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THE MODEL

The multiplicative ratemaking, model we have in mind is the
following one. Within a certain branch of insurance we have, say
for simplicity, two tarif arguments U and F. For example, in motor
insurance we could think of U and V as being make of car and
geographical district respectively. In fire insurance U could be
class of construction for buildings and V could relate to fire defense
capacities.

The arguments are of a qualitative nature and argument U has
r levels, while argument V has k levels. To our disposal we have
statistical experience of the business for a certain period of time,
consisting of

—risk exposures ny (i = i .. . r, j = i . . . k).
Risk exposure wy thus corresponds to the ith [/-level and the
jth F-level. It could be e.g. number of policy years or sum
insured during the period of observation for objects belonging
simultaneously to [/-level i and F-level j .
The fiijS are known non-random quantities.

—(relative) risk measures pa(i = i . . . r, j = i . . .k).
Risk measure fty could be e.g. claims frequency, i.e. number of
Claims divided by number of policy years, or claims cost per
policy year or claims cost as a percentage of sum insured. In
general py is thus the observed number or the observed amount
of claims belonging simultaneously to [/-level i and F-level j ,
divided by the corresponding risk exposure ny.
The ftys are observed values of random variables.

The multiplicative model now consists of the assumption

E(pi}) = cufVj (i)

(i = i . . . r, j = i . . . k)
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that is, the expected values of the risk measures py—the true risk
premiums on which to found the tarif book—can be represented in
the multiplicative form (1) with suitably chosen factors c,ui .. .ur,
Vi . . . Vk.

FITTING THE MODEL

The model has been studied by several authors, see e.g. references
[1], [2], [4], [6], [7] and [8].

Several methods of graduation have been proposed and have also
been implemented in EBD-systems [3], [5]. Among these is the one
proposed by Jung [6] and described by the following set of equations
for c, ui . . . ur, vi . . . vk

2 fiij cUiVj = 2 nypy (i = 1 . . . r)
; i

S fly CUiVj — S nypy (j=l...k) (2)
i i

Thus, the graduation is done so that for each U-level i the
graduated "marginal" claims cost will be equal to the observed
marginal claims cost and correspondingly for the F-levels. If one
considers one argument at a time, the method is thus fair. As the
left hand sides of (2) are the expected values of the right hand sides,
one could also say that the method coincides with the method of
moments. It can also be shown to coincide with the so-called mod-
ified chi-square minimum method, Jung [6]. In practice equations
(2) are solved by putting c equal to the overall risk measure

c = 2

and writing (2) in the form

Ui = S nypij/c S nyVj (i = 1 . . . r)
1 i

Vj = S nypij/c 2 flijUj (j = 1 . . . k)

and solving for u-t, Vj by iteration.

In the following we will restrict ourselves to this method of
graduation.

PROPERTIES OF THE SOLUTIONS

In practise you are somewhat concerned about the statistical
properties of solutions c, u\ ... ur, vi ... vjc to equations (2). If

https://doi.org/10.1017/S0515036100009296 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100009296


I46 MULTIPLICATIVE RATEMAKING MODEL

their variances are large you could obviously not put much con-
fidence in the graduation even if the model assumption (1) is cor-
rect. Also, if you make graduations of new sets of data from the
same branch of insurance, e.g. produced during consecutive years of
experience, you will in that case get a strong variation in the
obtained values for the factors ui . . . ur, vx ... vjc.

In the following we hold the model assumption (1) to be true. It
is obvious that (1) does not determine the factors uniquely. We
could e.g. multiply all ms by two and divide all VjS by two without
affecting the relation. We therefore impose the normalizing con-
dition.

Ui = Vi = I (3)

It is obvious that c, U{, Vj are then uniquely determined by (1).
Also, we put equations (2) in the following form

Ft = cu{ 2 ttijVj — 2 n-tjpij = 0 (i = 2 . . . r)
i i

Gj = CVJ 2 nijUi — 2 w#£y = 0 (j = 2 . . . k) (4)
i i

H = c 2 nijUiVj — 2 ntjptj = o

That is, the difference between graduated and observed row
totals should be zero for rows 2 . . .r, and correspondingly for
columns 2 . . . k. Finally the difference between graduated and
observed grand total should be zero. This is obviously equivalent
to (2).

