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Autonomous Unmanned Ground Vehicles (UGVs) require a reliable navigation system
that works in all environments. However, indoor navigation remains a challenge because
the existing satellite-based navigation systems such as the Global Positioning System (GPS)
are mostly unavailable indoors. In this paper, a tightly-coupled integrated navigation
system that integrates two dimensional (2D) Light Detection and Ranging (LiDAR), Inertial
Navigation System (INS), and odometry is introduced. An efficient LiDAR-based
line features detection/tracking algorithm is proposed to estimate the relative changes in
orientation and displacement of the vehicle. Furthermore, an error model of INS/odometry
system is derived. LiDAR-estimated orientation/position changes are fused by an Extended
Kalman Filter (EKF) with those predicted by INS/odometry using the developed error
model. Errors estimated by EKF are used to correct the position and orientation of the
vehicle and to compensate for sensor errors. The proposed system is verified through
simulation and real experiment on an UGV equipped with LiDAR, MEMS-based IMU, and
encoder. Both simulation and experimental results showed that sensor errors are accurately
estimated and the drifts of INS are significantly reduced leading to navigation performance
of sub-metre accuracy.
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1. INTRODUCTION. The promising vista of indoor navigation applications
have made this area popular with researchers worldwide. One of the challenges indoor
navigation confronts is the absence of GPS signals in the indoor environment (Misra
and Enge, 2001; Noureldin et al., 2012). To handle this issue, alternative techniques
are introduced to obtain a satisfactory performance. These techniques can be roughly
categorised into two groups depending on the availability of infrastructure and
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pre-installed sensor networks. Generally, techniques that are independent of the
external operational environment are preferred for the consideration of efficiency and
cost. To this end, self-contained systems like Inertial Navigation Systems (INS)
(Titterton and Weston, 2005) and odometry are widely used in indoor navigation.
Particularly, the emergence of the Micro-Electro-Mechanical System (MEMS)-based
INS which is lightweight, and lower in cost and power consumption makes it ideal
for personal, mobile robot and aerial vehicle applications (Aggarwal et al., 2010).
However, the INS or odometry standalone systems fail to sustain a high accuracy in
the long run due to their inherent error characteristics. This issue can be solved by
providing periodic updates to prevent the error accumulation over time. Light
Detection and Ranging (LiDAR) (Harrap and Lato, 2010) and vision (DeSouza and
Kak, 2002) are two common techniques integrated with INS and odometry in indoor
navigation systems. Compared with vision, LiDAR is more accurate and efficient in
computation load and processing speed. Furthermore, LiDAR is not limited by
lighting conditions. Therefore, in this paper, we introduce a low-cost lightweight
multi-sensor integrated navigation system that integrates INS/odometry with 2D
LiDAR in a tightly coupled scheme to provide a reliable indoor navigation system for
Unmanned Ground Vehicles (UGVs). The main contributions introduced in this
system are summarised as follows:

. INS/odometry is used in a reduced set where only a single vertical gyroscope
is used with the vehicle wheel encoder. This reduces the system complexity and
overall cost.

. An error model of relative displacement/orientation changes is derived for the
proposed reduced INS/Odometry system.

. A computationally efficient LiDAR-based line features detection and tracking
algorithm for indoor environments is proposed. The proposed algorithm is more
efficient than traditional curve-fitting-based algorithms.

. A tightly coupled Extended Kalman Filter (EKF) design is proposed for the
system.

. Both simulation and real experiment with MEMS-grade sensors and a 2D laser
scanner from the SICK company are carried out to analyse the performance of
the proposed work. Extensive analyses of results are given.

. The work introduced in the paper can be used as an in-motion gyroscope
calibration procedure.

. The proposed algorithms can be easily integrated in a more complex multi-sensor
navigation system that utilises a variety of other sensors.

