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1. Introduction. The classical Noether–Deuring theorem states that given an
algebra A over a field K and a finite extension field L of K , two A-modules M and
N are isomorphic as A-modules, if L ⊗K M is isomorphic to L ⊗K N as an L ⊗K A-
module. In 1972, Roggenkamp gave a nice extension of this result to extensions S of
local commutative Noetherian rings R and modules over Noetherian R-algebras.

For the derived category of A-modules no such generalisation was documented
before. The purpose of this note is to give a version of the Noether–Deuring theorem,
in the generalised version given by Roggenkamp, for right bounded derived categories
of A-modules. If there is a morphism α ∈ HomD(�)(X, Y ), then it is fairly easy to show
that for a faithfully flat ring extension S over R the fact that idS ⊗ α is an isomorphism
implies that α is an isomorphism. This is done in proposition (1). More delicate is the
question if only an isomorphism in HomD(S⊗R�)(S ⊗R X, S ⊗R Y ) is given. Then, we
need further finiteness conditions on � and on R and proceed by completion of R and
then a classical going-down argument. This is done in theorem (4) and corollary (8).

For the notation concerning derived categories, we refer to Verdier [6]. In particular,
D(A) (resp D−(A), resp Db(A)) denotes the derived category of complexes (resp.
right bounded complexes, resp. bounded complexes) of finitely generated A-modules,
K−(A − proj) (resp. Kb(A − proj), resp K−,b(A − proj)) is the homotopy category of
right bounded complexes (resp. bounded complexes, resp. right bounded complexes
with bounded homology) of finitely generated projective A-modules. For a complex Z,
we denote by Hi(Z) the homology of Z in degree i, and by H(Z) the graded module
given by the homology of Z.

2. The result. We start with an easy observation.

PROPOSITION 1. Let R be a commutative ring and let � be an R-algebra. Let S
be a commutative faithfully flat R-algebra. Denote by D(�) the derived category of
complexes of finitely generated �-modules. Then, if there is α ∈ HomD(�)(X, Y ) so that
idS ⊗�

R α ∈ HomD(S⊗R�)(S ⊗�
R X, S ⊗�

R Y ) is an isomorphism in D(S ⊗R �), then α is
an isomorphism in D(�).
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Proof. Let Z be a complex in D(�). Since S is flat over R the functor S ⊗R − :
R − Mod −→ S − Mod is exact, and hence the left derived functor S ⊗�

R − coincides
with the ordinary tensor product functor S ⊗R −. We can therefore work with the
usual tensor product and a complex Z of �-modules.

We claim that since S is flat, S ⊗R − induces an isomorphism S ⊗R H(Z) �
H(S ⊗�

R Z).
If ∂Z is the differential of Z, then

0 −→ ker(∂Z) −→ Z
∂Z−→ im(∂Z) −→ 0

is exact in the category of �-modules.
Since S is flat,

0 −→ S ⊗R ker(∂Z) −→ S ⊗R Z
idS⊗R∂Z−→ S ⊗R im(∂Z) −→ 0

is exact. Hence,

ker(idS ⊗R ∂Z) = S ⊗R ker(∂Z) and im(idS ⊗R ∂Z) = S ⊗R im(∂Z).

This shows the claim.
Since idS ⊗R α is an isomorphism, its cone C(idS ⊗R α) is acyclic. Moreover,

C(idS ⊗R α) = S ⊗R C(α) by the very construction of the mapping cone. But now,

0 = H(C(idS ⊗R α)) = H(S ⊗R C(α)) = S ⊗R H(C(α)).

Since S is faithfully flat, this implies H(C(α)) = 0, and therefore, C(α) is acyclic. We
conclude that α is an isomorphism in D(�) which shows the statement. �

REMARK 2. Observe that we assumed that X
α−→ Y is assumed to be a morphism

in D(�). The question if the existence of an isomorphism S ⊗R X
α̂−→ S ⊗R Y in

D(S ⊗R �) implies the existence of a morphism α : X −→ Y in D(�) so that idS ⊗�
R α

is an isomorphism is left open. Under stronger hypotheses, this is the purpose of
Theorem 4 below. The proof follows [5] which deals with the module case.

