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Abstract

Following the analogy with group theory, we define the Wielandt subalgebra of a finite-dimensional Lie
algebra to be the intersection of the normalisers of the subnormal subalgebras. In a non-zero algebra,this
is a non-zero ideal if the ground field has characteristic O or if the derived algebra is nilpotent, allowing
the definition of the Wielandt series. For a Lie algebra with nilpotent derived algebra, we obtain a bound
for the derived length in terms of the Wielandt length and show this bound to be best possible. We also
characterise the Lie algebras with nilpotent derived algebra and Wielandt length 2.
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1. Introduction

The Wielandt subgroup of a group G, denoted by w(G), is the intersection of the
normalisers of all the subnormal subgroups of G. An automorphism of G permutes the
subnormal subgroups, so leaves w(G) fixed. Thus w(G) is a characteristic subgroup
of G.

The Wielandt subgroup was first studied by Wielandt [16] in 1958. He proved that,
if G is a non-trivial finite group, then w(G) is non-trivial. This makes it possible to
define the Wielandt series by w,(G) = w(G) and w;11(G)/w:(G) = w(G/w,(G)) for
i > 1. For a finite group G, there is some n such that w,(G) = G. The least such n
is called the Wielandt length of G.

There have been a number of investigations of the structure of groups with respect
to the Wielandt series (see [3, 4, 5, 6, 7, 8]). In [4], Bryce and Cossey show that a
finite soluble group of Wielandt length n has derived length at most 5n/3 + 1.

The first author made his contribution to this paper while an Honorary Associate of the School of
Mathematics and Statistics, University of Sydney.
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There is a tradition of investigating analogies between group theory and the theory
of Lie algebras. There are myriad correspondences between these two fields. In this
paper, we develop a theory of the Wielandt series for a finite-dimensional Lie algebra
L with nilpotent derived algebra, analogous to the above cited theory for finite groups.
As we shall see (Example 5.4 and Example 7.2 below), the restriction L’ nilpotent is
needed. In non-zero characteristic, solubility is not enough.

2. Preliminaries

Let L be a finite-dimensional Lie algebra over the field F. The Wielandt subalgebra
w(L) of L is the intersection of the normalisers of the subnormal subalgebras of L. The
Wielandt series of L is defined by w;,1(L)/w;(L) = w(L/w;(L)) and the Wielandt
length of L is the length of this series. This definition of w;;,(L), to be meaningful,
needs the preceding terms to be ideals. For the definition of the Wielandt length to
be meaningful, we need the series to reach L, that is, we need w(L) 3 0 whenever
L # 0. As we shall see in Section 3, these always hold if the field F has characteristic
0. In Section 5, we show that they also hold for algebras L whose derived algebra L’
is nilpotent. We shall make frequent reference to Lie algebras with nilpotent derived
algebra, so it is convenient to have a term for them. We adopt the terminology used
by Strade and Farnsteiner {14].

DEFINITION 2.1. A Lie algebra L is called completely soluble if its derived algebra
L’ is nilpotent.

All finite-dimensional soluble Lie algebras over a field of characteristic O are
completely soluble. (For example, see Jacobson [11, page 51].) Thus our results on
completely soluble Lie algebras apply to all finite-dimensional soluble Lie algebras
over fields of characteristic 0.

All vector spaces and algebras considered in this paper are assumed to be finite-
dimensional over a field which we denote by F. For any Lie algebra L, we denote by L”
the terms of the descending central series of L, definedby L' = L and L™*' = [L", L].
We denote by L™ the intersection of the L and the centre of L by Z(L). We denote
by ad, the adjoint derivation of L given by u € L, defined by ad,(x) = [u, x] for all
x € L. We denote the subspace spanned by a set Uby (U). Wewrite U < Lif Uisa
subalgebra of L, U < L if U is anideal of L and U< L if U is a subideal (subnormal
subalgebra) of L. We denote the normaliser of U in L by .4, (U) and the centraliser
by 6. (U). For any subset U C L, we denote by U" the normal closure of U in L,
that is, the smallest ideal of L which contains . We denote the subnormal closure
by UL,
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We define inductively the series of subalgebras UL by UL = L and UL-i+1= U™’
Since L is assumed finite-dimensional, we have U%' = U°t for all sufficiently large i.
We will find it convenient to have another description of U when U = {u} has only
one element. Let X be the free Lie algebra over F on the generators x, x;, xa, .. . .
We shall regard X as a set of Lie polynomials in the variables x, x;, x5,.... Put
X; = X'Nx*'. Thus X, is spanned by all products with at least one factor x and X, is
spanned by certain of the products with 2 factors x. Forexample, {[[x;, x], x;], x] € X,
but [{[x,,x], x], x,] ¢ X,. For any Lie algebra L and u, a;,... € L, we have the
substitution homomorphism X — L in whichx — uandx; — q; forall i. This maps
each polynomialin X into L'Nu’"'. We denote by X;(u, L) the space spanned by all the
elements so obtained from all possible choices of the a;. Clearly, u™ = (u, X;(u, L))
and,ifu ¢ L', X;(u, L) = L' N u"".

3. The special case of characteristic 0

When the field F has characteristic 0, we have available Tuck’s Theorem [15].

THEOREM 3.1. Let L be a finite-dimensional Lie algebra over a field of character-
istic 0, and let G be the group of all automorphisms of L. If H is a subalgebra of L
which is invariant under G, then H is a characteristic ideal of L.

Tuck’s Theorem is important since it means that any ‘natural’ subalgebra will be a
characteristic ideal, and in particular, w (L) is a characteristic ideal. We shall also use
the fundamental result of Schenkman [12]:

THEOREM 3.2. Let L be a finite-dimensional Lie algebra over any field and let
U« L. Then U® < L.