2. PREVIOUS WORK. LiDAR has been widely used in ground vehicles
for the purpose of localisation (Lingemann et al., 2005; Xia et al., 2010), mapping
(Barber et al., 2008; Puente et al., 2011) and Simultaneous Localisation and Mapping
(SLAM) (Diosi and Kleeman, 2005; Grisetti et al., 2007). However, in most of
the earlier works using LiDAR alone, they have the drawbacks that LiDAR depends
on distinguishable features in the environment and the error in vehicle position derived
by LiDAR will accumulate. Therefore, the integration of LiDAR and INS is essential
to obtain a robust and accurate indoor navigation system. The integration of LiDAR
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and INS can be found in both indoor environments and urban areas (Haag et al.,
2007), where LiDAR replaces GPS to correct INS periodically. Generally,
LiDAR and INS are fused by Extended Kalman Filter (EKF) (Kim et al.,
2012; Ma and McKitterick, 2012) or Particle Filter (PF) (Hornung et al., 2010;
Bry et al., 2012) in two different schemes. One integration scheme is to feed
position and orientation derived from LiDAR being fed back to the filter to
correct navigation solutions from INS (Kohlbrecher et al., 2011). This kind of
integration is called “loosely coupled”. The problem with this kind of integration
is that if the position (and/or) orientation calculated from LiDAR is missing or
significantly jeopardised, overall accuracy is reduced. In contrast, another method
of integration is defined as “tightly coupled” between LiDAR and INS (Soloviev
et al., 2007; Soloviev, 2008). In this tightly coupled integration scheme, the
relative position and orientation changes estimated by LiDAR are compared with
position and orientation changes predicted by INS/Odometry and the differences
are fed to a filtering module (KF or PF) to estimate both errors in position and
orientation changes and sensors biases. This tightly coupled integration scheme is
commonly preferred over loosely coupled integration schemes due to the
utilisation of the raw LiDAR measurements and also due to the dependence of
relative position and orientation changes which are immune to absolute errors in
position and orientation.
However, the previous works use full Inertial Measurement Units (IMU) with

complicated mechanisation and error model equations that lead to quicker drifts if not
periodically corrected. In addition, the earlier works commonly utilise a traditional
curve-fitting-based features detection method that is computationally expensive. As
an improvement to the aforementioned approaches, this paper introduces a reduced
sensor set that utilises only a single vertical gyroscope, the vehicle wheel encoder and
a 2D LiDAR. An error model is derived and a computationally efficient parallel
line features detection and tracking algorithm that efficiently estimates 2D relative
position and orientation changes is introduced. The reduced sensor set and the
efficient line feature extraction and tracking algorithm make the proposed system
suitable for typical 2D indoor navigation for UGVs.

3. INS/ODOMETRY–BASED NAVIGATION SYSTEM. The pro-
posed 2D INS/Odometry-based navigation system consists of one single-axis
gyroscope with its sensitive axis aligned with the vertical axis of the body (Iqbal
et al., 2009; Iqbal et al., 2010; Atia et al., 2010). The system details are given as
follows.

3.1. System motion model. We assume the vehicle is mostly travelling in the
horizontal plane (Iqbal et al., 2008). Therefore, the forward velocity estimated from
the vehicle odometry measurements combined with the azimuth obtained from
integrating gyroscope rotation rate measurements yields velocity, as well as
displacements, along east and north directions. However, the earth rotation along its
spin axis as well as the change of local level frame (east-north-up) orientation with
respect to the earth will generate a rotation rate component which will also be
measured by the gyroscope. Thus, these components must be compensated and the
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rate of change of azimuth A can be given as follows:

dA
dt

= − [wz − bz] − we sin(φ) − ve tan(φ)
Rn + h

� �
(1)

where φ is latitude, wesin(φ) is earth rotation rate component along the
vertical direction, ve is velocity along the east direction, Rn is the earth normal
radius of curvature, h is altitude, ve tan(φ)

