abiotic processing, stages of, 467–468
abiotic reactions, 430, 457, 467
abiotic sulfurization, 483–484
abyssal peridotite, 455–456
accretionary cycle, 277
accumulation curve, 631
acetate, in ultramafic systems, 495
acetogenesis, 483
active volcanoes
emissions from, 194–197, 216
temporal variability of, 208–209
adiabatic mantle, 166–167
affinity, 590
aldehyde disproportionation reactions, 433–434
aldol reactions, 434
Alfred P. Sloan Foundation, 1
aliphatic chains, 462
alkalinity, cycle of, biological evolution and, 296
alkanes, 424, 426–427
alkenes, 424
alloy–silicate melt partitioning, 29
coefficients, 16–17
D_4broy/silicate and, 25
hydrogen and, 25–26
of LEVEs, 20–21
LEVEs and, 25
American–Antarctic Ridge, 255–257
anaerobic reactions, 607–608
anaerobic methane-oxidizing archaea (ANME), 530–531, 534
anhydrous MORBs, 135–136
animation, as substitution reaction, 430–433
ANME. See anaerobic methane-oxidizing archaea
Anthropocene, 627
antigorite, 285–286
aqueous electrolytes, 368
in confined liquids, 372
aquifers, 191–192
aragonite, 74, 137
archaea
anaerobic methane-oxidizing, 530–531, 534
in subsurface biome, 533–534
Archean, 283
Ashadze, 494
asthenospheric mantle, 70–72, 78–80
atmosphere loss, MO and, 17–19
atmospheric recycling, of sulfur, 100–102
ATP, 588
Aulbach, S., 68
axial diffuse vents
basalts and, 492
oceanic rocky subsurface and, 492
axial high temperature
basalts, 488–492
oceanic rocky subsurface and, 488–492
Azores, 240–242
Bagana, 217
Baltic Sea, 527–528
basalts. See also mid-ocean ridge-derived basalts
axial diffuse vents and, 492
axial high temperature, 488–492
carbon content of, 4–5
carbon dioxide and, 144
ocean islands and, 144
benzaldehyde, 433–434
benzene, 426
Berner’s model, 336
bicarbonate ions, 19
bioavailability, of OC, 505
biofilm-based metabolisms, 504
biogeochemical cycling, 480
reaction rate controls, 505
biogeochemistry, of deep life, 561–562
biological evolution, 299–300
alkalinity, cycle of and, 296
dioxygen cycle and, 294–296
subduction and, 294
biomass, 587–588
deep biosphere, 588
energy limits and, 588
bioorthogonal non-canonical amino tagging (BONCAT), 563
biotic recycling, of sulfur, 100–102
bipartite networks, 642–643
Birch–Murnaghan equation of state (BMEOS), 171
Birch’s law, 50
BMEOS. See Birch–Murnaghan equation of state
Boltzmann constants, 395
BONCAT. See bioorthogonal non-canonical amino
Bureau, H., on diamond formation, 106
Birch bipartite networks, 642
Bipartite networks, 642
Birch on diamond formation, 106
Brønsted acid catalysis, 422
Brillouin scattering, 77
Brunsted acid catalysis, 422
BSE. See Bulk Silicate Earth
bulk rock investigations, 449–451
bulk silicate, 112
Bulk Silicate Earth (BSE), 322, 325
carbon in, 10–14, 25–26
C/H ratio of, 14, 19
chondrites, 6–7
C/N ratios of, 14, 19
C/S ratio of, 16–18
D/H ratio of, 7–9
equilibrium accretion and budget of, 19–21
hydrogen in, 10–12
LEVE budgets of, 14–19, 25–26
magma ocean differentiation and budget of, 19–21
nitrogen in, 10–12
S/N ratio of, 16–18
sulfur in, 10–12
volatile budget of, 19–21
Bureau, H., on diamond formation, 106–108