We now show that the theory of the Wielandt series in characteristic O essentially
reduces to that for soluble algebras. We denote the (soluble) radical of L by R(L).

THEOREM 3.3. Let L be a finite-dimensional Lie algebra over a field F of charac-
teristic 0. Then w(L) = () yqa R N (U) and (LY N R(L) = w(R(L)).

PROOF. If U < L, then R(U) = U N R(L), and it follows that if U<< L, then
R(U)=UNR(L). Let U« L and let S be a Levi factor of U. Put Ry = R(U). Let
x € A, (U), and put R, = [U, R(U)]. Then x normalises R,. Since (S + R,)/R,
is a characteristic ideal of U/Ry = (§ + R;)/R; & R(U)/R,, x normalises S + R,.
Conversely, any x which normalises both U, := § + R; and R, also normalises U.
Defining R, = [U;, R;] and U,y = S + R4, we see that any x which normalises
U; and all the R; also normalises UU. However, for some n, we have {U,, R,] = R,
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and (U,)*® = U,. Therefore U, <« L and any element x € L which normalises all the
R; also normalises U. Thus any element x € L which normalises every subnormal
subalgebra of R also normalises every subnormal subalgebra of L. a

In[10], Hartley proved that, if L is a soluble Lie algebra over a field of characteristic
0 and if A is a minimal ideal of L, then A < w(L). (In Section 5 below, we shall
prove this for completely soluble algebras L over any field.) Since for a semi-simple
algebra S, w(S) = S, it follows for algebras over a field of characteristic 0, that L % 0
implies w(L) # 0. Thus the Wielandt series reaches L and the Wielandt length is
defined. From Theorem 3.3, it follows that w;(L) N R(L) = w;(R(L)). It follows
that the Wielandt length of L is either equal to or one more than the Wielandt length
of R(L).

4. Subnormal subalgebras in characteristic p

In [12], Schenkman also proved that, if char F = 0 and if A, B<« L, then their join
AU B«a L. His proof depends on two special features of Lie algebras in characteristic
0, namely that if R = R(L), then L/R is a direct sum of simple algebras and that
R’ is nilpotent. In non-zero charactistic, his proof works if we restrict ourselves to
completely soluble Lie algebras. We begin with a useful result which is implicit in
Schenkman’s proof.

LEMMA 4.1. Let U be a nilpotent subnormal subalgebra of the completely soluble
Lie algebra L, and let N be the nil radical of L. Then U < N.

PROOF. Since U« L, U acts nilpotently on the U-module L/ U. As U is nilpotent,
it acts nilpotently on U, and so on L. It follows that every chief factor of U + N is
central, so U+ N isnilpotent. ButN > L', so U+ N <L and therefore U+N < N. 0O

LEMMA 4.2. Suppose L is completely soluble and that A<< L and B< L. Then
AUB<a L.

PROOF. If there exists an ideal K « L, K < A, then we can work in L/K and
the result follows by induction over the dimension of L. If no such K exists, then
by Theorem 3.2, A is nilpotent. Thus we may assume both A and B nilpotent. By
Lemma 4.1, both A and B are in the nil radical N. It follows that AUB<«« N<L. 0O

The condition that L is completely soluble is needed in Lemma 4.2. Assuming L
soluble is not enough as is shown by the following example.
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EXAMPLE4.3. Let V = (v, ..., v,_1) where p = char F and the indices are
integers mod p. Let L = (x,y, z, V) with multiplication defined by [x, y] = z,
fx,z] = [y,z] = [vi, v;] = 0, and [x, v,] = nv,_y, [y, V] = V41, [2, 2] = v,
LetA = (x)and B = (y — z). Then AL, Baa L but AU B = (x,y, z) is not
subnormal in L.

PROOF. Since L/ V is nilpotent, both A + V and B + V are subnormal in L. As x
acts nilpotently on V, A + V is nilpotent, so A<« (A + V)< L. V is an irreducible
L/ V-module. By Zassenhaus [17, Lemma 1], all the composition factors of V as
B-module are isomorphic. Now [(y — z), (vg + -+ + v,-1)] = 0. It follows that
(y — 2) acts nilpotently on V. Hence B + V is nilpotent and it follows that B« L.
Since A U B is nilpotent, if A U B« L, then every subalgebra of A U B is subnormal
in L, in particular (z), is subnormal. But (z) is not subnormal in (z) + V. Therefore
A U B is not subnormal. d

5. Some basic properties of the Wielandt subalgebra

In this section, we establish some basic properties of the Wielandt subalgebra w (L)
of a completely soluble Lie algebra L.

THEOREM 5.1. Let L be a soluble Lie algebra and let w € w(L). Then there exists
A € F such that for all nilpotent subalgebras U<« L and all u € U, [w, u] = Au. If
Jorany such U, U #0o0r U £ L', then A = (.

PROOF. Let u € U<« L and suppose U is nilpotent. Then (u)<s L. Since w €
N Au), [w, u] = A,u for some A, € F. We have to show that A, is independent of
the choice of u. Let A be a minimal ideal of L and let a € A, a # 0. Since (u)<< L,
ad; (A) < (u) for some r and ad;“(A) = 0. It follows that () + A is nilpotent and
subnormal. Therefore A, (¥ + @) = [w, u + a] = [w, u] + [w,a]l = A, u+ Xrza. It
follows that A, = A,.

