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Abstract

Diabetes mellitus is prevalent worldwide and affects 1 in 10 adults. Despite the successful
development of glucose-lowering drugs, such as glucagon-like peptide-1 (GLP-1) receptor
agonists and sodium-glucose cotransporter-2 inhibitors recently, the proportion of patients
achieving satisfactory glucose control has not risen as expected. The heterogeneity of diabetes
determines that a one-size-fits-all strategy is not suitable for people with diabetes. Diabetes is
undoubtedly more heterogeneous than the conventional subclassification, such as type 1, type
2, monogenic and gestational diabetes. The recent progress in genetics and epigenetics of
diabetes has gradually unveiled the mechanisms underlying the heterogeneity of diabetes, and
cluster analysis has shown promising results in the substratification of type 2 diabetes, which
accounts for 95% of diabetic patients. More recently, the rapid development of sophisticated
glucose monitoring and artificial intelligence technologies further enabled comprehensive
consideration of the complex individual genetic and clinical information and might ultimately
realize a precision diagnosis and treatment in diabetics.

Impact statement

Diabetes mellitus has become a global public health crisis that affects 537 million people
worldwide. Despite the great success in the development of novel glucose-lowering drugs, the
proportion of patients achieving satisfactory glucose control has not risen as expected during the
last decade. The heterogeneity of diabetes determines that a one-size-fits-all strategy is not
suitable for people with diabetes. Our review article summarized the current progress in
heterogeneity of diabetes from the perspective of genetics and epigenetics, and introduced a
promising clinical substratification of type 2 diabetes. Thanks to the recent rapid development of
sophisticated glucose monitoring and artificial intelligence technologies in the management of
diabetes, we are able to process a large number of individual multi-dimensional genetic,
anthropometric, clinical, biochemical and imaging information and make objective and correct
judgment to improve the long-term outcome of diabetic patients. The emergence of new
technologies might provide solutions for precision diagnosis and treatment of diabetes.

Introduction

Diabetes mellitus is diagnosed if blood glucose concentration exceeds a threshold, which
predisposes to microvascular and microvascular end-organ complications. Diabetes continues
to increase in prevalence worldwide (Ingelfinger and Jarcho, 2017). Currently, diabetes affects
537 million people worldwide (IDF, 2021). Diabetes is also the leading cause of disability
globally (GBD 2017 Disease and Injury Incidence and Prevalence Collaborators, 2018), as well
as causing an increase in the risk of death from cardiovascular disease, renal disease, and cancer,
and reducing life expectancy by 4–10 years on average (Rao Kondapally Seshasai et al., 2011).
Early and intensive management of diabetes to achieve the recommended glycemic and
metabolic targets can reduce long-term diabetes complications (Khunti and Millar-Jones,
2017).

In recent decades, great success has been achieved in the development of novel glucose-
lowering drugs, such as glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-
glucose cotransporter-2 inhibitors. At present, pharmacological therapies, comprising
10 classes of medicines approved by the FDA, could be utilized to control blood glucose.
However, the proportion of patients achieving satisfactory glucose control has not risen as
expected (Bhat et al., 2021). The inadequate understanding of the diverse pathophysio-
logical mechanisms and personalized treatment of diabetes partly limits our ability to treat
diabetes.

The aim of our current review is to provide an overview of precision medicine in diabetes,
focusing on the genetics and epigenetics, clinical stratification and personalized prevention,
treatment of this disease and its related complications (Figure 1).
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Heterogeneity of diabetes

The heterogeneity of diabetes was recognized several decades ago,
when diabetic patients were divided into insulin-sensitive and
insulin-insensitive subgroups based on the oral glucose tolerance
test (OGTT) (Himsworth and Kerr, 1939). In 1979, the classifica-
tion of type 1 and type 2 diabetes was first proposed by the
American Diabetes Association (National Diabetes Data Group,
1979). Meanwhile, Fajans and Tattersall described a subgroup of
diabetes with inheritance across many generations called “maturity
onset diabetes in the young” (MODY) (Tattersall and Fajans, 1975).
However, it was not until the introduction of genomic medicine in
the recent 20 years, that the molecular mechanisms of the mono-
genic diabetes were uncovered.