Rn+h is rotation rate component caused by
local level frame orientation change and bz is the estimated gyroscope bias using
stationary data.
The east and north velocities can be derived from the forward velocity vf

and azimuth A given the assumption that the vehicle is mostly travelling in the
horizontal plane. Velocities along the east and north directions can be written
respectively as:

ve = vf sin(A) (2)
vn = vf cos(A) (3)

After deriving velocities, 2D position change can be represented as below:

dφ
dt

= vn

Rm + h
(4)

dλ
dt

= ve

(Rn + h) cos(φ) (5)

whereRm is the earth meridian radius of curvature and λ is longitude. A block diagram
describing the 2D INS/Odometry system is shown in Figure 1.

3.2. Limitations of INS/Odometry-based navigation system. As self-contained
systems, both INS and odometry can provide navigation independent of their en-
vironments. However, the limitations for an INS/Odometry-based navigation system
are obvious. The inertial sensor errors and odometry scale factor error cause drifts that
grow with time without bound, thus navigation solutions from INS/Odometry-based
navigation systems deteriorate quickly. This gives rise to the requirement of periodic
correction for the INS/Odometry-based navigation system. In open-sky areas, GPS is
the common correction and aiding source. However, indoors, other aiding sources are
needed.

Figure 1. 2D INS/odometry system.
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4. THE PROPOSED SYSTEM. The 2D LiDAR (Adams, 2000; Diosi and
Kleeman, 2003) uses time-of-flight of a laser beam to measure distances from the
scanner to the reflecting surrounding objects in a certain angular range with known
angular resolution. Figure 2 shows an example of 2D LiDAR measurements in an
indoor corridor where reflections of the two parallel walls are highlighted by solid dark
lines.
In most indoor environments, there exists a common feature that is parallel straight

lines in hallways and corridors. As shown in Figure 2, the walls reflecting LiDAR
beams form a parallel lines feature. If the LiDAR scans points which are represented
in polar coordinate with distance and bearing are transformed into local LiDAR
frame, where the origin is the position of the laser scanner while x and y axes are the
transverse and forward direction respectively, LiDAR measurements will constitute
the parallel lines feature shown in Figure 3.
The proposed system uses the definition of normal point (Soloviev et al.,

2007) and (Soloviev, 2008). It is defined as the perpendicular intersection of
the extracted line and a line originating from LiDAR. A normal point is
characterised by its polar parameters: range ρ and angle α in the LiDAR frame as
shown in Figure 4.

Figure 2. 2D LiDAR scan in a hallway.

Figure 3. Parallel lines in local LiDAR coordinate frame.
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Two consecutive normal point measurements from a 2D LiDAR in a corridor are
illustrated in Figure 5. In epoch (i), the LiDAR scan shows a pair of parallel lines is
detected. The range and angle of the normal point on any of the lines are defined as ρi
and αi respectively. In the next epoch scan(i+1), the range and angle of the normal
point on the same line are defined as ρi+1 and αi+1 respectively.
Having represented the normal point by its range and angle in the LiDAR frame,

the range and angle changes between two consecutive scans are used in the system
filter as updates from LiDAR and they can be calculated respectively as follows:

ΔρLiDAR = ρi − ρi+1 = Δx cos(αi) + Δy sin(αi) (6)

ΔALiDAR = αi+1 − αi (7)

where Δx and Δy represent the displacements of the vehicle between two consecutive
epochs (i, i+1). It is important to note that Δx and Δy are the relative position changes
of the vehicle in the body frame, and ΔALiDAR is the relative heading change of the
vehicle.

Figure 4. Normal point: intersection between LiDAR perpendicular beam and walls in indoor
environments.