Now suppose we have U<« L, U nilpotent and U’ # 0. Take u,v € U with
x = [u, v] # 0. Then

Ax = [w, [u, v]] = [[w, ul, v] + [u, [w, v]] = [Au, v] + [u, Av] = 2Ax,

soA =0.
Suppose U< L, U nilpotent and U £ L'. Take u € U, u ¢ L'. We then have
Au=[w,ulel’ sol=0. O

COROLLARY 5.2. Let N be a nilpotent Lie algebra. Then w(N) = Z(N).
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PROOF. If w € w(N) and N is non-abelian, then w € 2°(N) by Theorem 5.1. []

LEMMA 5.3. Suppose L is completely soluble and let A be a minimal ideal of L.
Then A < w(L).

PROOF. Since A is a minimal ideal, either ANL' = AorANL =0.IfANL =0,
then forallx € L anda € A, wehave [x,al e ANL =0so0a € Z(L) < w(L).
Suppose A < L’. Let U« L. We show that A < A4, (U). This holds if U< L, so
suppose U is not an ideal. There exists a maximal ideal M > U. But M > L’. Hence
U + L’ is a proper ideal of L. Since L’ is nilpotent, A < Z(L’) and we can consider
A as an irreducible module for the abelian algebra L/L’. As (U + L’)/L’-module, A
is a direct sum of copies A; of an irreducible submodule A;. Now A; is a minimal
ideal of U + L', so by induction over dim L, we have A; < Ay, (U) < A.(U).
Thus A = @,A; < A(U). O

The condition that L is completely soluble is needed in Lemma 5.3.

EXAMPLE 5.4. Let L be the algebra of Example 4.3 above. We have A + V and
B + V both nilpotent, subnormal and not in L’. By Theorem 5.1, (L) < €1.(A+ V)
andw(l) < %.(B+ V). Since A + Vand B + V generate L, w(L) < Z(L) =0.

By Theorem 5.1, for each w € w(L), we have A(w) € F such that [w, u] = A(w)u
for every element u which lies in some nilpotent subnormal subalgebra. This is clearly
alinearmap A : w(L) — F.

LEMMA 5.5. Suppose L is completely soluble. Let N = N (L) be the nil radical of
L. Letw € w(L). Ifw € N thenA(w) =0and w € Z(N). Conversely, if \(w) =0,
thenw € N.

PROOF. Suppose w € N. Letz € Z°(N), z # 0. Then A(w)z = [w,z] =0, so
A(w) = 0and forall x € N, we have [w, x] = A(w)x =0and w € Z(N).

Suppose conversely that A(w) = 0. Then (w) + N is nilpotent. As (w)+ N > L/,
{(w)+ N<aL,so(w)+ N < N,thatis,w € N. O

We shall have occasion later to consider the algebra direct sum L @ A of L,
assumed completely soluble, with an abelian algebra A. Since clearly A normalises
every subnormal subalgebra of L, it is tempting to expect w(L @ A) = w(L) B A, but
this is not always true as there are subnormal subalgebras of L @ A which do not lie
in either direct summand. Indeed, if w(L) is non-abelian, then so is w(L) & A, but
w(L & A) is abelian by Theorem 5.1 and Lemma 5.5. If however, w(L) is abelian,
then the expected result holds. More generally, we have the following result.
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THEOREM 5.6. Suppose A and B are non-trivial completely soluble Lie algebras.
Let L be the algebra direct sum L = A @ B. Then w(L) = N(w(A)) & N(w(B))
and w(L) is abelian.

PROOF. Let @ € A and b € B. Suppose Uw A. Then (a + b) € A (U) if
and only if @ € A4 (U). Thus w(L) < w(A) & w(B). It follows that N(w(L)) <
N(w(A)) ® N(w(B)). Now suppose a € N{w(A)) and b € N(w(B)). We have to
show thata + b € w(L). Letu = c+d where c € A andd € B. Put U = u't,
V=c"and W = d*8. Wehave U = (u, X,(u, L)) for some i. We have to show that
[a+b,ul e U. But X;(u, L) = X;(c, A) + X;(d, B) and V = (¢, X;(c, A)). Thus
[a, c] € Xi(c, A), (0if c € A’) and similarly [b, d] € X;(d, B). Hencea+ b € w(L).

Ifa+b e w(l), then[a+b,c+d] =Ac+Ardforallc e N(A)andalld € N(B)
and some A € F. If w(A) is abelian, then A = Oandsoa+ b € N(L) by Lemma 5.5.
Thus w(L) is abelian if w(A) is abelian.

Now suppose w(L) is non-abelian. Then w(A) and, by symmetry, w(B) are non-
abelian. There exists a + b € w(L) such that [a + b, v] = v forall v € N(L). Since
A # A, there exists c € A, ¢ ¢ A’. Since B is non-abelian, we can take d € B’,
d#0,andput u = c+d. As (dyw L, [a+ b,d] =d. Since a+ b € w(L),
[a+b,u]l =[a,cl+d e ut. Butu’ = (c+d, X;(c,A)) for some i. Thus
Xi(c, A) has codimension 1 in ¥*L whence it follows that d ¢ u*L. Since a € w(A),
(a, c] € Xi(c, A) contrary to [a, c] + d € u'". Thus w(L) is abelian and it follows
that w(L) = N(w(A)) @ N (w(B)). O

Since (A®B)/w(A®B) ~ A/N(w(A))®B/(N (w(B)), we can readily determine
w; (A @ B) by repeated application of Theorem 5.6 with the help of Theorem 6.2 below
to deal with any non-abelian cases which arise.

6. Non-abelian Wielandt subalgebras
In this section, we determine the structure of completely soluble Lie algebras L

with w(L) non-abelian.

LEMMA 6.1. Suppose L is completely soluble. Then w (L) is abelian if and only if
the map A is the zero map.