CaCO₃, 56. See also carbonates
depth carbon stored as, 74
in dolomite, 73–74
calcite, 74
calciump silicate perovskite, 112
Ti-poor, 112–113
Ti-rich, 112–113
calderas
emissions and, 201–206, 209
temporal variability of, 209
unrest in, 203–204
Calvin–Benson–Bassham cycle, 564–565
CaMg(CO₃)₂, 73–74. See also carbonates
Canary Islands, 143, 149–150, 240–242
Candidate Phyla Radiations, 556–565
Cannizzaro reactions, 433–434
Cape Verde, 149–150
carbide, 29, 461
atomic scale structure of, 47
in Fe(Ni) alloys, 72
in Fe(Ni) alloys, 72
molten iron, 47
carbide inner core model, 41–42
carbon. See also deep carbon; organic carbon
abundance, 11–14
abundance of, in mantle, 67–73
in basalts, 4–5
baseline, 347–348
in BSE, 10–14, 25–26
in chondritic building blocks, 12
across CMB, 55–56
in continental lithosphere, 70–72
of continental subsurface, 500–501
in convecting mantle, 70–72, 254–257
in core formation, 20
in core over time, 55–56
in core–mantle segregation, 24–25
defining, 40
dissolved inorganic, 480–489
distribution of, 80–81, 276
on Earth, 4–5
in E-chondrites, 11–12
estimates of abundance of, 66–67
in exogenic systems, 347–348
extraction of, from mantle, 67–73
feedbacks, 299
in Fe(Ni) alloys, 72
forms of, 11–14, 66
fractionation of, 18–19
inheritance of, in mantle, 68
isotopic composition of, 8–9
as light element in core, 27–28, 40, 55
in mantle, 238
melt inc., 257–262
melting points and, 53–54
in meteorites, 11–14
mineral ecology, 630–633
movement of, 1
outgassed from volcanoes, 211–215
oxidation of, 418–419
oxidized form, 70–72
in partial melting, 258
perturbations in flux of, 277–278
polymorphs, 73–74
ratios, 11–14
in redox reactions, 80–81
reduced form, 70–72
residence time of, 277–278
sedimentary, 133
solidus and, 264
solubility, 18, 20–21
sources of, 211–215
speciation of, from mantle, 67–73
stability of, 70–72
in subconduction zones, 133
temporal distribution of, 628–629
in ultramafic systems, 494
in ureilites, 16
volcanic, 215
carbon budgets, 4–5
constraints on, 56–57
of core, 40–41
from core accretion, 66–67
from core–mantle differentiation, 66–67
carbonate melts
in carbon cycle, 129
compositions, 137–138
in cratonic lithospheric mantle, 138–139, 142–143
from diapirs, 287–288
extraction of, 148
from hot slabs, 287–288
importance of, 150
incipient melting of, 166–168
in intraplate settings, 143
under mid-ocean ridges, 147–148
migration of, 129, 132
at ocean islands, 143
silicate melts and, 168–169
stability fields of, 147–148
structure of, 168–169
with subduction zones, 132–134
in upper mantle, 129
in various geodynamic settings, 166–168
carbonate stability
constraints on, 130–131
oxygen fugacity and, 130
carbonate weathering, carbon flux and, 330–331
carbonated basalts
bulk compositions, 137
melt stability of, 179
melted, 137
melted MORBs, 135–136
carbonated MORBs, 135–136
carbonated sediment
melting of, 134–138
potassium in, 137–138
solidus of, 135–136
in transition zone, 134–138
in upper mantle, 134–138
carbonates
assimilation, 70
breakdown of, 80–81
in cratonic lithospheric mantle, 140–142
experimental calibrations, 140–142
Fe-bearing, 75
formation of, 133
in mantle, 72–73, 143–145
mineral dissolution of, 133–134
Na-carbonate, 137
pelagic, 296–299
phase at solidus, 135–136
precipitation, 331–333
pump, 279–280
redox constraints on, 140–142
seismic detectability of, 77
silicate and, 142–143
solubility of, 285
stability fields of, 147
structure of, 282
thermoelastic properties of, 77–78
carbonate–silicate melts, formation of, 69
carbonatite melts, 173
mobility of, 168–178
carbonatites, 133–134
abundance of, 149
classification of, 148
crustally emplaced, 147–150
deep, 144
emplacement of, 149
evolution of, 149
formation of, 144, 149
limits to knowledge and, 150–151
magnas, 130
magmatism of, 149
ocean islands and, 149
in subduction zones, 134
carbon-bearing fluids
complexity in, 358, 360
fluid–fluid interactions, 366
guest molecules in, 366–372
nanoconfinement and, 363
carbon-bearing phases
limits to knowledge about, 81–82
stable forms of, 66
carbon-bearing reactants, in experiments, 458–461
carbonite peridotite
in mantle, 131–132
melting of, 131–132
CARD. See catalyzed reporter deposition
Carnegie Institute of Science, 388–389
CaSiO3-perovskite, 112–113
retrogressed, 114–115
CaSiO3-walstromite, 91–92
catabolic reactions, 599–601
catalyzed reporter deposition (CARD), 562–563
cathodoluminescence of Marange diamond, 95
CaTiO3-perovskite, 112–113
c–bearing phases, in E-chondrites, 11–12
cell counts, 586
cellular bioenergetics, 566–567
cementite. See Fe3C
Cenozoic, 276, 293
Census of Deep Life, 558
C/H ratios
of BSE, 14, 16–19
bulk weight, 13–14
subchondritic, 19
C–H species, stabilization of, 19
Le Chatelier’s Principle, 420
chlorite, 285–286
chondrites
BSE, 6–7
CI, 6–7
E-chondrites, 6–7, 11–12, 15
EH, 15
EL, 15
ordinary, 15–16
chondritic building blocks, carbon in, 12
CI, chondrites, 6–7
DCO. See Deep Carbon Observatory
deamination
rates, 431–432
as substitution reaction, 430–433
DECADE. See Deep Earth Carbon Degassing
decompression melting, 257
dep deep bedrock, in continental subsurface, 503–504
dep deep biosphere
adaptations for survival in, 539, 568–569
biomass, 588
energetics, 585
limits to knowledge about, 505–506
locations, 481
metabolism, 562–565
similarities across, 504–505
dep deep carbon
as CaCO3, 74
organic chemistry of, 416–420, 438–439
reservoir, magnesite as, 74–75
science, emergence of, 1
subduction, 288–289
Deep Carbon Observatory (DCO), 1, 90, 388–389
Carbon Mineral Challenge, 632
data and, 620
DMGC and, 115–116
Integrated Field Site Initiatives, 641
on volcanism, 189–190
dep deep carbonatites, 144
dep deep coal beds, in continental subsurface, 503
Deep Earth Carbon Degassing (DECADE), 195, 206, 217–218
on volcanism, 189–190
dep deep life, 539–541
biogeochemistry of, 561–562
dep deep mantle
oxy-thermobarometry of, 76–77
redox freezing in, 111–114
Deep Sea Drilling Program (DSDP), 250
dep deep water
carbon cycle and, 105–106
diamonds and, 105
in ringwoodite, 106
degassing
diffuse, 199–201, 204
MO, 5
passive, 197, 206–207
dehydration, 436
aqueous alcohol, 421–422
as elimination reaction, 420–423
dehydrogenation reactions, 423–427
dep depletions MORB mantle (DMM), 211–215
Desulfovibrio indonesiensis, 570–571
devolatization pattern, 285–286
D/H ratio, of BSE, 7–9
diagenesis, 430
DIAL. See differential absorption LIDAR
diamantiferous peridotite, 70
diamonds
Brazilian, 103
Bureau on, 106–108
carbon cycle and, 94–95
carbon isotope composition of, 103
carbonates in, 135
CLIPPIR, 114–115
crystallization from single carbon fluid species, 97–98
dep water and, 105
defects in, 92
depth of formation, 91–92
diagnostic tools for, 107
experiments for studying, 106–108
Frost on, 106–108
FTIR maps and, 92–94
future research on, 115–116
gobarometry of, 91
HDF migration and, 99–100
history of, 93–94
inclusion entrainment, 106–108
isothermal precipitation, 97
Jagersfontein, 103
Kankan, 103
limits to knowledge about, 115–116
lithospheric, 89–90
metametamorphism and formation of, 99–100
from mantle transition zone, 103–104
Marange, 95
metasomatic fluids and formation of, 98–100
Monastery, 103
monocrystalline growth of, 107
natural growth media, 107
Northwest Territories Canadian, 99–100
obtaining, 89–90
in platelets in, 93–94
polycrystalline formation of, 108–109
precipitation of, and methane, 95–96
Proterozoic lherzolitic formation, 110–111
redox freezing and, 111–114
redox-neutral formation of, 96–98
scanning electron microscope images of, 107–108
sublithospheric, 89–90
super-deep, 105
synthesizing, 106–107
thermal modelling of, 92–94
trapping of inclusions in, 92
Diamonds and the Mantle Geodynamics of Carbon (DMGC)
DCO and, 115–116
goals of, 115–116
research areas of, 90
on super-deep diamonds, 105
diapirs, carbonate melt from, 287–288
DIC. See dissolved inorganic carbon
dielectric constants, in nanocom confinement, 372–374
differential absorption LIDAR (DIAL), 190–191
differential equations, first order, 317
diffuse degassing, 199–201, 204
diffuse emissions, 191–192, 201–207
diffusion
 pore, 364–366
 surface, 364–365
 viscosity-diffusion, 171–172
diffusion-sink experiments, 176
dioxygen cycle, biological evolution and, 294–296
disequilibrium core formation, 26–27
disproportionation reactions, 433–434
 aldehyde, 433–434
dissolution, of siderites, 462–463
dissolved inorganic carbon (DIC), 480–489
dissolved organic carbon (DOC), 480–489
 solubilization of, 484
DMGC. See Diamonds and the Mantle Geodynamics of Carbon
DMM. See depleted MORB mantle
DOC. See dissolved organic carbon
dolomite
 CaCO₃ in, 73–74
 crystal structure of, 73–74
 high-pressure polymorphs and, 73–74
 iron and, 73–74
 MgCO₃ in, 73–74
dolomitic carbonite, 132
Dorado Outcrop, 492–493
dormancy, 588–589
dormant volcanoes, emissions from, 198
down-going slab materials, 133
DSDP. See Deep Sea Drilling Program