Patients with diabetes do not equally respond to glucose-
lowering therapies. Thus, pharmacologic intervention should be
individualized based on factors such as duration of diabetes, pres-
ence of existing comorbidities, expected duration of life, weight,
age, family history of diabetes-related complications and funding
for prescribed medications and technology. Previous studies indi-
cated that approximately 30% of individuals with type 2 diabetes do
not respond well to metformin, and 5% have intolerable side effects
(Kahn et al., 2006; Cook et al., 2007). Clinical diabetic patients with
different etiological processes, such as obesity, metabolic syndrome,
beta cell dysfunction or lipodystrophy, respond differently to
glucose-lowering drugs with different mechanisms (Udler and
Kim, 2018). Patients from different ethnicities respond differently
to glucose-lowering drugs, including dipeptidyl peptidase-4 inhibi-
tors (Kim et al., 2013), metformin (Williams et al., 2014) and
glucagon-like peptide 1 agonist (Velásquez-Mieyer et al., 2008).
Thus, stratification of diabetic patients based on their genetic
backgrounds and pathophysiological mechanisms could be con-
sidered for implementation of precision medicine in diabetes.

Genetics of diabetes

Precision medication in monogenic diabetes has successfully
guided clinical treatment. For example, individuals with rare muta-
tion in HNF1A (MODY3), HNF4A (MODY1) and ABCC8
(MODY12) are incredibly sensitive to the effects of sulfonylureas
(Pearson et al., 2003). While individuals with loss-of-function
mutations in the GCK gene are unlikely to develop diabetic com-
plications, and have no need for unnecessary treatment (Steele et al.,
2014). However, identification of monogenic diabetes still has not

solved discrepancy in the individual response to glucose-lowering
medications in a large number of patients with type 2 diabetes.

In 2007, the first genome-wide association study (GWAS) in
type 2 diabetes was reported (Sladek et al., 2007). There was much
hope that genetics would also represent a breakthrough in under-
standing of the heterogeneity of type 2 diabetes at that time,
however, it turned out that more than 400 genetic variants associ-
ated with type 2 diabetes to date could only explain 18% of the risk
of diabetes (Mahajan et al., 2018). Moreover, every individual
variant is very modestly associated with the risk of type 2 diabetes,
except for the variant in the TCF7L2 gene (Lyssenko et al., 2007).
Therefore, the genomic information alone has limited value in
guiding precision medicine in type 2 diabetes.

Recently, GWAS has also been performed to investigate the
genetic risk alleles of type 1 diabetes (Sharp et al., 2019). Fortu-
nately, recent studies have shown that the identified genetic vari-
ants could account for the majority of the risk of type 1 diabetes in
certain populations, and type 1 diabetes genetic risk scores could
well predict the risk of type 1 diabetes with both sensitivity and
specificity exceeding 80% in neonatal and African-ancestry popu-
lations (Onengut-Gumuscu et al., 2019; Sharp et al., 2019). The
genetics of diabetes mellitus and diabetes complications is well
summarized in the literature (Cole and Florez, 2020; Riddle et al.,
2020; Deutsch et al., 2022).