PROOF. If A = 0, then w(L) < Z(N), sow(L) is abelian. If A\(w) #0and A is a
minimal ideal of L, then (w, A) is a subalgebra by Theorem 5.1, clearly non-abelian
and (w, A) < w(L) by Lemma 5.3. (]

THEOREM 6.2. Suppose L is completely soluble and w(L) is non-abelian. Then
N(L) = L’ is abelian and L = A & L’ (vector space direct sum) where A < L. There
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exists w € A Nw(L) with A(w) = 1 and w(L) = (w, L’) which is a characteristic
ideal of L. The Wielandt series of L exists and w,(L) = L. Ifc € A, ¢ & (w) then
the linear transformation ¢ : L' — L' given by the action of c is invertible and has no
eigenvalues in F.

PROOF. By Theorem 5.1 and Lemma 6.1, N(L) = L' is abelian. There exists
w € w(L) with A(w) # 0, so we may choose w with A(w) = 1. Put V = L'. We
consider V as an L/L’-module. We have VZ/L’ = 0. By Barnes [1, Theorem 1],
H*(L/L', V) = 0. Thus there exists a subalgebra A which complements L’ in L.
Since every minimal ideal of L is contained in N(L) and A N N(L) = 0, A contains
no non-trivial ideal of L. Thus €, (L") = 0 and V is a faithful A-module.

Forany v e V,the mapa, = 1 —ad, : L — L is an automorphism of L since

[y (), s (] =[x = [v,x], y = [v, ¥]] |
- [x1 y] - [[U,X], )’] - [xv [U, }’]]+ [[U,X], [U, )’]]
= [X,Y] = [v, [x, )’]] =av[xvy]

as [v, x], [v, y] € V which is abelian. Let w’ be the element of the coset w + L’
which lies in A. Then w’ = w + v for some vy € V. Since v’ = a,,(w), w' € w(L)
and we may replace w with w’. Thus we obtain w € A with the required properties.
Further, foreveryv e V,w+v =w — [v,w]} = a,(w) € w(L),sov € w(L) and
w(L) = {(w, L'). Let d be any derivation of L. ThendL’ C L’. Also, foranyv € V,
we have dv = d[w, v] = [dw, v] + [w, dv] = [dw, v] + dv,sodw € €. (L") = L'.
Thus dw(L) € w(L). Since L/w(L) is abelian, wy{(L) = L and L has Wielandt
length at most 2. ,

Now take ¢ € A, ¢ ¢ (w). Then we can decompose V with respect to ¢ into the
direct sum V = V; @ V| where c acts nilpotently on V; and invertibly on Vi. As A is
abelian, this decomposition is A-invariant, that is, V; and V) are ideals of L. Suppose
Vo # 0. Put Vi = &V,. For some r, we have VJ # Obut V;*' = 0. Let v € V, and
put u = ¢+ v. Then

(u, id a(u, Vg, Vi) < (i, V7', Vi) e - < (u, Vo, Vi) <L

and (4, V\)aa L. But{w, u] = [w, c]+[w, v] = v,s0v € {(u, V;)NV, = 0. Therefore
Vo = 0 and ¢ is invertible. Since forall 4 € F, pw — c acts invertibly on V, ¢ has no
eigenvalues in F. O

7. Normality of the Wielandt subalgebra
We are now in a position to prove the main result about the Wielandt subalgebra.
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THEOREM 7.1. Suppose L is completely soluble. Then w(L) < L.

PROOF. By Theorem 6.2, we may suppose @ (L) < Z(N). We then have

oL)= [ MW= (] (NNAW)).

U< L Ui L

We consider subnormal subalgebras U. If U is not nilpotent, then there exists an ideal
A<L,0#A < U. Now A 4(U/A) = A.(U)/A. By induction over dim L,

(AW <L.

U=A

If U is nilpotent, then U < N by Lemma 4.1, and we have

(NN A(Y) = ZWN) <L
U nilp
Hence

w(L)= () Jn(w:ﬂ(ﬂ./mw)nﬂnﬂww .

UK L Adl \UzA U nilp

The following example shows that the condition that L is completely soluble cannot
be omitted from Theorem 7.1.

EXAMPLE 7.2. Let V = (vy, ..., v,_;) where p = char F and the subscripts are
integers mod p. Put L = (a, b, ¢, V) with multiplication given by [a, b] = b,
la,c] = —¢, [b,c] =0, [v;, v;] =0 and [a, v;] = iv;, [b, v;] = vi4y and [¢, v] =
v;—1. Then w(L) = (vo + - - - v,_;) which is not an ideal of L.

PROOF. We determine the subnormal subalgebras U which are not ideals. Any such
U is contained in some maximal ideal which must contain L’. But L' = (b, ¢, V) is a
maximalideal, so U < L’andso U < M forsome maximalideal M of L. AsL” =V,
M = (Ab—pc, V)forsome A, u € F.IfX =0oru = 0,then M’ = V and it follows
that U < V. If A # 0, we may takeittobe 1. Then we have [b—puc, v;] = vy —pv;_;.
Thus for all i, we have v; — puv,_, € M’. It follows that v; — u"v;_,, € M’ forall r.
Taking r = p, we get (1 —uP)v; € M’. Thus M’ = Vand U < V unless u” = 1, that
is,unlessu = land M = (b—c, V). Since (b— c)< (a, b, ¢) and V is an irreducible
{a, b, c)-module, it contains only one type of composition factor as (b — c)-module.
As[b—c,vp+---+v,01] =0,b—cacts nilpotentlyon Vand M = (b—c, V) is
nilpotent. Thus w(L) = Z(M) = (vo+ -+ +v,_1). O
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If char F = 0, then w(L) is a characteristic ideal. It is natural to ask if this holds
for completely soluble Lie algebras L over a field of non-zero characteristic. Suppose
L is a minimal counterexample. If U« L is not nilpotent, then U™ is a non-trivial
characteristic ideal. It follows that the intersection of the .47 (U) of the non-nilpotent
U« L is a characteristic ideal of L. Let d be any derivation of L and let M be the split
extension of L by d. Thend(N)+ L’ < M’ and is an ideal of L. Now M is soluble. If
M’ is nilpotent, then M’ < N,sod(N) € N. It then follows that d(Z(N)) € Z(N)
and so d(w(L)) € w(L). Hence our minimal counterexample must have a derivation
d such that M’ is not nilpotent. We are now in a position to construct such an example.
We have incidently given another proof that w(L) is a characteristic ideal if L is a
soluble algebra over a field of characteristic 0 as then, M’ is always nilpotent.

