The Factors of $(a, b, c, f, g, h)(x, y, z)^{2}-\lambda\left(x^{2}+y^{2}+z^{2}\right)$.

By Robert J. T. Bell, M.A., B.Sc.

(Read and Received 11th March 1910).

$$
\begin{aligned}
\text { If } \begin{aligned}
f(x, y, z) & \equiv a x^{2}+b y^{2}+c z^{2}+3 f y z+2 g z x+2 h x y, \\
\text { and } \quad S & \equiv x^{2}+y^{2}+z^{2},
\end{aligned}
\end{aligned}
$$

$f-\lambda S$ is the product of two factors of the form $\alpha x+\beta y+\gamma z$ if λ is a root of a discriminating cubic

$$
\left|\begin{array}{ccc}
a-\lambda, & h, & g \\
h, & b-\lambda, & f \\
g, & f, & c-\lambda
\end{array}\right|=0
$$

A well-known proof of the reality of the roots of the cubic is as follows:-
Write

$$
\phi(\lambda) \equiv(\lambda-a)\left\{(\lambda-b)(\lambda-c)-f^{2}\right\}-\left\{(\lambda-b) g^{2}+(\lambda-c) h^{2}+2 f g h\right\}
$$

and $\psi(\lambda) \equiv(\lambda-b)(\lambda-c)-f^{2}$.
Suppose that $a>b>c$;
when $\quad \lambda=+\infty, \quad b, \quad c,-\infty$,

$$
\psi(\lambda)=+\infty,-f^{2},-c^{2},+\infty
$$

Hence, (see figure), the equation $\psi(\lambda)=0$ has two real roots, α and β, such that

$$
a>b>c>\beta
$$

When
$\begin{array}{rccc}\lambda & =+\infty, & a, & \beta, \\ \phi(\lambda) & =+\infty, & -(\sqrt{a-b g} \pm \sqrt{a-c h})^{2}, & (\sqrt{\overline{b-\beta}} g \pm \sqrt{c-\beta} h)^{2}, \\ & -\infty,\end{array}$
Hence the cubic, $\phi(\lambda)=0$, has three real roots, $\lambda_{1}, \lambda_{2}, \lambda_{3}$, such that $\lambda_{1}>a>\lambda_{2}>\beta>\lambda_{3}$.

Now
$f-\lambda S \equiv \frac{1}{b-\lambda}\left[\{h x+(b-\lambda) y+f z\}^{2}+\frac{1}{\psi(\lambda)}\{z \psi(\lambda)-x(h f-\overline{b-\lambda} g)\}^{2}\right]$.
Therefore if $\lambda=\lambda_{1}, b-\lambda<0$ and $\psi(\lambda)>0$, and $f-\lambda \mathrm{S}$ is of the form $-\left(u^{2}+v^{2}\right)$, where u and v are linear functions of x, y, z, with real coefficients. If $\lambda=\lambda, b-\lambda \lessgtr 0$, and $\psi(\lambda)<0$, and $f-\lambda S$ is of the form $\pm\left(u^{2}-v^{2}\right)$. If $\lambda=\lambda_{3}, b-\lambda>0$, and $\psi(\lambda)>0$, and $f-\lambda S$ is of the form $u^{2}+v^{2}$.

The only value of λ for which $f-\lambda S$ is the product of factors with real coefficients is therefore the mean value λ_{2}.

The result can be applied to find the real circular sections of the conicoid $f(x, y, z)=1$. Write the equation

$$
f(x, y, z)-\lambda\left(x^{2}+y^{2}+z^{2}\right)+\lambda\left(x^{2}+y^{2}+z^{2}\right)-1=0
$$

and it appears that if $f-\lambda \mathrm{S}=0$ represents a pair of planes, the planes cut the conicoid in circles. The real circular sections are given by the mean root of the discriminating cubic.