E. coli, 570–571
EAR. See East African Rift
Earth. See also Bulk Silicate Earth
carbon on, 4–5
 climate stability of, 4, 313
 life on, 4
 mantle reservoir of, 4–5
 organic chemistry and, 415–416
 proto-Earth core formation, 26–27
 structure of, 4–5
 surface temperature of, 313
whole-Earth carbon cycle, 315–316, 338–341
Earth Microbiome Project, 641
EarthChem Library, 240–242, 623
EAS. See electrophilic aromatic substitution
East African Rift (EAR), 149, 205–206, 217, 328–329
East Pacific Rise, 179, 240–241
Ebelman reaction, 292
EC. See Eddy covariance
E-chondrites
 carbon in, 11–12
 C-bearing phases in, 11–12
 LEVEs and, 15
 model, 6–7
eclipte, 70
carbon dioxide and, 146–147
 in mantle, 144
 melting, 215
eclogite-derived melts, 146–147
ecliptic lithospheric diamonds, 90
Eddy covariance (EC), 191
Eger Rift, 206
EH chondrites, 15
elastic geobarometry, 91–92
electrical conductivity
 anomalous, 181
 enhancement, 176–177
 incipient melting and, 173–174, 179
 melt mobility and, 179
 in olivine matrix, 174
electrophilic aromatic substitution (EAS), 433–434
elemental cycling
 basic concepts of, 315
 climatic drivers in, 319–321
 negative feedback in, 319–321
 residence time in, 315–319
 steady state in, 315–319
elimination reactions
 dehydration as, 420–423
 hydration as, 420–423
EM1 OIB, 102
EMFDD reaction, 131
emissions, carbon dioxide
 from active volcanoes, 194–197, 216
calderas and, 201–206, 209
 constraints, 207
 continental rifts and, 201–206
 cumulative, 201–202
 data distribution, 203
decadal averages of, 196–197
diffuse, 191–192, 201–207, 216
 from diffuse degassing, 207–208
 from dormant volcanoes, 198
 estimation of, 197
during explosive eruptions, 197–198
 fumaroles and, 198–201
 global of carbon dioxide, 193–194
 hydrothermal systems, 201–206
 measurement of, 199–201
 next iteration of, 206–208
 over geologic time, 215
 plume gas, 188, 201–203
 quantifying, 215–217
 synthesis of, 215–217
 temporal variability of, 208–209
 vent, 216
EMOD buffers, 96–97
endogenic systems, 314–315
energy limits, 585
anabolism and, 607–608
biomass and, 588
energy limits (cont.)
density and, 603–605
maintenance in, 586–587
microbial states and, 586–589
time and, 606–607
Enermark field, 526–527
entropy, 590
changes in, 590
defining, 590
enzyme evolution, 635–636
equilibrium accretion, BSE budget and, 19–21
eruption forecasting, temporal variability and, 209–211
eukaryotes, in subsurface biome, 535–536
eutectic composition, 41–42
of Fe–O binary system, 42–43
of Fe–S binary system, 42–43
of Fe–Si binary system, 42–43
exogenic reservoirs, 327–328
exogenic systems, 314–315
carbon flux, 331–348
carbon in, 347–348
experimental containers, carbon dioxide and, 457–458
extreme cellular biophysics, 570–572
extreme molecular biophysics, in subsurface environment, 567–570