EXAMPLE 7.3. Suppose char F = p # 0. Let L = (y,z, v, ..., Vp_1), Where
the subscripts are integers mod p, be the Lie algebra with multiplication given by
[y,2] = 0, [y,vi] = iviy1, [z,v] = v and [v;,v;] = 0. Then w(L) is not a
characteristic ideal of L.

PROOF. We have N = (y, vg, ... vp_1) > L', sow(L) < Z(N) = (vp). As (vp) is
a minimal ideal, it follows that w(L) = (ve). Letd : L — L be given by d(y) = z,
d(z) = 0 and d(v;) = v;_. Then d is a derivation of L, (the split extension M of L
by d is a familiar example of a soluble algebra with non-nilpotent derived algebra)
and d(w(L)) = (v,_1) € w(L). O

8. Wielandt and derived lengths

A T-algebra is a Lie algebra in which the relation of normality is transitive, thus an
algebra in which every subideal is an ideal, or in the terminology we have introduced,
an algebra of Wielandt length 1. We require the following theorem of Stewart [13]
giving the structure of such algebras:

THEOREM 8.1. L is a soluble T-algebra if and only if L is either abelian or the
split extension of an abelian algebra by its algebra of scalar linear transformations.

PROOF. Let L be a soluble T-algebra. We use induction over dim(L). Since L
is soluble, there exists a 1-dimensional subnormal subalgebra A of L. Since L is a
T-algebra, A< L. As L/A is also a T-algebra, by induction, we have that any ideal of
L/A of codimension 1 is abelian. Now consider A as an L-module. Then L/¥%.(A)
has dimension at most 1 and it follows that there exists N < L of codimension 1 in
L,suchthat A < N < %, (A). We have N/A abelian and A < Z°(N). Thus N is
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nilpotent. Take x € L, x ¢ N. Since L = w(L), by Theorem 5.1, for some A € F,
we have [x,n] = Anforalln e N.

If A =0, thenx € Z°(L) and L is nilpotent. We then have L = w(L) = Z'(L) by
Corollary 5.2 and L is abelian.

If A # 0, then N is abelian by Theorem 5.1 and L has the asserted structure.

Conversely, suppose L is the split extension of an abelian algebra A by its algebra
of scalar linear transformations. Then A = L’ and has codimension 1. Thus A is the
only maximal ideal of L, so every proper subideal is a subalgebra of A. Clearly, every
subspace of A is an ideal of L. Thus L is a T-algebra. g

If L is completely soluble, w(L)< L and so every subideal of w (L) is also a subideal
of L, so normalised by w(L). Thus w(L) is a T-algebra. By Theorem 8.1, N (w(L))
is either equal to w(L) or is an abelian ideal of it of codimension 1. In either case, it
is a characteristic ideal of w (L) and so is an ideal of L.

LEMMA 8.2. Suppose L is completely soluble. Then
[L',N(w(L))]=0 and L' Nw(L) < N(w(L)).

PROOF. Let x € L. If x € N(w(L)), then [x, N(w(L))] = 0 since N(w(L))
is abelian. Suppose x ¢ N(w(L)). Since L’ is nilpotent, every subalgebra of
L’ is subnormal in L, in particular, (x)<a L and is normalised by w(L). Thus
[x, Nw(L))] € {x). But N(w(L)) « L, so [x, N(w(L))] € N(w(L)). Thus
[x, Nlw(L))] € x) N N(w(L)) = Osince x ¢ N(w(L)). Thus [L’, N(w(L))] = 0.
As L'Nw(L) is a nilpotent ideal of w(L), it is contained in N (w(L)). O

LEMMA 8.3. If L is completely soluble and has Wielandt length k, then L' has class
at most k.

PROOF. If k = 1, then L is a T-algebra and L’ is abelian. Suppose k > 1. L/w(L)
has Wielandt length k — 1, so using induction over &, we may suppose (L /w (L))’ has
class at most k — 1. Thus (L)* < w(L). Now using Lemma 8.2, we have

(LY =L, (LSl L' NoL)] S L', Nw(L)] =0. O

THEOREM 8.4. Suppose L is completely soluble. Let k be the Wielandt length of L
and let | be the least integer greater than or equal to log,(k + 1). Then L has derived
length at most | + 1.

PROOF. For any n, we have L™V = (L™ < (L)¥. But (L)**! = 0. Thus
LY = Qif2" > k + 1, thatis, if n > log,(k + 1). O
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We now show that this bound is best possible. To do this, we first consider some
nilpotent algebras with some special structure.