LEMMA 3. If S is a faithfully flat R-module and � is a Noetherian R-algebra, then
for all objects X and Y of Db(�), we get

HomDb(S⊗R�)(S ⊗R X, S ⊗R Y ) � S ⊗R HomDb(�)(X, Y ).

Proof. Since S is flat over R, the functor S ⊗R − preserves quasi-isomorphisms,
and therefore, we get a morphism

S ⊗R HomDb(�)(U, V ) −→ HomDb(S⊗R�)(S ⊗R U, S ⊗R V )

in the following way. Given a morphism ρ in HomDb(�)(U, V ) represented by the triple
(U

α←− W
β−→ V ), for a quasi-isomorphism α and a morphism of complexes β, and

s ∈ S then map s ⊗ ρ to (S ⊗R U
idS⊗α←− S ⊗R W

s⊗β−→ S ⊗R V ). This is natural in U
and V .

We use the equivalence of categories K−,b(� − proj) � Db(�) and suppose,
therefore, that X and Y are right bounded complexes of finitely generated projective
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�-modules. But

S ⊗R Hom�(�n, U) = S ⊗R Un = (S ⊗R U)n = HomS⊗R�((S ⊗R �)n, S ⊗R U)

which proves the statement in case X or Y is in Kb(A − proj) since then a
homomorphism is given by a direct sum of finitely many homogeneous mappings
in those degrees where the complexes do both have non-zero components. Now, tensor
product commutes with direct sums.

We come to the general case. Recall the so-called stupid truncation τN of a complex.
Let Z be a complex in K−,b(� − proj), denoted by ∂ its differential and let N ∈ � so
that Hn(Z) = 0 for all n ≥ N. We denote the homogeneous components of ∂ so that
∂n : Zn −→ Zn−1 for all n. Let τNZ be the complex given by (τNZ)n = Zn if n ≤ N and
(τNZ)n = 0 else. The differential δ on τNZ is defined to be δn = ∂n if n ≤ N and δn = 0
else. Now, ker(∂N) =: CN(Z) is a finitely generated �-module. Therefore, we get an
exact triangle, called in the sequel the truncation triangle for Z,

τNZ −→ Z −→ CN(Z)[N + 1] −→ (τNZ)[1]

for all objects Z in K−,b(A − proj). Obviously, τN(S ⊗R Z) = S ⊗R τNZ and since S is
flat over R also CN(S ⊗R Z) = S ⊗R CN(Z).

We choose N so that Hn(X) = Hn(Y ) = 0 for all n ≥ N. To simplify the notation
denote for the moment the bifunctor HomK−,b(�−proj)(−,−) by (−,−), the bifunctor
HomK−,b(S⊗R�−proj)(−,−) by (−,−)S and the bifunctor S ⊗R HomK−,b(�−proj)(−,−) by
S(−,−). Further, put S ⊗R X =: XS and S ⊗R Y =: YS. From the long exact sequence
obtained by applying (XS,−)S to the truncation triangle of YS we get a commutative
diagram with exact lines (†)

(XS, CN (YS)[N])S → (XS, τN YS)S → (XS, YS)S → (XS, CN (YS)[N + 1])S → (XS, τN YS[1])S
↑ ↑ ↑ ↑ ↑

S(X, CN (Y )[N]) → S(X, τN Y ) → S(X, Y ) → S(X, CN (Y )[N + 1]) → S(X, τN Y [1])

Since τN(YS) is a bounded complex of projectives,

(XS, τNYS)S = S ⊗R (X, τNY ) and (XS, τNYS[1])S = S ⊗R (X, τNY [1]).