Fe3C
density of, 47–48
inner core phase and, 50–52
natural form of, 44–48
near iron end member, 48
orthorhombic, 44–48
Fe7C3
constraints from, 52
at core, 55
electrical resistivity of, 55
sound velocities of, 52
Fe-bearing carbonates, melting of, 75
Fe–C alloy
constraints from, 52
elasticity parameters for, 45
liquid, 49, 52
melting temperatures of, 53–55
near iron end member, 52
slab-derived, 56
sound velocities of, 50
Fe–C binary system, 41–42
densities of, 44, 48
FeCO3, 78–79
feedback loops, 317–318
Fe–H, sound velocities of, 53
Fe–light element alloys
melting curve parameters, 52
sound velocities of, 52–53
Fe(Ni) alloys
carbide in, 72
carbon in, 72
precipitation curve, 70–71
Fe–Ni–C alloys, solidus temperature ranges in, 72
Fe–O binary system
characterizing, 44
eutectic composition, 42–43
melting temperatures, 55
sound velocities of, 53
ferropericlase, 76
Fe–S binary system
characterizing, 42
eutectic composition, 42–43
eutectic point of, 55
melting temperatures, 55
sound velocities of, 53
Fe–Si binary system
characterizing, 42–44
eutectic composition, 42–43
melting temperatures, 55
sound velocities of, 53
FISH. See fluorescent in situ hybridization
Fisher–Tropsch process, 460–461
flank gas emission, 188
fluid addition, 215
fluid inclusions, in oceanic lithosphere, 456–464
fluid–fluid interactions, 366
fluorescent in situ hybridization (FISH), 562–563
flux melting, 144
formaldehyde, 459
formate, in ultramafic systems, 495
founder effect, 540
Fourier-transform infrared spectroscopy (FTIR) maps, 190–191, 238, 451–452
diamonds and, 92–94
Friedel–Crafts reaction, 434
Frost, D. J., 69
on diamond formation, 106–108
FTIR. See Fourier transform infrared spectroscopy maps
FTT reactions, 457–458
magnetite and, 464
fumaroles, 213–214
C/S ratios of, 193
emission rates and, 198–201
G protein-coupled receptors (GPCRs), 568
Gakkel Ridge, 240–241, 250
Galapagos Spreading Center, 248–249
Garrett melt inclusion, 246–247
gas giants, growth of, 10
generalized inverse Gauss–Poisson (GIGP), 631–632
geobarometry
of diamonds, 91
elastic, 91–92
geo–bio interactions, 640–643
geochemical tracers, 68
geologic time
emissions over, 215
volcanic carbon and, 215
Index

geological cycle, 294
GeoMapApp, 241–242
gemimicry, 439
gothers
 conducive, 132
 convective, 132
Gibbs energy, 589–599
 changes in, 591
 composition and, 599–601
 densities, 604–605
 molal, 604
 pressure and, 599–601
 standard state, 592–595
 surveying, 601–603
 temperature and, 599–601
GIGP. See generalized inverse Gauss–Poisson
global emission rates, of carbon dioxide, 193–194
Global Volcanism Program (GVP), 197
 Volcanoes of the World, 194
GOSAT. See Greenhouse Gases Observing Satellite
GPCRs. See G protein-coupled receptors
grain boundaries, 361–362
Grand Tack scenario, 8–11
graphite
 exhausting, 259–260
 formation, 465–466
 in mantle, 259–260
 thermodynamic predictions, 465
graphite–Fe–carbide, 8
graphitization, 282–283
green chemistry, 439
greenhouse conditions, 342
Greenhouse Gases Observing Satellite (GOSAT), 192–193
greenhouse intervals, 342–343
groundwater
 carbon dioxide and, 191–192
 Vesuvio, 191–192
Guaymas Basin, 527–528
guest molecules, in carbon-bearing fluids, 366–372
Gulf of Mexico, 527–528
Gutenberg discontinuity, 164–165
GVP. See Global Volcanism Program