Let N be a positively graded finite-dimensional Lie algebra over the field F. Thus
N =N @®N,;®---® N as vector space and [N;, N;]1 € N,,;. Then N is nilpotent
of class at most k. To simplify notation, we put N* = Y _.  N;. We shall suppose that
N is generated by N,. In this case, if N, # 0, N has class_precisely k, the descending
central series of N being N = Nf>N7o>...> N> Ny, | = 0. The terms Z/(N) of the
ascending central series of N satisfy 27(N) 2 N;_,, . To make an inductive argument
using the quotient by the centre work smoothly, we suppose that 2;(N) = N;_,,, for
all i. Such an algebra, one in which the terms of the ascending central series are as
small as possible, we shall call mini-central. Such algebras do exist as is shown by
the following example.

EXAMPLE 8.5. Let N be the Lie algebra of strictly upper triangular (k+1) x (k+1)
matrices. Put N, = (e;;,, | i = 1,... , k — r + 1) where ¢; denotes the matrix with
1 in the ij position and all other entries 0. This algebra is clearly mini-central.

A mini-central graded nilpotent algebra N has a derivationd : N — N of degree
0 given by da = ia fora € N;. Let L = (d, N) be the split extension of N by (d}.
Thus [d, a] = iafora € N;.

LEMMA 8.6. Let L be as above with k > 1. Then w(L) = N;.

PROOF. Since L is soluble, any maximal ideal of L must contain the derived
subalgebra L’. But L' = N. Thus N is the only maximal ideal and the subnormal
subalgebras of L are precisely the subalgebras of N. From Theorem 5.1, it follows
that w(L) = €. (N). We have only to show that w(L) < N and the result follows.

Suppose w € w(L) but w ¢ N. Then without loss of generality, we may suppose
w=d+aforsomeae N. If a ¢ Z(N), then there exists b € N, for some r
with [a, b] # 0. We then have [w, b] = rb + [a, b} ¢ (b) contrary to w € w(L).
If a € Z(N), we take non-zero elements b € N, and ¢ € N,. Then [w, b+ ¢] =
b+ 2c ¢ (b + c) contrary to assumption. O

THEOREM 8.7. The algebra L constructed above has Wielandt length k and derived
length 1+ 1 where | is the least integer greater than or equal to log, (k + 1) so attaining
the bound given in Theorem 8.4. Hence that bound is best possible.

PROOF. We take L the algebra constructed as above from the minicentral graded
nilpotent algebra N of class k. From Lemma 8.6, it follows that w,_(L) = N;. As
clearly w(L/N;) = L/N;, the Wielandt length of L is k. The derived length of N is
1, so the derived length of L is [ + 1. 0O
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9. Lie algebras with Wielandt length 2

In this section, we describe the structure of the completely soluble Lie algebras
which have Wielandt length precisely 2. We divide them into three cases according to
which, if any, of w(L) and L /w(L) are non-abelian, both non-abelian being excluded
by Theorem 6.2. We have already given the structure for the case w(L) non-abelian in
Theorem 6.2. We now consider the cases in which w(L) is abelian. Some are obtained
as direct sums L = M @ A where w(M) is non-abelian and A is an abelian algebra.
The structure of these follows from Theorem 6.2. If L is an algebra with w (L) abelian
and A is abelian, then w(LDA) = w(L)P A and (LDA)/w(LBA) =~ L/w(L). Thus
we need only consider algebras L which have no non-trivial abelian direct summand.

THEOREM 9.1. Suppose char F # 2. Let L be a completely soluble Lie algebra
over F with Wielandt length 2. Suppose L/w(L) is non-abelian. Suppose L has no
non-trivial abelian direct summand. Then there exist subspaces W, A and an element
b such that the following conditions are satisfied.

(1) Asvectorspace, L= W & A & (b).

2 (W, W+ A]=0.

(3) Setting B(w) = [w, b] defines an invertible linear map g : W — W.

4 Puw ={we W| (B—-1)"w = 0forsomen}). Then for all a € A,
[a, b] = a + pn(a) where u(a) € W;.

5) [A,Al=L"<Wand[w,b]l =2wforallw e L".

(6) Foralla € A, a #0, there exists a' € A with[a, ad’] #0.

PROOF. Put W = w(L). Then by assumption, [W, W] = 0. Also L' £ W.
We choose some subspace A complementary to W in L' + W. Then (L/ W) =
(A+ W)/ W. Since L/ W is non-abelian of Wielandt length 1, A + W has codimension
1in L, and there exists b € L such that [a, b] = a + u(a) with u(a) € W for all
a€A. Also[A,A] C W. Let f(x) = x"(x — 1)°g(x), where x and (x — 1) do
not divide g(x), be the minimum polynomial of the linear map 8 : W — W given
by f(w) = [w, b] forall w € W. Put Wp = (8 — 1)’'g(B)W, W; = B'g(B)W and
W, = B"(B — 1)*W. Then B is nilpotent on W, and invertible on W, + W,. We
now adjust our choice of A. For any linear map « : A — W, we can replace A by
{a+ a(a) | a € A}. Observe that if ay = a + «(a), then

[a, b] = [a, b] + [a(a), b] = a + u(a) + Ba(a) = a; + (u + (B — Da)(a).
We thus obtain A, = (1+«a)A and u, : A} > W suchthat[a,, b] = a; + 1, (a;) with

wi(a) = u(a) + (B — )a(a). Regarding a, ., 4, as maps (A + W)/ W — W, we
have w; = p + (8 — 1)a. By making a suitable choice of subspace A, we can thus
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replace i by . + y forany y : A — W for which there exists o with (8 — Da =y,
that is, any y such that y(A) C (8 — 1) W. Since (8 — 1) acts invertibly on Wy + W,,
we can choose A such that u(A) € W;. As Wy = [W,, b] C L’, for this choice of A,
wehavea = [a, b]— u(a) € L' foralla € A,so A C L’ and A complements WN L’
inL'. By Lemma 6.1, [W, L'] = 0. We have

[la, a'), b] = [[a, b], '] + [a, [, b]] = [a + u(a),a') + [a, a' + p(a)] = 2[a, d]

since [W, A] = 0. Since char F # 2, [A, A] < W,.

