that
might also lead to bias in causal inference in this
study.

However, near the borders, the weather conditions
in neighbouring countries is the same as in Sistan-
va-Baluchistan province in Iran (data not shown)
and the results of this study could be generalized to
Pakistan (Baluchistan province) and Afghanistan
(Nimroz province).

The findings of this study may assist local public
health authorities to utilize the model developed in
this study to identify the communities that require par-
ticular attention and to mobilize limited resources to
effectively control and prevent outbreaks of CCHF
during epidemic seasons. These findings may have
applications as a decision support tool in planning dis-
ease control and risk-management programmes.
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