Halicephalobus mephisto, 535
harzburgite, 132
Hashin–Shtrikman upper-bound (HS+) model, 174–176
Hauri, E. H., 189–190, 248–249, 264, 323
Hawaii melt inclusions, 263
Hazen, R. M., 630–632
HDF microinclusions, in lithospheric diamonds, 99
HDF migration, diamonds and, 99–100
heat flux, from hotspots, 252
Helgeson–Kirkham–Flowers (HKF) equations, 596
 helium, 213–215, 244–245
 hematite–magnetite, 457
 hematite–magnetite–pyrite, 457
heteroatoms, 456
HFSE. See high-field-strength element
 high-field-strength element (HFSE), 98–99
 highly siderophile element (HSE), 15–29
 sulfide segregation and, 16–18
HIMU OIB, 102
histonelike nucleoid structuring proteins (HNS), 568
HKF equations. See Helgeson–Kirkham–Flowers equations
Holocene, 194
 hot slabs, carbonate melt from, 287–288
 hothouses, 345–346
 hot spots, 240–242, 257
 heat flux from, 252
HS+ model. See Hashin–Shtrikman upper-bound model
HSE. See highly siderophile element
 hydration, as elimination reaction, 420–423
 hydraulic fracturing, 526–527
 hydrocarbon reservoirs, in continental subsurface, 502–503
hydrocarbons, short-chain, 495
hydrogen
 alloy–silicate melt partitioning and, 25–26
 in BSE, 10–12
 fractionation of, 18–19
 isotopic composition of, 8–9
 methane and, 459–460
 hydrogenation reactions, 423–427
 Hydrogenophaga, 531–532
 hydroenotrophic methanogenesis, 483
 hydrolyzable amino acids, 495
hydrothermal
 carbon pump, 279–280, 283
 circulation, 495–496
 experiments, CM in, 462–463
 petroleum, 484–497
 reactions, 436–437
 hydrothermal systems
 abundance of, 204
 emissions and, 201–206
 sedimented, 496–497
 volcanism and, 204
 hydrothermally altered mantle-derived rocks, CM in, 449
ICB. See inner core boundary
ICDP. See International Continental Drilling Programs
icehouse conditions, 342
icehouse drivers, 344–345
Iceland, 240–242
igneous aquifers, 499–502
IMLGS. See Index to Marine and Lacustrine
 Geological Samples
incipient melting
 carbon dioxide and, 165–166, 170–171, 177
 of carbonate melt, 166–168
 composition, 167
incipient melting (cont.)
 defining, 163–165
density, 170–171
electrical conductivity and, 173–174, 179
interconnectivity, 175–176
limits of knowledge about, 182
mantle convection and, 181–182
melt mobility of, 177–179
origins, 164
of peridotite, 179
profiles, 167–168
of silicate melt, 166–168
stability fields in, 165–166
transport properties, 171–172
types of, 177–178
viscosity-diffusion, 171–172
water and, 165–166, 170–171
Index to Marine and Lacustrine Geological Samples (IMLGS), 240–241
inner core
Fe–C and, 50–52
late veneer, 8–11
phase, 50–52
sound velocities in, 50–51
inner core boundary (ICB), 41–42
insoluble organic molecules (IOMs), 11
Integrated Ocean Drilling Program (IODP), 250, 527
International Continental Drilling Programs (ICDP), 641
International Ocean Discovery Program (IODP), 641
Interunion Commission on Biothermodynamics, 596–597
intraplate settings, carbonate melts in, 143
inverse Monte Carlo simulations, 26–27
IODP. See Integrated Ocean Drilling Program,
 International Ocean Discovery Program
IOMs. See insoluble organic molecules
iron
carbon alloys, 40–41
dolomite and, 73–74
melting point, 53–54
redox capacity of, 107–108
spin state, 78–79
iron end member
Fe–C near, 48
Fe–C alloy near, 52
iron–light element systems
 binary phase relations, 41–42
 phase relations of, 41–44
 isotope clumping, 388
 kinetics, 393–399
 isotopic reservoirs, 401–405
Jagersfontein diamonds, 103
Jagersfontein kimberlite, 76
solubility data for, 19
unknowns involving, 29
Light Detection and Ranging (LIDAR), 190–191
light elements, 49
carbon as, in core, 27–28, 40
lignin phenols, 481–483
Ligurian Tethyan ophiolites, 453–454
LILE. See large ion lithophile element
LIPs. See large igneous provinces
liquid Fe–C alloy, 49
constraints from, 52
elasticity parameters for, 46
sound velocities of, 52
liquid outer core, oxygen in, 44
lithophile elements, 6–7
defining, 181
growth discontinuities, 181
thermal, 167–168
lithospheric diamonds, 89–90
classification of, 90
composition of, 90
eclogitic, 90
formation of, 90
HDF microinclusions in, 99
peridotitic, 90
reduced mantle volatiles in, 94–96
refertilization in, 110
lithospheric mantle, continental, 326–327
lithospheric reservoir, 348
LNRE. See large number of rare events
Logatchev hydrothermal fields, 449–450, 494
Loihi, 253
longevity, of carbon cycle, 278–279
Lost City, 404–405
low energy states, 589
low-velocity zone (LVZ), 164–165, 181
limits of knowledge about, 182
low-energy electron diffraction (LEED),
452–453
Lucky Strike segment, 240–241
LVZ. See low-velocity zone
macrofauna, 481
magma ocean (MO)
atmosphere interactions, 17–19
BSE budget and, 19–21
carbon speciation in, 22
degassing, 5
magmas, carbon dioxide in, 238–264
magnesite, as deep carbon reservoir, 74–75
magnesium budgets, 492–493
magnetite, 459
FTT and, 464
MAGs. See metagenome-assembled genomes
Maier–Kelley formulation, 596
Main Ethiopian Rift (MER), 205–206
maintenance
in energy limits, 586–587
measurements of, 587
Manam, 217
mantle. See also convecting mantle; cratonic
lithospheric mantle; deep mantle; upper mantle
abundance of carbon in, 67–73
adiabatic, 166–167
asthenospheric, 70–72, 78–80
carbon dioxide in, 67–68, 177
carbon in, 238
carbonate in, 143–145
carbonate minerals in, 72–73
carbonite peridotite in, 131–132
convection, 181–182
deep, 76–77, 111–114
degassing, 339–342
degassing, 339–342
ecliptite in, 144
extraction of carbon from, 67–73
graphite in, 259–260
incipient melting and, 181–182
ingassing, 339–342
inheritance of carbon at, 68
oxidation of, 258
oxidized carbon in, 77–78
peridotite in, 113–114, 144
resistive lids, 164–165
slab-derived fluids in, 134
speciation of carbon from, 67–73
sulfur in, 100–102
mantle geodynamics. See Diamonds and the Mantle
Geodynamics of Carbon
mantle melting regime, 164
carbon and, 257–262
mantle metasomatism, 100–101
characterizing, 163
defining, 163–165
diamond formation and, 99–100
mantle plumes
carbon dioxide and, 251–254
convecting, 251–254
mantle reservoirs
of Earth, 4–5
modern, 322–326
primitive, 322–326
mantle transition zone
carbon cycle and, 102–103
diamonds from, 103–104
hydration state of, 105
MAR. See Mid-Atlantic Ridge
Marange diamonds, 95
cathodoluminescence of, 95
methane and, 95–96, 98
RIFMS for, 98
Mars, 26–27, 259–260, 321
Masaya, 209
mass-independent fractionation (MIF), 100–102
MED. See Mineral Evolution Database
melt, incipient. See incipient melting
melt composition, melt mobility and, 177–179
melt density
calculation of, 170–171
carbon dioxide and, 170–171
curve, 170–171
water and, 170–171
melt inclusions
data sets, 240–242
Garrett, 246–247
glassy, 253
Hawaii, 263
isotopic heterogeneity in, 246–248
MORB, 244–248
OIBs and, 252–253
Siqueiros, 246–247
volumes, 242
melt mobility
electrical conductivity and, 179
of incipient melts, 177–179
melt composition and, 177–179
melt stability, of carbonated basalts, 179
melts. See specific types
Menez Gwen, 494
MER. See Main Ethiopian Rift
Mesozoic, 276
metagenome-assembled genomes (MAGs), 558–560
metamorphic inputs, carbon flux, 329–330
metamorphism, defining, 188
metasomatic fluids, diamond-forming, 98–100
metasomatism. See also mantle metasomatism
of cratonic lithospheric mantle, 142–143
overprints, 142
metatranscriptomics, 560
meteorites, carbon in, 11–14
methanation, carbon dioxide, 367–375
methane, 388–389, 447–448, 459, 489
biogenic, 503
carbon dioxide and, 95–96
cycling, 504
in diamond precipitation, 95–96
formation, 403, 465–466
hydrogen and, 459–460
limits to knowledge about, 409
in Marange diamonds, 95–96, 98
oxidation, 405–409
production of, 459–460
synthesis of, 95–96
thermodynamic equilibrium and, 388–389
in ultramafic systems, 494–495
methanogenesis
differential reversibility of, 406
reversibility of, 394
methanol, 459
formation of, 459
methylcyclohexanol, 435–436
MgCO₃, 56. See also carbonates
in dolomite, 73–74
Michaelis–Menten kinetics, 393–399
microbial array, 399–401
microbial ecosystems, 640–643
microbial metabolism, in subsurface environment, 562–565
microbial states, energy limits and, 586–589
micro-Raman spectroscopy, 91–92
microscale, in situ investigations at, 451–464
Mid-Atlantic Ridge (MAR), 240–241, 494
mid-ocean ridge system
carbon dioxide in, 242–243
carbonate melts under, 147–148
mid-ocean ridge-derived basalts (MORBs), 112–113, 213, 237
anhydrous, 135–136
bulk compositions of, 135–136
carbon dioxide in, 243, 250–251
carbonated, 135–136
chemistry of, 135–136
compositions, 137, 248–251
eruption of, 243
melt inclusions, 244–248
oxidation of, 69
oxygen fugacity and, 69
samples, 243–244
solubility in, 243–244
vapor-undersaturated, 246
variations in, 248–251
MIF. See mass-independent fractionation
Mineoike ophiolite complex, 455–456
Mineral Evolution Database (MED), 621
Miyakejima volcano, 195
MO. See magma ocean
modern mantle reservoirs, 322–326
molecular lubrication, pore diffusion and, 365–366
Momotombo, 209
Monastery diamonds, 103
montmorillonites, 464–465
Moon
carbon budgets of, 8–11
formation of, 11, 26–27
MORBs. See mid-ocean ridge-derived basalts
Mount Etna, 208, 328–329
Multi-Gas measurements, 190–191
Murowa, 93
Na-carbonate, at solidus, 137
Nankai Trough, 527–528
nanoconfinement
carbon transport under, 363–364
carbon-bearing fluids and, 363
dielectric constants in, 372–374
nanoporosity, 359–360, 362–363
features of, 360–363
NanoSIMS, 562–563
National Centers for Environmental Information (NCEI), 240–241
National Oceanographic and Atmospheric Association, 240–241
NBO/T approach, 21–22
NCEI. See National Centers for Environmental Information
negative feedback, 317–318, 338
climatic drivers and, 319–321
in elemental cycling, 319–321
Neoproterozoic, 346–347
network analysis, 640–643
Newer Volcanics of Victoria, 132
Nibelungen, 494
nitrogen
aggregation, 93
in BSE, 10–12
depletion, 18–19
fractionation of, 18–19
isotopic composition of, 8–9
as siderophile elements, 25
nitrogen cycle, mantle transition zone and, 102–103
nominal oxidation state of carbon (NOSC), 587–588
non-ideal conditions, 598
Northwest Territories Canadian diamonds, 99–100
NOSC. See nominal oxidation state of carbon
novel genes, 564–565
Nuna, 629
Nyiragongo volcano, 195, 201–206
OC. See organic carbon
Ocean Drilling Program (ODP), 492–493
Hole 735B, 455
Leg 201, 527–528
ocean island basalt (OIB), 237
carbon dioxide in, 252
chemistry of, 135–136
melt inclusions and, 252–253
sulfides from, 101–102
ocean islands
basalts and, 144
carbonate melts beneath, 143
carbonatites and, 149
oceanic crust, 487–488
axial diffuse vents and, 492
axial high temperature and, 488–492
characteristics, 491
fluid inclusions in, 456–464
recharge water and, 487–488
ridge flanks and, 492–493
subsurface biome of, 528
ultramafic systems and, 493–495
warm anoxic basement, subsurface biome of, 528–530
OCO-2. See Orbiting Carbon Observatory
ODP. See Ocean Drilling Program
OET. See oxygen exposure time
OIB. See ocean island basalt
Oldoinyo Lengai, 198–199
oligomer dissociation, 569
olivine, 132
carbonation of, 462
olivine matrix, electrical conductivity in, 174
Olmani Cinder cone, 132
OMI. See Ozone Monitoring Instrument
Opalinus Clay, 526–527
orangeites, 139
Orbiting Carbon Observatory (OCO-2), 192–193
ordinary chondrites, 15
organic carbon (OC), 282
anaerobic breakdown of, 483
bioavailability of, 505
burial rate, 333
carbon flux and, 330–331
dissolved, 480–489
oxidation of, 481
particulate, 480–489
weathering, 330–331
organic chemistry
bonds in, 415–416
of carbon cycle, 416–420, 438–439
depth carbon, 416–420, 438–439
Earth and, 415–416
organic matter preservation, in sedimentary subsurface, 484–485
organic oxidations, 427–429
orthopyroxene, 132
oxidation
aqueous, 428
of carbon, 418–419
methane, 405–409
organic, 427–429
of organic carbon, 481
oxidized carbon, in mantle, 77–78
oxygen, in liquid outer core, 44
oxygen exposure time (OET) models of, 486–487
sedimentary subsurface and, 486
oxygen fugacity, 17–18, 21–22, 150–151
of carbon phases, 76–77
carbonate stability and, 130
CM and, 462–463
in cratonic lithospheric mantle, 141
kimberlite and, 130–131
magnitude of, 131
MORBs and, 69
oxy-thermobarometry
carbon speciation and, 76–77
deep mantle, 76–77
Ozone Monitoring Instrument (OMI), 193, 206–207
data sets, 197
pace, of carbon cycle, 278–279
PAH. See polycyclic aromatic hydrocarbon
Palaeocene–Eocene thermal maximum (PETM), 319
Index