We apply (−, CN(YS)[N + 1])S to the truncation triangle for XS and obtain an exact
sequence

(τNXS[1], CN(YS)[N + 1])S → (CN(XS)[N + 1], CN(YS)[N + 1])S

→ (XS, CN(YS)[N + 1])S → (τNXS, CNYS[N + 1])S

→ (CN(XS)[N], CN(YS)[N + 1])S

and a commutative diagram analogous to the diagram (†). Now, for morphisms between
finitely presented �-modules M and N, we do have that the natural map

S ⊗R Hom�(M, N) −→ HomS⊗R�(S ⊗R M, S ⊗R N)

is an isomorphism (cf. [2, Proposition 2.10]). Given a projective resolution P• −→ M
of M, denote by ∂n : �nM ↪→ Pn−1 the embedding of the n-th syzygy of M into the
degree n − 1 homogeneous component of the projective resolution. Then

Extn
�(M, N) = Hom�(�nM, N)/ (Hom�(Pn−1, N) ◦ ∂n)
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and therefore,

S ⊗R Extn
�(M, N) = S ⊗R (Hom�(�nM, N)/Hom�(Pn−1, N) ◦ ∂n)

= (S ⊗R Hom�(�nM, N)) / (S ⊗R (Hom�(Pn−1, N) ◦ ∂n))

= HomS⊗R�(S ⊗R �nM, S ⊗R N)/HomS⊗R�(S ⊗R Pn−1, S ⊗R N)

◦(1S ⊗ ∂n)

= Extn
S⊗R�(S ⊗R M, S ⊗R N)

for all n ∈ �, natural in M and N. This shows

(CN(XS)[N + 1], CN(YS)[N + 1])S = S ⊗R (CN(X)[N + 1], CN(Y )[N + 1])

and

(CN(XS)[N], CN(YS)[N + 1])S = S ⊗R (CN(X)[N], CN(Y )[N + 1])

By the case for bounded complex of projectives, we get that the natural morphism is
an isomorphism for

(τNXS[1], CN(YS)[N + 1])S � S ⊗R (τNX [1], CN(Y )[N + 1])

and

(τNXS, CN(YS)[N + 1])S � S ⊗R (τNX, CN(Y )[N + 1]).

Therefore, also

(XS, CN(YS)[N + 1])S � S ⊗R (X, CN(Y )[N + 1])

and by the very same arguments

(XS, CN(YS)[N])S � S ⊗R (X, CN(Y )[N]).

This shows that, we get, isomorphisms in the two left and the two right vertical
morphisms of (†) and hence also the central vertical morphism is an isomorphism.
Hence

(XS, YS)S � S ⊗R (X, Y )

and the lemma is proved. �
THEOREM 4. Let R be a commutative Noetherian ring, let S be a commutative

Noetherian R-algebra and suppose that S is a faithfully flat R-module. Suppose S ⊗R

rad(R) = rad(S). Let � be a Noetherian R-algebra, let X and Y be two objects of of
Db(�) and suppose that EndDb(�)(X) is a finitely generated R-module. Then,

S ⊗�
R X � S ⊗�

R Y ⇔ X � Y.

REMARK 5. We observe that, if R is local and S = R̂ is the rad(R)-adic completion,
then S is faithfully flat as R-module and S ⊗R rad(R) = rad(S).

Proof of theorem 4. According to the hypotheses, we now suppose that EndDb(�)(X)
and EndD−(�)(Y ) are finitely generated R-module and that S ⊗R rad(R) = rad(S). Since
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S is flat over R, tensor product of S over R is exact and we may replace the left
derived tensor product by the ordinary tensor product. We only need to show “⇒”
and assume, therefore, that X and Y are in K−,b(� − proj), and that S ⊗R X and
S ⊗R Y are isomorphic.

Let XS := S ⊗R X and S ⊗R Y =: YS in Db(S ⊗R �) to shorten the notation and
denote by ϕS the isomorphism XS −→ YS. Since then XS is a direct factor of YS by
means of ϕS, the mapping

ϕS =
n∑

i=1

si ⊗ ϕi : XS −→ YS

for si ∈ S and ϕi ∈ HomDb(�)(X, Y ) has a left inverse ψ : YS −→ XS, so that,

ψ ◦ ϕS = idXS .