Figure 5. Two consecutive LiDAR normal point measurements.
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4.1. INS/Odometry-based position/orientation changes prediction. The relative
orientation change and horizontal position change in the vehicle body frame from
epoch (i) to epoch (i+1) can be predicted using INS/Odometry measurements as
follows:

ΔAINS = (wz − bz)T (8)
where ΔAINS is the heading change, wz is the gyroscope measurements, bz is the
gyroscope bias, and T is the sampling period. By projecting velocity in the body frame
at epoch (i), velocity components along xi and yi axis vx and vy can be calculated by:

vx = vf sin(ΔAINS) (9)
vy = vf cos(ΔAINS) (10)

where vf is the vehicle odometry measurement. Together with these velocity
components, the predicted displacements of the vehicle from epoch (i) to epoch
(i+1) ΔxINS and ΔyINS are estimated by:

ΔxINS = vxT (11)
ΔyINS = vy T (12)

Substituting Equations (9) to (12) into Equation (6), the range change from INS can
be obtained as follows:

ΔρINS = ΔxINS cos(αi) + ΔyINS sin(αi) (13)
4.2. INS/Odometry/LiDAR dynamic error model. In order to use EKF for the

proposed system, a linear dynamic system error model that can be written in the
following form has to be obtained:

δ̇x = Fδx+ G w (14)
where δx is the error state vector, F is the transition matrix, G is noise parameter
matrix and w is the zero mean Gaussian noise vector whose covariance matrix Q is
defined as the system noise matrix given by:

Q =, wwT . (15)
In the proposed system, the error state vector is defined as:

δx = [δΔx δΔy δvf δvx δvy δΔA δaod δbz]T

where δΔx is displacement error along x axis of the body frame, δΔy is displacement
error along y axis of the body frame, δvf is odometry measurements error, δvx is
velocity error along x axis, δvy is velocity error along y axis, δΔA is azimuth change
error, δaod is error in acceleration derived from odometry measurements and δbz is
error in gyroscope bias. By applying a Taylor expansion to the INS/Odometry-based
dynamic system given in Equations (8) to (12) and considering only the first order
term, the linearized dynamic system error model is given as:

δΔ̇x = δvx (16)
δΔ̇y = δvy (17)
δv̇f = δaod (18)
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δv̇x = sin(ΔA)δaod + cos(ΔA)(wz − bz)δvf
+ aod cos(ΔA) − vf sin(ΔA)(wz − bz)

� �
× δΔA− vf cos(ΔA)δbz

(19)

δv̇y = cos(ΔA)δaod − sin(ΔA)(wz − bz)δvf
− aod sin(ΔA) + vf cos(ΔA)(wz − bz)

� �
× δΔA+ vf sin(ΔA)δbz

(20)

δΔ̇A = −δbz (21)

δȧod = −γodδaod +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γodσ

2
od

q
w (22)

δḃz = −βzδbz +
ffiffiffiffiffiffiffiffiffiffiffiffi
2βzσ2z

q
w (23)

Here, both random errors in acceleration derived from odometry and gyroscope
measurements are modelled as first order Gauss-Markov processes. γod and βz are
the reciprocal of the correlation time constants of the random process associated
with odometry and gyroscope measurements respectively while σod and σz are standard
deviation of this random process (Iqbal et al., 2008).

4.3. INS/Odometry/LiDAR measurement model. The measurement z is modelled
as the following form:

z = Hδx+ v (24)
Where the observation vector z is defined by:

z = ΔρLiDAR − ΔρINS
ΔALiDAR − ΔAINS

� �
(25)

H is the design matrix of the filter and can be given as:

H = cos(αi) sin(αi) 0 0 0 0 0 0
0 0 0 0 0 1 0 0

� �
(26)

v is the vector of observation random noise, which is assumed to be a zero mean
Gaussian noise vector whose covariance matrix R is defined as the system noise matrix
given by:

R =, vvT . (27)
From system error model Equations (16) to (23), F and G matrices can be easily

derived. Based on this, the discrete state transition matrix can be given as:

Φk,k+1 = I+ FT (28)
where T is the sampling period and I is the identity matrix. Then EKF equations can
be applied to predict the error state vector and update it when measurements from
LiDAR are available. The prediction and correction are performed in the body frame
and then transformed into the navigation frame to provide corrected navigation
output. A block diagram describing the system is shown in Figure 6.
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5. LINES DETECTION/TRACKING ALGORITHM. Commonly, to
detect lines in the environment using LiDAR, a curve-fitting algorithm is used in a
moving window that runs over LiDAR scans (Nguyen et al., 2005). Performing this
operation is a computational bottleneck. To overcome this limitation, we propose a
more efficient detection and tracking mechanism that does not need curve fitting
and does not involve matrix inversions. Since we target parallel lines in indoor
environments, we make use of the fact that we have prior knowledge about the
targeted line features. The algorithm consists of two main steps: acquisition and
tracking which is similar to the approach used in GPS receivers to acquire satellite
signals (Misra and Enge, 2001). These two steps are described as follows:

. Acquisition Mode: The algorithm performs a search in the space of possible
lateral distances (distance between vehicle position and “Normal Point”)
and possible vehicle headings (could be centred on azimuth calculated by
INS/Odometry motion model). This search is conducted as follows:
○ Based on the lateral distance, heading, and the assumption that a parallel line

feature exists, artificial LiDAR range/angle points are generated. We call these
points the “replica”.

○ Whenever a LiDAR measurement is available, the replica is correlated with
the real measurements. If the correlation is strong, the acquisition is declared
to be true and “Normal Points” parameters are calculated.

. Tracking Mode: Once the acquisition mode detects a parallel line feature, the
algorithm will switch to tracking mode. In the tracking mode, the new epoch’s
LiDAR measurements are predicted and consequently, the search window is
greatly reduced and the search process becomes quite efficient and more accurate.

. Re-acquisition: In the tracking mode, if the correlation starts to be weak, the
tracking mode is halted and the algorithm switches to the acquisition mode.

. INS/Odometry Aiding: To enhance the performance, the INS/Odometry
prediction of relative displacement/orientation changes is used to enhance the
consistency and further improve the accuracy and the performance.

Figure 6. INS/Odometry/LiDAR system.
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. Singularity Issue: Since the parallel lines feature is usually found in corridors
where the slopes are close to 90o, we transform all the data by an arbitrary angle
to avoid singularities. After performing estimation of lines, we transform the
results back to the original LiDAR frame.

A flowchart is shown in Figure 7 that describes the steps of the algorithm.

6. SIMULATION RESULTS AND ANALYSIS
6.1. Simulation Environment. In simulation, two motion patterns are designed,

namely motion pattern #1 and motion pattern #2. In motion pattern #1, the vehicle
moves in straight lines most of the time while motion pattern #2 shows more flexible
movement of the vehicle in a curved trajectory. To analyse and verify the proposed
system, a flexible simulation environment has been developed. In this simulation
environment, corridors with known dimensions are simulated. The simulation area is
an indoor environment with three corridor sections and two corners. In corner areas,
parallel lines may not be detected and LiDAR measurements are unavailable. Similar
to GPS signal blockage in INS/GPS systems, we define corner areas as LiDAR outage.
The reference trajectories of motion pattern #1 and motion pattern #2 are illustrated
in Figure 8.
Reference speed and heading in different simulated motion patterns are

planned in advance to analyse the filter behaviour and the system performance
in different motion patterns. Noisy gyroscope measurements were obtained by
applying a deterministic bias component, a deterministic bias drift rate and a Gauss-
Markov-based random noise part. The random noise component was obtained from a
Crossbow IMU300CCMEMS-based IMU datasheet. A scale factor error was applied
to speed measurements as well. The true LiDAR range measurements were obtained
based on the knowledge about the reference trajectory (position/heading) and line

Figure 7. Flowchart of lines detection and tracking algorithm.