partial melting
 carbon dioxide and, 165–166
 carbon in, 258
particulate organic carbon (POC), 480–489
microorganisms accessing, 484
PDAs. See polycrystalline aggregates
Pearson correlation coefficients, 246–247
pelagic carbonates, in subduction zone, 296–299
periclase, 113–114
peridotite, 130, 144–145
abyssal, 455–456
 carbon dioxide and, 146–147
 incipient melting of, 179
 in mantle, 113–114, 144
 solidus of, 258
peridotitic lithospheric diamonds, 90
permeability, 177, 203–204
perturbations, 277–278
Peru Margin, 527
petrioclase, 96
petrosilicate, 113
pelagic carbonates, in subduction zone, 296–299
Pitcairn, 253
photobacterium profundum, 570
phase relations, of iron–light element systems, 41–44
Phanerozoic, 149, 281
petrogenic carbon, 481
petrogenic isotope values of, 109
absolute ages of, 109
formation of, 109
polycrystalline aggregates (PDAs), 108–109
absolute ages of, 109
carbon isotope values of, 109
formation of, 109
polycrystalline diamond formation, 108–109
polycyclic aromatic hydrocarbon (PAH), 450–451, 497
pore diffusion
 molecular lubrication and, 365–366
 steric effects and, 364–365
porosity. See nanoporosity
potassium, in carbonated sediment, 137–138
predictive reaction-rate models, 432–433
PREM model, 50
pressure–temperature plot, silicate melts and, 144–145
primary magma carbon dioxide, 253
primitive mantle reservoirs, 322–326
process end members, 401–402
propanoic acid, 428
protein expression, 635–636
protein unfolding, 569
Proterozoic, 283
Proterozoic lherzolitic diamond formation, 110–111
 through time, 110–111
protoplanetary bodies, 20
P–T trajectories, 285–287, 289
subduction zone, 289–290
pulse, of carbon cycle, 278–279
 carbonate, 279–280
 hydrothermal carbon, 279–280
 soft-tissue, 279–280
pyrite–pyrrhotite–magnetite, 457
QFM buffer, 258
quartz–fayalite–magnetite, 457
radiogenic isotopes, 237–238
rare biosphere, 525–526
rare earth elements (REE), 129
Rayleigh isotopic fractionation in multi-component systems (RIFMS), 97, 109
for Marange diamonds, 98
reactivity, confined liquids and, 374–375
recharge water, oceanic rocky subsurface and, 487–488
recycling processes, 164
Redoubt Volcano, 204
redox capacity
 of iron, 107–108
 of sulfides, 107–108
redox constraints, on carbonates, 140–142
redox freezing
 in deep mantle, 111–114
 defining, 113–114
 diamonds and, 111–114
redox processes, in subduction zone, 290–291
redox reactions, 75, 81
 carbon in, 80–81
redox-neutral formation
 carbon isotope fractionation and, 96–98
 of diamonds, 96–98
reduced mantle volatiles
 in lithospheric diamonds, 94–96
 in sublithospheric diamonds, 94–96
REE. See rare earth elements
refractory elements, constraints from isotopes of, 6–7
refractory garnet peridotites, 111
remineralization, 481
reservoirs
 carbon, 41, 323–324
 deep carbon, 74–75
 exogenic, 327–328
 hydrocarbon, 502–503
 isotopic, 401–405
 lithospheric, 348
 mantle, 4–5, 322–326
 Solar, 8–9
residence time
 defining, 318–319
 in elemental cycling, 315–319
response time, defining, 318–319
Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 17 Mar 2021 at 23:02:00, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108677950
Index

