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ALGEBRAS WITH TRANSITIVE AUTOMORPHISM GROUPS 

BY 

L. G. SWEET AND J. A. MACDOUGALL* 

ABSTRACT. Let A be a finite dimensional algebra (not necessarily asso­
ciative) over a field, whose automorphism group acts transitively. It is 
shown that K = GF{2) and A is a Kostrikin algebra. The automorphism 
group is determined to be a semi-direct product of two cyclic groups. The 
number of such algebras is also calculated. 

All algebras are assumed to be finite dimensional but not necessarily associative. If 
A is an algebra over a field K let Aut(A) denote the group of algebra automorphisms 
of A. We say that A has a transitive automorphism group if Aut(A) acts transitively on 
the non-zero points of A. An algebra A is said to be non-trivial if dim A > 1 and A2 =£ 0. 
We show that if A is a non-trivial algebra with a transitive automorphism group then 
K = GF(2), A is a Kostrikin algebra and Aut(A) is the semi-direct product of two finite 
cyclic groups. 

THEOREM 1 : If A is a non-trivial algebra with transitive automorphism group over a 
field K then K = GF(2). 

PROOF: First assume that K is infinite. Let a, b E A \ {0}. Then there exists an a E 
Aut(A) such that a(a) = b and this implies that aLaa~] = Lb where La and Lb indicate 
left multiplication by a and b respectively in A. That is, La and Lb are similar. But in 
particular, we may allow b = \a for any nonzero X E K. Now comparing the 
characteristic polynomials of La and LXa = XLa it is easy to show that La is nilpotent. 
Similarly Ra is nilpotent and so A is a special nil algebra as defined in [7]. It follows 
from Theorem 2 of the above paper that A2 = 0. 

Now assume that K is finite. Then Aut(A) certainly acts transitively on the one 
dimensional subspaces of A and so the results of Shult [5] imply that K = GF(2). 

DEFINITION: Let K = GF(2n) and |x be any fixed element in K. Let °:K x K —» K 
be the map defined by x ° y = |x(xy)2"~ '. Let A(n, \i) denote the algebra over GF(2) 
obtained from K by replacing the usual multiplication in K by the map °. 

We call A (AT, (X) a Kostrikin Algebra since these algebras were investigated by 
Kostrikin in [4]. 
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THEOREM 2: If A is a non-trivial algebra with transitive automorphism group then A 
is a Kostrikin Algebra. 

PROOF: By Theorem 1, K = GF(2). Let n = dim A. If n is odd then the result was 
proved by Sweet [8] and finally Ivanov [3] proved that the result was true for any finite 
n. 

THEOREM 3: Let A be a non-trivial algebra of dimension n with transitive auto­
morphism group. Then A — A(n, \x)for some |x E GF(2n) and Aut(A) — Cr XI Cs 

where r = 2" — 1 and s = n/gcd(n, m) where m is the smallest positive integer such 
that aw(|x) = \x and a is the squaring map on the field GF(2n). 

PROOF: It follows from Theorem 2 that A ~ A(n, |x) for some jx E GF(2n). We 
denote multiplication in the field by juxtaposition and multiplication in the algebra by 
° where x ° y = \i(xy)2"~l. Let v be any generator of the multiplicative group GF* (2") 
and Tv be the map defined as Tv(x) = vx. Let a be the map defined as v(x) = x2 and 
a = am, where m is the smallest positive integer such that am(|x) = fx. 

Now it is easy to check that Tv E Aut(A(«, |x)). Let P E Aut(A(n, |x)) and let 
c = (3(1). Also let T = 7>i p. Now T(1) = 1 and T E Aut(A(w, |x)) which implies that 

(1) T(A » b) = T([L(ab)2H-1) = v(T(a)T(b))2n] 

Let S: A(n, jx) —» A(n, \x) be the mapping defined as S (x) = x ° x. Then S = T\i 
and S E Aut(A(«, |x)). In fact, it is easy to show that S belongs to the centre of 
Aut(A(n, |x)) which implies that (1) can be written as 

(2) T(p,(flfc)2"_l) - \i(j(ab)2-1) = \x(T(a)7{b))2nl 

If we let b = 1 we conclude that TCT"1 = CT-1T and (2) implies that 

T(<T-\ab)) = (j-l(i(ab)) = (j-l(T(a)7(b)) 

Hence j(ab) = i{a)i{b) and T is a field automorphism of GF(2n). It is well known 
that T = & for some integer t. In fact t must be a multiple of m since T(JX) = jx. Now 
P = Tc& and a E Aut(A(rc, |JL)) and so 

Aut(A(n, jut)) = (Tv, a) 

where Tv is of order 2n — 1 and a is of order s = n/gcd(n, m). Finally observe that 
a~lTva = Tv and so 

Aut(A(n, |x)) = (TV9 a\rv = as = 1, a ^ I . a = TT'~\ 

Clearly (Tv) is a normal subgroup of Aut(A(n, JJL)) and it is easy to show that (Tv) D 
(a) = 1 and so 

Aut(A(n, |UL)) - Cr X3 Cs 

where r = 2"_1 and s = n/gcd(n, m). 
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THEOREM 4: The number of non-isomorphic Kostrikin algebras of dimension n is 
given by 

Nn = - 2 Hd)V/d 

n d\n 

PROOF: Theorem 4 of [2] states that the algebras A (n, JJL) and A(n,X) are isomorphic 
if and only if there is an automorphism of GF{T) mapping X to |x. Since the auto­
morphism group of GF(2n) is generated by a, the squaring map, A(n, fx) and A(n, X) 
will be non-isomorphic if and only if X and JJL belong to different orbits of GF(2n). But, 
GF(2n) partitions into the sets of roots of all the irreducibles over GF(2) of degrees 
dividing n (see [6]). Further, the roots of an irreducible of degree d are {a, a2 , . . . , 
a2^ '}, that is, an orbit of GF{2n). Thus the number of Kostrikin algebras of dimension 
n is equal to the number of irreducible polynomials over GF(2) of a degree which 
divides n, and this number is given in [1] as the Nn above. 

It should be noted that the trivial algebra (in which a2 = 0) is just the Kostrikin 
algebra with jx = 0. Thus the number Nn in theorem 4 includes the trivial algebra. 
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