We now prove r < 1. Let U = b*t. Since B'(W; + W,) = W, + W, for all i,
Wi+ W, < U. Since[---[A, b], b]---, b] + W) = A + W, whatever the number of
factors, A C U. Butas (b, A, B"W)<(b,A, B 'W)a---<a(b, A, W) = L, it follows
that U = (b, A, W;, W,). Therefore [W,b] C W, + W,,sor < 1.

We now clearly have L' = A + W, + W, and. L” = [A, A]. Also, W < L and
L=W& (W + W, + A+ (b)). Since L has no abelian direct summand, W = 0
and W =W, + W,.

Now suppose a € A, a # 0. Since a ¢ w(L), there exists x € L such that
[a,x] ¢ x*L. If x ¢ W+ A, thenx*f = W+ A+ (x) =L,sox € W+ A and
x*t = (x). Wehavex = w+ a’ forsome w € Wanda' € A. Now [a, x] = [a, a'],
so [a, a'] ¢ x*L which implies {a, a’] # 0. O

In the above, we still have some freedom of choice for the subspace A and the
corresponding map n : A — W;. For any linear map a : A — W,, the subspace
A, = (1 +a)A also satisfies our requirements with u replaced by 1 = u+ (8 — 1e.
Let i1, {1, denote the composites of i, 1, with the natural map W, - W, /(8 — 1) W,.
Then i = f1;. Conversely, for any linear map u;, : A —> W, such that g; = i, there
exists a linear map @ : A — W such that 4 — 4 = (8 — 1)a. Thus by suitable
choice of A;, we may replace u by any u; with i, = f.

Any Lie algebra L with the structure described has Wielandt length 2 and L /w(L)
non-abelian. Indeed, given the above data, we can construct a Lie algebra, uniquely
determined by the data, which has those properties.

THEOREM 9.2. Let F be a field with char F # 2. Let W, A be vector spaces over
F withdimA > 2. Let 8 : W — W be a non-singular linear transformation with
2 as an eigenvalue. Let Wy = (w € W | (B — D)'w = 0 for some r}, let W, be
the complementary invariant subspace and let W, = {w € W | b(w) = 2w}. Let
m: AxA — W, be a non-singular alternating bilinear map and let 1 : A —
W/(B — 1) W be any linear map. Take B = (b) a 1-dimensional vector space. Let
u be any lifting of T to a linear map into W,. Put L = W @ A @ B and define the

- multiplication [, 1: LAL — L by

[w,w']=[w,a]l=0, [a,d]l=ma d), [w,bl=pw), I[a bl=a+pua
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Jorallw,w' € Wanda,a € A. Then L is a Lie algebra with no non-trivial abelian
direct summand, L' = W + A is nilpotent of class 2, w(L) = W = Z(L’), L has
Wielandt length 2 and L /w(L) is non-abelian.

PROOF. By definition, [x,y] = —[y,x] for all x,y € L. The Jacobi identity
is easily verified. Thus L is a Lie algebra. Clearly, L'’ = W + A. Since m is
non-singular, for any a € A, a # 0, there exists a’ € A with [a,a’] # 0. Thus
L"=[A,A] #0. But[A, A] < Wand [W, W+ A] = 0. Thus L’ is nilpotent of
class 2. If a € A, a # 0and w € W, then for some @’ € A, we have [a + w, a'] #0.
Hence W = 2°(L’). Thus w(L) < W. Ifx = b+ w + a for some w € W and
acA,then[W,x]=[W,b]= W,so W < x°t. Since [a+ W,x] =a+ W for all
a€ A, A <x*L. Thus x* > L’ so x*L « L. It follows that W < 4] (U) for every
UwaLwithU£L. Bt W= (L"), s0oW < A4 (U) for Us« L with U < L'.
Thus W = w(L). As L/ W has the abelian ideal A + W/ W of codimension 1 with
b + W acting as the identity, L/ W is non-abelian of Wielandt length 1. Finally, as
Z (L) =0, L has no non-trivial abelian direct summand. |

The situation in characteristic 2 is a little different.

THEOREM 9.3. Suppose char F = 2. Let L be a completely soluble Lie algebra over
F with Wielandt length 2. Suppose L/w(L) is non-abelian. Suppose L has no non-
trivial abelian direct summand. Then there exist subspaces Wy, W,, A and an element
b such that, putting W = Wy & W,, the following conditions are satisfied.

(1) Asvector space, L= W @ A @ (b).

2) (W, W+ A]=0.

(3) Setting B(w) = [w, b] defines a linear map B : W — W with (W) = 0 and
B(W,) = W,.

@ Puuwy, ={we W| (B —-D'w = 0forsomen). Then for all a € A,
[a, b] = a + u(a) where p(a) € W,.

(5) [A,A]l=L"={we W|Bw) =0}

(6) Foralla € A, a # 0, there exists a’ € A with [a,a’] # 0.

PROOF. As in the proof of Theorem 9.1, we obtain spaces W, A and an element
bgivingmaps §: W — Wand u : A — W. As before, we get a decomposition
W=WoWo W, Weput W, = W, + W,. As before, we can adjust the choice of
A so that we have £ (A) C W,. Also as before, we have {[a, a'], b} = 2[a, d'], but as
char F =2, wehave [A,A] C {w € W | B(w) =0} C W,.