Rhine Graben, 206
ribosomal gene sequencing, 558
ridge flanks
advection flow through, 492
oceanic rocky subsurface and, 492–493
RIFMS. See Rayleigh isotopic fractionation in multicomponent systems
ringwoodite, deep water in, 106
Rio Grande Rift, 206
rocks. See specific types
Rodinia, 620, 629
supercontinent assembly of, 623–625
Rotorua, 201–204
RRUFF Project, 633
S isotopic systematics, 100–101
in sulfide inclusions, 101
Sabatier reaction, 395–398
Saccharomyces cerevisiae, 570–571
SAGMEG. See South African Gold Mine Miscellaneous Euryarchaeal Group
SAGs. See single-cell amplified genomes
sapropels, 484
scanning electron microscope images, of diamonds, 107–108
scanning transmission X-ray microscope, 485
Schöll plot, 402
seafloor dredging, 237–238
seafloor weathering feedback, 338
secondary ion mass spectrometry (SIMS), 238
sedimentary aquifers, 499–502
sedimentary carbon, 133
subduction, 280–281
sedimentary subsurface, 481
chemical composition of, 481–484
organic matter preservation in, 484–485
oxygen exposure time and, 486
sorption in, 485–486
sedimented hydrothermal systems, 496–497
selective preservation, 483–484
serpentinitized oceanic rocks, 451–452
Serpentinimonas, 531–532
shear-wave velocity, 53
Shimokita Peninsula, 527–528
siderites, 461
dissolution of, 462–463
siderophile elements, 6–7
nitrogen as, 25
silicate, 4, 310. See also Bulk Silicate Earth
carbonate and, 142–143
silicate melt, 21–22
carbonate melts and, 168–169
extraction of, 148
formation of, 143–144
incipient melting of, 166–168
pressure–temperature plot and, 144–145
stability fields of, 147
structure of, 168–169
in upper mantle, 143–144
in various geodynamic settings, 166–168
viscosity-diffusion and, 172
silicate weathering
carbon flux and, 331–333
feedback, 334–338
global rates of, 336–337
silicates, in CLIPPIR diamonds, 114–115
SIMS. See secondary ion mass spectrometry
single-carbon species, 459
single-cell amplified genomes (SAGs), 558–560
single-species ecosystems, 525–526
SiO_2
bulk, 135–136
in subduction zone, 291
SIP. See stable isotope probing
Siqueiros Fracture Zone, 245–246
Siqueiros melt inclusion, 246–247
Siqueiros Transform, 240–241
slab-derived fluids, in mantle, 134
slave cratons, 101
SLiMEs. See subsurface lithoautotrophic microbial ecosystems
small polar compounds, 496
small volcanic plumes, 198–201
smectite clays, 464–465
S/N ratio, of BSE, 16–18
snowballs, 346–347
soft-tissue pump, 279–280
Solar reservoir, 8–9
solidus
carbon and, 264
carbonate phase at, 135–136
of carbonated sediment, 135–136
curves, 136
Na-carbonate at, 137
of peridotite, 258
solubility
confined liquids and, 369–370
of DOC, 484
sorption, in sedimentary subsurface, 485–486
sound velocities
of Fe–C alloy, 50
in inner core, 50–51
South African Gold Mine Miscellaneous Euryarchaeal Group (SAGMEG), 534
Southwest Indian Ridge, 255–257
spin transition, 77–78
diagram, 78–79
spot measurements, 195–196
SRB. See sulfate-reducing bacteria
stability fields, in incipient melting, 165–166
stable isotope probing (SIP), 562–563
steady state
in elemental cycling, 315–319
transition to new, 321–322