Epigenetics of diabetes

Obesity and metabolic syndrome is the main risk factor for type
2 diabetes which is caused by a complex inheritance-environment
interaction (Wu et al., 2014). Epigenetics represents the heritable
reversible modifications to the genome associated with environ-
mental factors and clinical phenotypes (BLUEPRINT Consor-
tium, 2016). Epigenetics explores the mechanism in which
phenotypes are changed by non-DNA sequence variation,
including DNA methylation, histone modifications, non-coding
RNAs regulations. Previous studies have shown that blood
methylation markers in the TXNIP, ABCG1, PHOSPHO1, SOCS3
and SREBF1 genes were associated with the risk of incident type
2 diabetes (Chambers et al., 2015). Since epigenetic patterns have
vast plasticity, the epigenetic alteration in type 2 diabetes could be
targeted for personalized treatment. The non-coding RNAs,
especially the short noncoding RNAs (microRNAs), can regulate
the expression of protein-coding genes or epigenetic regulators
including DNA methyltransferases, histone deacetylases and
polycomb protein coding gene (Bushati and Cohen, 2007).
MicroRNA changes in vivo were associated with the insulin
resistance level in type 2 diabetes (Gallagher et al., 2010), and
its value as biomarkers for type 2 diabetes has been investigated
(de Candia et al., 2017). Integrating both genetic and epigenetic
risk factors might reflect the inheritance-environment inter-
action, and provide a promising solution for subclassification
of type 2 diabetes.

Recently, the complex association between SARS-CoV-2 Infec-
tion (COVID-19) and diabetes has emphasized the environmental
factors in promoting diabetes (Shin et al., 2021; Cao et al., 2023).
Studies showed that critical COVID-19 and hospitalized COVID-
19 subjects had an increased risk of type 2 diabetes, and genetic
liability to COVID-19 had a causal effect on type 2 diabetes (Cao
et al., 2023). Mechanistically, the COVID-19 spike protein physic-
ally interacted with GRP78 protein in cell surface of adipose tissue,
promoting hyperinsulinemia in adipocytes via XBP1, whichmay be

Figure 1. The precision medicine in diabetes management.
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attributed to the development and progress of diabetes (Shin et al.,
2021).

Stratification of diabetes

Various pathogenic mechanisms and outcomes of disease have
been observed in the large range of type 2 diabetes (Philipson,
2020). Thus, the stratification of type 2 diabetes may be relevant
in the field of precision medicine for diabetes diagnosis. Cluster
analysis based on high-dimensional data, such as electronicmedical
records or omics data (genomics, proteomics, metabolomics, tran-
scriptomics, lipidomics, etc.), has been utilized to identify subtypes
of type 2 diabetes (Li et al., 2015; Udler et al., 2018; Wagner et al.,
2021). In 2018, a study of the Swedish population with newly
diagnosed diabetes used both hierarchical and k-means clustering
to identify five subtypes of adult-onset diabetes, named severe
autoimmune diabetes (SAID), severe insulin-deficient diabetes
(SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-
related diabetes (MOD) and mild age-related diabetes (MARD),
based on six clinical variables (autoantibodies, age at diagnosis,
BMI, HbA1c, C peptide together with glucose for estimation of
insulin secretion, HOMA-B and insulin-sensitivity, HOMA-IS)
(Ahlqvist et al., 2018). SAID was characterized by the presence of
GAD autoantibodies, low insulin secretion and poor metabolic
control, SIDD was characterized by low insulin secretion, poor
metabolic control and increased risk of retinopathy, SIRD was
characterized by severe insulin resistance, obesity, late onset and
markedly increased risk of nephropathy, MOD was characterized
by obesity, early onset and goodmetabolic control, andMARDwas
characterized by late onset and good metabolic control. This clas-
sification of adult-onset diabetes has been most frequently repli-
cated in three independent cohorts from different ethnicities
(Philipson, 2020). These subgroups differ in genetic predisposition
to diabetes, with increased frequency of HLA rs2854275 variant in
SAID and TCF7L2 rs7903146 variant in SIDD, MOD and MARD
(Lyssenko et al., 2007). Both SIRD and MOD patients were obese,
but SIRD represented the unhealthy obesity with insulin resistance
and non-alcoholic fatty liver disease andMOD represented healthy
obesity without insulin resistance (Cohen et al., 2011). More
importantly, the new subclassification of diabetes might guide the
personalized treatment. TheMOD andMARDpatients usually had
good metabolic control and disease prognosis, thus, it may be that
these cases require less frequent glucose monitoring and could be
easily managed with metformin and lifestyle intervention. Several
medications with confirmed protective effects on specific vital
organs, such as sodium-glucose cotransporter 2 (SGLT2) on car-
diovascular and renal outcomes, might be especially suitable for
SIRD (Wanner et al., 2016). Thus, the attempts on stratification of
diabetes by cluster analysis might be promising for precision diag-
nosis of diabetes.