We now prove (W) C [A, A]. Let U = b*". Asbefore, we seethat A+ W, < U,
and it follows that U = (A, [A, A}, W., b). Hence, if w € W, then S(w) € [A, A].

If B(w) =0and w ¢ [A, A], then (w) is an abelian direct summand of L. Therefore
{we W | B(w) =0} =[A, A]. As before, for any non-zero a € A, there exists
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a € A with [a,a’] #0. O

As in the case char F # 2, given the spaces and maps as above, we can construct a
Lie algebra with the required properties. We leave the details to the reader.
We now consider algebras L with both w(L) and L/w(L) abelian.

THEOREM 9.4. Suppose L has Wielandt length 2 and both w (L) and L/w (L) are
abelian. Suppose L has no non-trivial abelian direct summand. Then there exist
subspaces Wy, ... , Wi, Aof L, W, = W, @ - -- ® W, such that

(1) w(l) =Wy W.,.

(2) L =w(L)® A as vector space.

(3) Foralla € A and all i, either [W;,a] =0o0r [W,,a] = W.

@) [(Wy,Al =0and [W,, Al = W,.

B) Wy=I[A, Al

©6) Ifae A a#0, then[L,a)] #0.

(7) Either dim A > 1 or there exists a € A such that the action w — [w, a] is not
a scalar transformation of W.

PROOF. Put W = w(L). Then Wis an L/ W-module. Since L/ W is abelian, W is
the direct sum W = W, @ - - @ W, of submodules W;, each of which has only one type
of composition factor. (See for example, Barnes [2].) Let W, be the component of the
trivial composition factors and let W, be the sum of the components with non-trivial
composition factors. By Barnes [1, Theorem 1}, H*(L/A, W,) = 0, so L/ W, splits
over W/ W,. Thus there exists a subspace A such that L = W @ A as vector space
and [A,A] C W,. We have [W,,A] = W,. Supposea € A. Leta: W - W
be the linear transformation given by a(w) = [w, a] and let W = Wy(a) & W,(a)
be the decomposition of W into null and non-null components with respect to a.
Suppose a # 0 and w € W. Put u = w + a. Then (W, u) « L and 'l = u™¥),
so it follows that w*t = (W,(a), u). If w € Wy(a), then [w, a] = [w, u] € 'L, so
[w, a] = 0. Thus for each W,, either [W;, a] = 0 or W, has no trivial composition
factor as (a)-module and so [W;, a] = W,. In particular, [ W,, A] = 0. For each of the
other components, there is some a € A which acts non-trivially, so [W,, A] = W,.

Ifwe Wyand w ¢ [A, A], then (w) is an abelian direct summand of L. Therefore
Wy = [A, A]. If a € A and [L, a] = 0, then (a) is an abelian direct summand, so
a=0. Clearly, L # W,sodimA > 1. If A = (a), and a is scalar, then (L) = L
contrary to assumption. a

Clearly, if we are given vector spaces W, ... , W, A, W= W, ®--- & W,, and,
for all a € A, a linear transformation a : W — W, and an alternating bilinear map
m:A x A — W,such that

(1) W#0andA #0;
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(2) foralla,a € A, aa’ = ad'a;

(3) foralla € A and all i, either a(W,) =0 or a(W;) = W;;

(4) foralla € A, a(W,) =0;

(5) forall i # 0, there exists a € A such that a(W,) = W;

6) m(A,A) =W

(7) foralla € A, a # 0, either a # 0 or there exists ' € A such that m(a, a’) # 0;
(8) ifdimA =1anda € A, a # 0, then a is not scalar

then we can construct a Lie algebra L as in Theorem 9.4 by setting L = W & A,
[w,w'] =0, [a,a] =m(a,d)and [w, a] = a(w) forall w,w’ € Wanda, d' € A.

10. Lie algebras with Wielandt length > 2

We have seen (Theorem 6.2) that in the Wielandt series
O<oil)y< - <w,_ (L)Y <w, (L) =1L,

only the last L /w,_; (L) or second last w,_; (L) /@,_2(L), but not both, of the quotients
w;(L)/w;_1(L) can be non-abelian. By Theorem 6.2, the second last non-abelian can
only occur if the field F is not algebraically closed. In proving Theorem 8.7, we
showed that we can have an arbitrarily long Wielandt series with non-abelian final
quotient. We now show that we can have arbitrarily long Wielandt series with non-
abelian penultimate quotient.

If S is the free Lie algebra generated by x;, ..., x,, then § is positively graded
with S; the space spanned by the products of i factors. Any linear transformation
a; : 8§ — §; has a unique extension to a derivation a : § — § of degree 0. We
may form the quotient by the ideal ) _, , S; to form the free nilpotent algebra N of
class n which inherits the derivation «. We use this to produce our example. Put

N: = Zizr N"
ExXAMPLE 10.1. Let N be the free nilpotent Lie algebra of class n on the generators
X1, ..., X Let o, B be the derivations of N obtained by extending the maps oy, B; :

N, — N, where «, is any map having no eigenvalue in F, and B, is the identity. Let
L be the split extension of N by the abelian algebra A = («, 8). Then w,_ (L) =
Z-1(N) = N;, w,(L)/w,-1(L) = (B, Ny} is non-abelian, and w,,,(L) = L.

PROOF. Suppose U<« L and that U is not an ideal. Then U < M for some maximal
ideal M. But M = ((Aa + uB), N) for some A, u € F, not both zero, since L' = N.
But A + uB acts invertibly on Ny, so M’ = N and it follows that U < N. It
follows that w;(L) = Z(N) = N;_,,, fori = 1,... ,n — 1. The result follows by

Theorem 6.2. 0O
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