262 SHIFEI LIU AND OTHERS VOL. 68

https://doi.org/10.1017/S037346331400054X Published online by Cambridge University Press

https://doi.org/10.1017/S037346331400054X


equations of the corridor walls. A random noise part with standard deviation
obtained from a SICK LMS-200 datasheet (SICK, 2006) was added to the simulated
LiDAR measurements. The specifications for Crossbow IMU300CC (Crossbow,
2007) and SICK LMS-200 are shown in Tables 1 and 2 respectively.
The range and azimuth changes from LiDAR for motion pattern #2 are illustrated

in Figure 9. This figure indicates the noise level in range and azimuth measurements
from LiDAR.

6.2. Navigation Modes. When moving through corridors, the vehicle is working
in integrated navigation mode where LiDARmeasurements are processed and applied
in EKF to estimate sensors errors and position/velocity/orientation errors. In this
mode, errors in gyroscope bias δbz and velocity error δvf can be estimated by EKF and
used to correct vertical rotation rate measurements and velocity. When the vehicle
reaches the corners where LiDAR outage occurs, the vehicle switches to prediction
mode. In prediction mode, the system applies the latest gyroscope bias bz and velocity
error δvf estimated by EKF in INS/Odometry motion equations to achieve 2D
navigation solutions.

6.3. Simulation Results. The simulation results for motion patterns #1 and
motion pattern #2 are shown in Figures 10 and 11 respectively. As can be seen,
the deviation between reference trajectory and noisy trajectory generated by the
INS/Odometry standalone system grows with time. This is mainly because the
gyroscope bias errors are corrupted by random noise that accumulates over time.

(a) (b)

Figure 8. (a) Simulation area and reference trajectory for motion pattern #1. (b) Simulation area
and reference trajectory for motion pattern #2.

Table 1. Crossbow IMU300CC Specifications.

Parameter Value

Range: Roll, Pitch, Yaw (°/sec) ±100
Bias: Roll, Pitch, Yaw (°/sec) <±2·0
Scale Factor Accuracy (%) <1
Non-Linearity (% FS) <0·3
Resolution (°/sec) <0·025
Bandwidth (Hz) >25
Random Walk (°/hr1/2) <2·25
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However, the LiDAR-aided system can keep close track of the reference movement
during the whole process. During LiDAR outages, the latest estimations of gyroscope
bias and odometry velocity error from EKF are accurate enough to maintain a reliable
performance.
Owing to measurement updates from LiDAR in EKF, the noises in both gyroscope

and odometry are estimated and compensated, thus leading to long-term sustainable

Table 2. SICK LMS-200 Specifications.

Parameter Value

Statistical Error (mm) 5
Angular Resolution (°) 0·5
Maximum Measurement Range (m) 80
Scanning Range (°) 180

(a) (b)

Figure 9. (a) Noise level of range change from LiDAR measurements. (b) Noise level of azimuth
change from LiDAR measurements.

Figure 10. LiDAR-aided solutions for motion pattern #1.
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centimetre-level accuracy. The true gyroscope bias and the estimated gyroscope bias
from EKF in motion pattern #1 and #2 are shown in Figures 12 and 13 respectively.
As can be seen from the figures, EKF can accurately estimate the gyroscope bias and
drifts regardless of the motion patterns designed in the simulation experiment. During
LiDAR outages, the system operates only in prediction mode and gyroscope keeps
constant until LiDAR measurements become available again.
The root mean square error in position for motion pattern #1 and #2 in three

corridor sections and two outages are depicted in Tables 3 and 4 respectively. From
these tables, it is worth noting that the performance of motion pattern #2 is better
than that of motion pattern #1. The reason for this is that in motion pattern #1 the
vehicle moves in straight lines most of the time and, consequently, the angle of normal

Figure 11. LiDAR-aided solutions for motion pattern #2.

Figure 12. Gyroscope bias estimation results for motion pattern #1.
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point at any scan epoch is either 0° or 180°. Substituting this angle value into design
matrix H given in Equation (26) makes the observability of H for the second element
in the error state vector zero. This leads to poor estimation of the error states. In
contrast, when the vehicle moves in a curved trajectory, the angle of the normal point
at any scan epoch keeps changing. The observability of H for the second element in
the error state vector is strong enough to estimate errors. Thus, EKF can achieve
better estimation results for the error states.