We now compute the jacobian matrix

c>(ff, F , . . . Ff)

~d(c, Ua . • . Ur, V2 • • . Vjc)

Its first row are given by, in turn, the partial derivatives

= 2
7>c

= c 2 nyVj (i = 2 . . . r)

—— = c 2 ntjUi (j=2...k)
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Its next (r — 1) rows are given by, in turn, the partial derivatives
(i = 2 . . . r)

j

\ O II S -/— 1

( c S n^Vj if s = i (s = 2 .. . r)
1

and correspondingly for the last (k — 1) rows, with the GjS instead
of the

Drawing up the picture of the jacobian matrix / on a paper it is
seen that its determinant, | / |, has the property

| / | = c»-+*-2 uz ... ur v2 ... vie I A

where A is a symmetric (r + k — 1) X (r + k — 1) matrix.

Furthermore, let a' = (z, %i . . . xr, yz •. • yu) be an arbitrary
(r -f- k — 1) X 1 vector. By straightforward calculation it is found
that the quadratic form

a' A a
equals

r h r k

S S nnUiVj{z + £j + v);)2 + 2 Wii%(2 + £i)2 + S nijVj(z + TJ;)2 + Muz2

where
^ = xijui (i = 2 . . . r)
^ = y ^ (j= 2 ... k)

The model naturally assumes c, ut, Vj all to be positive, and we
also assume all risk exposures Wy to be positive. Thus

a' Aa > o

A is positive definite. Thus | A \ and | J | are also positive, i.e. the
jacobian matrix J is non-singular. This means that as long as the
observed risk measures j>y have values in a sufficiently small
neighbourhood of the expected values (1), equations (4) will have a
unique vector of solutions

/ ' = {C,U2 . . . Uf, Vi . . . Vic)
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which converges in probability to the true values

/ ' = {C,U2 . . . Ur, V2 . . . Vk)

as the risk exposures wy, and hence the expected number of claims
in cell (i, j), tends to infinity.

Furthermore, let
Ri

Q

T

= S nvPu

= £ flijplj

= S flijpij
V

(i = 2

( ; = 2

. . . r )

...k)

and put

f = (T1R1 ...Rr,Ca... Ck)

Then, asymptotically as all wy tend to infinity

As, under the usual Poisson assumption, the >̂ys are asymp-
totically normal with variances of the order of magnitude n^1, we
see that / is asymptotically normal with mean vector / and variances
and covariances of an order of magnitude corresponding to the
reciprocals of the wys.

NUMERICAL ILLUSTRATION

We,have not yet made any theoretical investigations as to the
statistical properties of the estimates

/ ' = (c, M2 . . . Ur, V2 . . . Vk)

for finite sizes of the riskexposures #y. We have however, made a
simulation experiment. We would like to report on some findings
from this experiment, as it illustrates the asymptotic theory and
might give some clues for the finite theory.

The experiment was actually carried out for three tarif arguments
U, V and W, with two, three and ten levels respectively. The risk
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exposures n\
numbers

jjc were

k = i

i

2

i

2

k = 9

i

2

Risk measures pm

cnosen to

:, 2, 3, 4

i

6oo
i,6oo

1, 6, 7, 8
i

400

400

1, 10

1

100

50

De propor

2

500

1,500

2

500

500

2

150

50

xionate to tne iouowmg

3
400

1,400

3
600
600

3
200

5o

: were simulated assuming pM to be normally
distributed with mean

E{pijk) =
and variance

Var

The multiplicative model was thus assumed to be true, and with
the following values for the factors

c = 0.05

(MI, M2) = (1, 1.4)

{vi, vz, va) = (1, 1.2, 1.4)

(wi, wz, w3, . . . , w9, wio) = (1, 1.15, i-30, 2.20, 2.35)

The experiment was carried out ioo times. After each simulation
estimates c, MI, VJ, W^ were computed from equations (2), or—to be
exact—from their analogues for three tarif arguments.