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 17 Mar 2021 at 23:02:00, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108677950
steric effects
 pore diffusion and, 364–365
 surface diffusion and, 364–365
Stromboli, 208
S-type asteroids, 7–9
subaerial volcanic budget, 206–207
sub-arc depths, 133–134
subduction zone
 carbon in, 133
 carbonate melts with, 132–134
 carbonatites in, 134
 cross-section of, 134
subduction, 215, 311
 biological evolution and, 294
 carbon cycling, 276
 cycle, 277
 deep carbon, 288–289
 flux, 334
 sedimentary carbon, 280–281
 shelf carbon, 276–278
subduction zones, 300
 carbon cycle and, 416–417
 carbon flux and, 281
 carbon neutrality of, 283–284
 carbon solubility and, 284–285
 carbon transformation pathways in, 277–278
 carbon transport in, 289
 dissolution in, 285–287
 models of, 310–312
 pelagic carbonates in, 296–299
 P–T trajectories, 289–291
 redox processes in, 290–291
 SiO2 in, 291
 sources and sinks, 279–280
 tectonic building blocks at, 292–293
 thermal anomalies in, 289
 water in, 291–292
subduction/collision transition, carbon dynamics at, 292–293
sublithospheric diamonds, 89–90
 formation of, 90–91
 inclusions in, 96
 reduced mantle volatiles in, 94–96
 study of, 90–91
sub-seafloor sediments, subsurface biomes, 527–528
substitution reaction
 animation as, 430–433
 deamination as, 430–433
subsurface biome, 524–526, 572–573. See also continental subsurface;
 deep biosphere
 adaptations for survival in, 539, 568–569
 archaea in, 533–534
 of cold oxic basement, 530
 continental, 524–527
 deep life in, 539–541
 defining, 524–525
 diffusivity in, 537
 ecology in, 536
 eukaryotes in, 535–536
 evolution of, 536
 extreme cellular biophysics in, 570–572
 extreme molecular biophysics in, 567–570
 genetic potential of, 558–561
 global trends in study of, 533
 habitable zones, 525–526
 interactions in, 534–535
 isolates, 534–535
 microbial metabolism in, 562–565
 of oceanic crust, 528
 of other environments, 532–533
 pH of, 537–538
 pressure effects in, 567
 salinity in, 538
 sub-seafloor sediments, 527–528
 temperature of, 538–539
 of ultra-basic sites, 530–532
 viruses in, 536
 of warm anoxic basement, 528–530
subsurface lithoautotrophic microbial ecosystems (SLiMEs), 499–502
sulfate-reducing bacteria (SRB), 526–527
sulfide segregation
 HSEs and, 16–18
 post-core formation, 16–18
sulfur
 abundance of, 100–101
 atmospheric recycling of, 100–102
 biotic recycling of, 100–102
 in BSE, 10–12
 in Dc alloy/silicate, 25
 fractionation of, 18–19
 isotope composition, 8
 isotope measurements, 101
 as magmatic volatile, 188
 in mantle, 100–102
 in planetary embryos, 26
 solar nebula condensation temperature, 14
 sulfurization, abiotic, 483–484
 sulfide inclusions, 100
 S isotopic systematics in, 101
 sulfides
 from OIB, 101–102
 redox capacity of, 107–108
 supercontinent assembly, 621
 carbon cycle and, 625–626
 of Rodinia, 623–625
 super-deep diamonds
 discovery of, 105
 DMGC on, 105
 surface diffusion, steric effects and, 364–365
 surface processes, carbon cycle and, 279–283
Taup0 Volcanic Zone (TVZ), 201–204, 217
Tavurvur, 217
TDLS. See tunable diode laser spectrometers
Index

vires, in subsurface biome, 536
viscosity-diffusion
changes in, 172
incipient melting, 171–172
silicate melt and, 172
volatile elements. See life-essential volatile elements
volatile gas solubility, in confined liquids, 370–372
volcanic arcs, 284
volcanic carbon
carbon budget and, 216–217
flux of, 215
gelogic time and, 215
limits to knowledge about, 217–218
volcanic carbon dioxide, 190
advances in, 192–193
volcanic inputs, carbon flux, 328–329
volcanoes and volcanism
active, 194–197, 208–209, 216
carbon outgassed from, 211–215
closed-system, 209
DCO on, 189–190
DECADE on, 189–190
defining, 188
dormant, 198
hydrothermal systems and, 204
petit spot, 179, 238
small volcanic plumes, 198–201
subaerial volcanic budget, 206–207

warm anoxic basement, subsurface biome of, 528–530

water. See also dehydration
deep, 105–106
incipient melting and, 165–166, 170–171
as magmatic volatile, 188
melt density and, 170–171
recharge, 487–488
in subduction zone, 291–292

weathering
carbonate, 330–331
continental, 310
organic carbon, 330–331
seafloor weathering feedback, 338
silicate, 331–338

wehrlite, 132

whole-Earth carbon cycle
box model, 315–316
modeling, 338–341

World Energy Council, 204

xenoliths, 66–67

X-ray diffraction, 91–92
X-ray emission spectroscopy, 77
X-ray microscope, scanning transmission, 485

Yellowstone, 217

Zimbabwe, 95

tectonic building blocks, 292
at subduction zone, 292–293
tectonic carbon cycle, 279, 293–295
temporal variability, 208–209
of active volcanoes, 208–209
of calderas, 209
C/S ratios and, 210–211
of emissions, 208–209
eruption forecasting and, 209–211
terrestrial building blocks, 6–7
tertiary alcohols, 436
tetracarbonates, 80–81
TGA. See thermogravimetric analyses
theoretical modeling, constraints from, 6–7
termal anomalies, in subduction zone, 289
based on, 289
thermochronometer, 92
thermodynamics
 equilibrium, 388–389
 graphite, 465
 methane and, 388–389
 predictions, 457, 465–466
thermogravimetric analyses (TGA), 451–452
time, energy limits and, 606–607
Titan, 632
titanium, 457–458
transition zone, carbonated sediment in, 134–138
Tropospheric Ozone Monitoring Instrument (TROPOMI), 193
tunable diode laser spectrometers (TDLS), 192
tunneling, 399–400
Turrialba Volcano, 209
TVZ. See Taupo Volcanic Zone

UAVs. See unmanned aerial vehicles
ultra-basic sites, subsurface biome of, 530–532
ultramafic systems
acetate in, 495
carbon in, 494
formate in, 495
methylene in, 494–495
oceanic rocky subsurface and, 493–495
United States Geological Survey (USGS), 623
unmanned aerial vehicles (UAVs), 192, 198
upper mantle
carbonate melts in, 129
carbonated sediment in, 134–138
schematic representations of, 141
silicate melt in, 143–144
ureilites, carbon in, 16
Urey reaction, 284–285
USGS. See United States Geological Survey

vapor bubble volumes, 242
vent emissions, 216
Venus, 321
Vesuvio groundwater, 191–192
Vinet equation of state, 171

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 17 Mar 2021 at 23:02:00, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108677950