Then,

0 −→ rad(R) −→ R −→ R/rad(R) −→ 0

is exact and since S is flat over R, we get that

0 −→ S ⊗R rad(R) −→ S −→ S ⊗R (R/rad(R)) −→ 0

is exact. This shows that,

S ⊗R (R/rad(R)) � S/(S ⊗R rad(R)).

By hypothesis, we have S ⊗R rad(R) = rad(S), identifying canonically S ⊗R R � S.
Then, there are ri ∈ R so that 1S ⊗ ri − si ∈ rad(S) for all i ∈ {1, . . . , n}.

Put

ϕ :=
n∑

i=1

riϕi ∈ HomDb(�)(X, Y ).

Then,

n∑

i=1

ψ ◦ (1S ⊗ (riϕi)) − 1S ⊗ idX =
n∑

i=1

(ψ ◦ (1S ⊗ riϕi) − ψ ◦ (si ⊗ ϕi))

=
n∑

i=1

(1S ⊗ ri − si) · (ψ ◦ (idS ⊗ ϕi))

∈ (
rad(S) ⊗R EndDb(�)(X)

)

and since EndDb(�)(X) is a Noetherian R-module, using Nakayama’s lemma, we obtain
that ψ ◦ (

∑n
i=1 1S ⊗ riϕi) is invertible in S ⊗R EndDb(�)(X). Hence, idS ⊗R ϕ is left split,

and therefore,

XS
idS⊗Rϕ−→ YS −→ C(idS ⊗R ϕ)

0−→ XS[1]

is a distinguished triangle, with C(idS ⊗R ϕ) being the cone of idS ⊗R ϕ. However,

C(idS ⊗R ϕ) = S ⊗R C(ϕ)
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and hence,

XS
idS⊗Rϕ−→ YS −→ S ⊗R C(ϕ)

0−→ XS[1]

is a distinguished triangle.
Since ϕS is an isomorphism, ϕS has a right inverse χ : YS −→ XS as well. Now,

since XS � YS, S is faithfully flat over R, and EndDb(�)(X) is finitely generated as R-
module; using Lemma 3, we obtain that EndDb(�)(Y ) is finitely generated as R-module
as well. The same argument as for the left inverse ψ shows that (idS ⊗ ϕ) ◦ χ is invertible
in S ⊗R EndDb(�)(Y ). Hence,

XS
idS⊗Rϕ−→ YS

0−→ S ⊗R C(ϕ)
0−→ XS[1]

is a distinguished triangle. This shows that S ⊗R C(ϕ) is acyclic, and hence,

0 = H(S ⊗R C(ϕ)) = S ⊗R H(C(ϕ)).

Since S is faithfully flat over R also H(C(ϕ)) = 0, which implies that C(ϕ) is acyclic,
and therefore, ϕ is an isomorphism.

This proves the theorem. �

Let A be an algebra over a complete discrete valuation ring R which is finitely
generated as a module over R. We shall need a Krull–Schmidt theorem for the derived
category of bounded complexes over A. This fact seems to be well-known, but for the
convenience of the reader we give a proof.

PROPOSITION 6. Let R be a complete discrete valuation ring and let A be an R-
algebra, finitely generated as R-module. Then, the Krull–Schmidt theorem holds for
K−,b(A − proj).

Proof. We first show a Fitting lemma for K−,b(A − proj).
Let X be a complex in K−,b(A − proj) and let u be an endomorphism of the

complex X . Then, X = X ′ ⊕ X ′′ as graded modules, by Fitting’s lemma in the version
for algebras over complete discrete valuation rings [1, Lemma 1.9.2]. The restriction of
u on X ′ is an automorphism in each degree and the restriction of u on X ′′ is nilpotent
modulo rad(R)m for each m. Therefore, u is a diagonal matrix ( ι 0

0 ν ) in each degree
where ι : X ′ −→ X ′ is invertible, and ν : X ′′ −→ X ′′ is nilpotent modulo rad(R)m for
each m in each degree. The differential ∂ on X is given by ( ∂1 ∂2