7. REAL EXPERIMENT RESULTS AND ANALYSIS. Real experi-
ments were conducted in a 70 m by 40m indoor office environment in the Royal
Military College of Canada with UGV “Husky A200” from Clearpath Robotics Inc.
(Canada-based). The complete loop in the testing trajectory is around 220m and it
took around seven minutes to travel using the Husky A200 UGV. The UGV is
equipped with SICK laser scanner LMS111, MEMS level inertial sensor set CHR-
UM6 and a quadrature encoder. For the datasheet of CHR-UM6, one can refer to
CHRobotics (2013). The specification of SICK LMS111 is shown as below. The
sampling frequency for gyroscope, wheel encoder and laser scanner are 20 Hz, 10 Hz
and 50Hz respectively.

Figure 13. Gyroscope bias estimation results for motion pattern #2.

Table 3. Position Error for Motion Pattern #1.

Sections
Corridor Outage Corridor Outage Corridor

TotalI I II II III

Postion Error With LiDAR
Aiding (m)

0·40929 0·50381 0·45845 0·30675 0·61706 0·49438

Postion Error Without LiDAR
Aiding (m)

0·16039 0·51875 1·89935 3·90525 6·64491 3·86072
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In a real scenario, navigation performance is influenced by various factors, such as
the reflectivity of different objects in the environments, opening doors and people
walking by etc. Due to these aspects the parallel lines feature mentioned above not do
not exist in every timestamp. Figure 14 shows some laser scans at certain scenes of the
environment. The scans are transformed into the LiDAR frame where the origin (0, 0)
represents the position of the UGV. The pictures on the right are taken during
the experiment showing the scenes of the environment corresponding to the scans on
the left.

7.1. Performance of lines detection and tracking algorithm. We used the Husky
A200 UGV to collect data as described above. Then we ran our algorithms in post-
processing mode where data is loaded by MATLAB and the algorithm is applied to
estimate relative displacement/orientation changes between LiDAR epochs. Some
detection results are shown in Figure 15. Detected lines are identified by green lines
and the portion of generated points that achieved highest correlation is identified
by solid thick green points. Original LiDAR data is shown in magenta and the
transformed LiDAR data is shown in blue.
To compare the computational performance of the proposed algorithm, we run

a traditional curve-fitting-based algorithm that is based on a moving 25-points length
window of LiDAR data points and performed curve-fitting and draw a histogram to
estimate line parameters. The two algorithms were tested over 26,200 LiDAR scans.
Results showed that on a SONY VAIO Core i5 processor, MATLAB code took an
average of 0·5 seconds to process a LiDAR scan of 541 points with the traditional
curve-fitting-based algorithm while it took an average of 0·2623 seconds to process a
scan with the proposed algorithm. Figure 16 (a) and (b) show iteration times over a
portion of 200 epochs of LiDAR scans. The epochs were selected to show examples
of smooth portion where tracking was always successful (see Figure 16(a)) while
Figure 16(b) shows the time changes when tracking is lost and acquisition is repeated.
In terms of accuracy, Figure 16(c) shows a comparison between line angle estimated

by traditional least-square curve fitting and the proposed algorithm. We verified the

Table 4. Position Error for Motion Pattern #2.

Sections
Corridor Outage Corridor Outage Corridor

TotalI I II II III

Postion Error With LiDAR
Aiding (m)

0·14133 0·20538 0·12926 0·19289 0·30458 0·20721

Postion Error Without LiDAR
Aiding (m)

0·23889 0·62594 1·67813 3·57002 6·55205 3·85759

Table 5. SICK LMS111 Specifications.