The whole procedure was repeated four times corresponding to
four choices of proportionality factor for the risk exposures
namely

1/81 1/9 1 1/0.09
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Thus e.g. wm was given in the four repetitions the respective
values

600/81 600/9 ° 0 0 600/0.09

Note: The same basic set of random numbers were used in all four
repetitions. The different sizes of »y*s were taken into account in
the transformation to the normal distribution for the ftijkS.

Factors w/c should be most critical as they are supported by the
smallest marginal risk exposures. Following are results for three
z£>-factors, one from each exposure-size group.

Observed mean value and standard deviation of estimate
in 100 simulations

True Proportionality factor for exposures
Factor value 1/81 1/9 1 1/0, 09

w3 1.30 mean 1.474 !-333 i-3°7 i -3 O 1

st.d 0.75 0.23 °-°75 0.023

m7 1.90 m e a n 2.230 1.946 1.908 1.901
st.d 1.20 0.38 0.12 0.037

wla 2.35 mean 3.739 2.530 2.369 2.354
st.d 2.42 0.81 0.28 0.083

Asymptotic unbiasedness is well illustrated. So is the inverse
relationship between variances and risk exposures, at least when, as
in this case, the latter tend to infinity at the same rate.

For finite exposures we seem to have a positive bias (this goes for
the other u-, v- and w-iactors not shown here, too). The dependance
of this bias, as well as the variances, on total and marginal exposures
might be worth studying.

As for the asymptotic normality, we have tried to illustrate it by
four histograms for M>IO shown at the end of the paper.

ACKNOWLEDGEMENT

Sincere thanks are due to Mrs. M. Lindberg for carrying through
the simulations and to Messrs. E. Elvers and P. Lindstroem for
valuable discussions concerning the implications of them.

REFERENCES

[1] ALMER, B. (1957), Risk Analysis in Theory and practical statistics, 15th
International Congress of Actuaries, Vol. 2.

https://doi.org/10.1017/S0515036100009296 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100009296


MULTIPLICATIVE RATEMAKING MODEL

[2] ALMER, B. (1962), "Individual Risk Theory and Risk statistics as ap-
plied to Fire Insurance", The AST IN Bulletin, Vol. II , Part I I I .

[3] ANDREASSON, G. and WENANDER, M.-L. (1970), Modifications in the
Multiplicative Rate-making Model Program. Unpublished stencile.

[4] BAILEY, R. A. and SIMON, L. J. (i960), "Two Studies in Automobile
Insurance Ratemaking", The AST IN Bulletin, Vol. I, Part IV.

[5] BOEHM, C, KXINGEN, N. and MEHRING, J. (1968), Ein maschinelles Ver-
fahren fur Statistik- und Tarifaufgaben, 18. I n t e r n a t i o n a l Kongress der
Versicherungsmathematiker, Band II.

[6] JUNG, J. (1965), "On Automobile Insurance Ratemaking," The ASTIN
Bulletin, Vol. V, Part I.

[7] MEHRING, J. (1964), Ergebnisse einer Stichprobenuntersuchung in der
deutschen Kraftfahrt — Haftpflichtversicherung, 17th International
Congress of Actuaries, Vol. I l l , Part II .

[8] SEAL, H. L. (1968), The Use of Multiple Regression in Risk Classification
Based on Proportionate Losses, 18. Internationaler Kongress der Ver-
sicherungsmathematiker, Band II.

https://doi.org/10.1017/S0515036100009296 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100009296


152 MULTIPLICATIVE RATEMAKING MODEL

34
32
30
28
26
24
22
20
18
16

14
12
10
8
6
4
2
0 -

33

1/81

4-5

16

1-5 1.5
I I I !

—4 —3 —1 o

Fig. i

28
26
24
22
20
18
16
14
12
10
8
6
4
2
0-

< * = 1/1
28

4-5

—3 —2 —1 0 1 2 3 4

Fig. 2

https://doi.org/10.1017/S0515036100009296 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100009296


MULTIPLICATIVE RATEMAKING MODEL 153

Ww
28

12

0-5

- 4 —3 — 2 — 1 o i

Fig- 3

d— 1/0.09 <« l l I

2 9

16

i
I I -

0.5

—4 —3

Fig. 4

https://doi.org/10.1017/S0515036100009296 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100009296