∂3 ∂4
) and the fact that

u commutes with ∂ shows that ∂3ι = ν∂3 and ∂2ν = ι∂2. Therefore, ∂3ι
s = νs∂3 and

∂2ν
s = ιs∂2 for all s. Since ν is nilpotent modulo rad(R)m for each m in each degree,

and ι is invertible, ∂2 = ∂3 = 0. Hence, the differential of X restricts to a differential on
X ′ and a differential on X ′′. Moreover, X ′ and X ′′ are both projective modules, since
X is projective.

Now, X , and therefore, also X ′′ is exact in degrees higher than N, say. We fix
m ∈ � and obtain, therefore, that u is nilpotent modulo rad(R)m in each degree lower
than N. Let Mm be the nilpotency degree. Then, since X ′′ is exact in degrees higher
than N, modulo rad(R)m the restriction of the endomorphism uMm to X ′′ is homotopy
equivalent to 0 in degrees higher than N. We get, therefore, that the restriction of u to
X ′′ is actually nilpotent modulo rad(R)m for each m.

https://doi.org/10.1017/S0017089512000237 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000237


A NOETHER–DEURING THEOREM FOR DERIVED CATEGORIES 653

Hence, the endomorphism ring of an indecomposable object is local and the
Krull–Schmidt theorem is an easy consequence by the classical proof as in [4] or in [1].

This shows the proposition. �
REMARK 7. If R is a field and A is a finite dimensional R-algebra, then, we would

be able to argue more directly. Indeed, X ′ = im(uN) and X ′′ = ker(uN) for large enough
N. Then, it is obvious that X ′ and X ′′ are both subcomplexes of X . Observe that R
may be a field in proposition 6.

For the next Corollary, we follow closely [5].

COROLLARY 8. Let R be a commutative semilocal Noetherian ring, let S be a
commutative R-algebra so that Ŝ := R̂ ⊗R S is a faithful projective R̂-module of finite
type. Let � be a Noetherian R-algebra, finitely generated as R-module, and let X and
Y be two objects of Db(�) and suppose that EndDb(�)(X) and EndDb(�)(Y ) are finitely
generated R-module. Then,

S ⊗�
R X � S ⊗�

R Y ⇔ X � Y.

Proof. If S ⊗�
R X � S ⊗�

R Y in Db(S ⊗R �), we get Ŝ ⊗�
R X � Ŝ ⊗�

R Y in Db(Ŝ ⊗R

�). Since R is semilocal with maximal ideals m1, . . . , ms, we get R̂ = ∏s
i=1 R̂mi for the

completion R̂mi of R at mi. Now, Ŝ is projective faithful of finite type, and so, there are
n1, . . . , ns with

Ŝ �
s∏

i=1

(R̂mi )
ni

and therefore, Ŝ ⊗�
R X � Ŝ ⊗�

R Y implies

s∏

i=1

(R̂mi )
ni ⊗�

R X �
s∏

i=1

(R̂mi )
ni ⊗�

R Y.

Hence,

(R̂mi ⊗�
R X)ni � (R̂mi ⊗�

R Y )ni

for each i, and therefore by Proposition 6

R̂mi ⊗�
R X � R̂mi ⊗�

R Y

for each i. By Theorem 4, we obtain X � Y . �
We get cancellation of factors from this statement.

COROLLARY 9. Under the hypothesis of theorem 4 or of corollary 8, we get X ⊕ U �
Y ⊕ U in Db(�) implies X � Y.

Proof. This is clear by corollary 8 in combination with proposition 6. �
REMARK 10. In [3], we developed a theory to roughly speaking parameterise

geometrically objects in Db(A) by orbits of a group action on a variety. For this
purpose, we need to assume that A is a finite dimensional algebra over an algebraically
closed field K , so that it is possible to use arguments and constructions from algebraic
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geometry. Using theorem 4, we can extend the theory to non algebraically closed fields
K as well.
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