Parameter Value

Statistical Error (mm) ±12
Angular Resolution (°) 0·5
Maximum Measurement Range (m) 20
Scaning Range (°) 270
Scanning Frequency (Hz) 50
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Figure 14. Laser scans and pictures in different scenes of the environment: (1·1) The red circles
show two opening doors. (2·1) In a corner. (3·1) The red square demonstrates the garbage bins.
(4·1) The red square indicates a small part of the wall made of glass that the beams can get through.
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accuracy by applying the estimated relative displacement/orientation changes to the
EKF in the integrated navigation system and we found that the positioning accuracy is
around the same. Although the proposed algorithm, in some situations, might be more
sensitive to noise (which can be seen in the first portion of Figure 16(c), experimental
results of the integrated navigation solution showed that the proposed algorithm
performs similarly to curve-fitting-based methods in terms of accuracy but with almost
50% faster processing time.

7.2. Positioning performance of the proposed LiDAR-aided integrated navigation
system. It is important to note that LiDAR updates are propagated to EKF at the
frequency of 5 Hz for two reasons: firstly to guarantee that measurable relative
displacement/orientation changes have been obtained and secondly to increase
confidence in these relative displacement/orientation changes measurements by
increasing Signal-to-Noise Ratio (SNR) in LiDAR corrections. During the whole
trajectory, LiDAR updates were available only 20% of the time while during the
rest of the time, the system operates in INS/Odometry prediction mode. Figure 17
illustrates the time epoch when LiDAR updates are available in red markers on the
reference trajectory. As can be seen, LiDAR outages occur in places filled with
unorganised objects and corners.
The results for real experimental data are shown in Figure 18. The dark green

trajectory is used as a reference trajectory derived by manual calibration of the
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Figure 15. Two detection results snapshots of the proposed lines detection and tracking algorithm.
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gyroscope when the vehicle is stationary. The blue trajectory is generated
using pure un-aided INS/Odometry without any LiDAR updates. The red trajectory
is the performance of the proposed algorithm. Although the dark green trajectory
here cannot really represent the true reference trajectory, it still can be used to
evaluate the performance of the proposed algorithm. The root mean square error
for LiDAR-aided trajectory was found to be 0·56 m while the root mean square

(a)

(b)

(c)

Figure 16. Comparison between traditional LS-based algorithm the proposed lines detection and
tracking algorithm. (a) The time taken to process LiDAR scan over 200 epochs. (b) The time
during different phases (acquisition and tracking). (c) The angle estimated during the 200 LiDAR
epochs processed.
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error for INS/Odometry standalone system is 5·25 m which means almost 90% error
reduction is obtained. Given the fact that the real measurements and real environment
are much more complicated than the simulation conditions, this result can be
considered consistent with the simulation results where a 94% error reduction
is obtained. Figure 19 demonstrates the estimation of gyroscope bias error during
a portion of the experiment. Comparing this figure with Figures 12 and 13, the
gyroscope bias estimation results from real experiment match the estimation results
from simulations.
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Figure 17. LiDAR updates availability during the whole trajectory.
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Figure 18. Real experiment results.
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8. CONCLUSION. In this paper, a 2D INS/Odometry/LiDAR integrated
navigation system that is suitable for UGVs in indoor environments was introduced.
The INS/Odometry system was used with a reduced inertial sensor set where only a
vertically aligned gyroscope is used with the vehicle wheel encoders. In addition, a line
features detection and tracking algorithm was proposed that is more efficient than
traditional curve-fitting-based algorithms. The LiDAR measurements were used to
estimate position and orientation changes which are fused by EKF with a dynamic
error model of the INS/Odometry system. Navigation states were corrected by EKF-
estimated errors while gyroscope measurements were compensated by EKF-estimated
bias. Both simulation and real experimental results in an indoor area showed that the
sensors errors are accurately estimated by the proposed EKF scheme. Furthermore,
the results showed improvement in navigation performance and robustness in real
world application, thus leading to navigation performance of sub-metre accuracy.
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