More recently, the application of artificial intelligence (AI)
technology was able to comprehensively ingest all required param-
eters in supplied formats (text, image/video, biometric data) for
analysis, leading to the prediction of incident diabetes (AUROCs:
0.71–0.87) (Ellahham, 2020) and risk stratification of diabetic
populations (Zou et al., 2018). Recently, a study using genomic
and tabular data to predict type 2 diabetes based on Recurrent
Neural Networks has been reported (Srinivasu et al., 2022). The
results showed that the proposed model could predict future dia-
betes with fair accuracy, which may be used in real-world scenarios
(Srinivasu et al., 2022). The use of AI in diabetesmanagement could

establish a more accurate and objective stratification of type 2 dia-
betes based on a broad range of candidate parameters.

Precision prevention

Comprehensive management of diabetes includes diet and exercise
interventions, patient education, glucose monitoring and drug
treatment. By the time the diabetes is diagnosed, diabetes-related
tissue damage has occurred in nearly half of the patients (Ambaby
and Chamukuttan, 2008). An early intervention in patients with
prediabetes, either with lifestyle interventions or pharmacologic
interventions, reduces the risk of incident diabetes and improves
long-term outcomes (Haw et al., 2017). However, there has been a
big variation among the patients diagnosed with prediabetes in
their response to lifestyle or drug intervention (Knowler et al., 2002;
Knowler et al., 2009). Those who lost the least weight in the early
stages of intervention showed the highest risk of incident diabetes
(Delahanty et al., 2014). The reduction of body weight in patients
with prediabetes after lifestyle or drug intervention was related to
genetic variants (Papandonatos et al., 2015). For instance, the
protective effect of metformin in reducing incidence of diabetes
was associated with variation in the SLC47A1 gene in the Diabetes
Prevention Program (Jablonski et al., 2010). Therefore, the patients
diagnosed with prediabetes who are unlikely to respond well to
lifestyle modification might be better served by other therapeutic
treatments, but more studies were required to properly identify this
subgroup of prediabetes. Meanwhile, efforts have also beenmade to
prevent the incidence of type 1 diabetes in high-risk childrenwith at
least two islet autoantibodies using dietary interventions and/or
immune-targeting approaches (Skyler et al., 2018). Unfortunately,
most previous intervention studies were unable to slow, halt or
reverse the destruction of beta cells or delay the progression of type
1 diabetes (Hummel et al., 2011; Knip et al., 2018).

Precision treatment

Drug treatment was recommended to achieve good glucose con-
trol and lower the risk of cardiovascular disease and specific
diabetic complications in diabetic patients. Although FDA has
approved 10 classes of diabetes medications, each of these medi-
cations showed great heterogeneity in therapeutic efficacy, being
effective for some patients, but less effective for others, with some
even experiencing adverse effects (Dennis et al., 2018). Trials of
medications on diabetes have recognized that different etiologic
processes of diabetes would influence the therapeutic effect of
antidiabetic medications recently (Dennis et al., 2019). Reanalysis
of the data from the ADOPT and RECORD studies found that
the subtype of diabetic patients with insulin resistance responded
better to treatment with thiazolidinediones and that older
patients responded better to sulfonylureas (Dennis et al., 2019).
Similar studies using prospective and primary care data in the UK
found that the subgroup of diabetics with insulin resistance,
obesity or high triglycerides had reduced initial response to
DDP4 inhibitor and more rapid failure of therapy (Dennis
et al., 2018).

There is also an ethnic difference in the individual response to a
specific antidiabetic medication. Previous studies indicated that the
therapeutic effect of DDP4 inhibitors is greater in Asians than in
other demographic groups. Consistently, a subgroup analysis of the
Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TE-
COS) showed a greater reduction in blood glucose in East Asians
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(Davis et al., 2018), and a recent REWIND study found the pro-
tective effect of Dulaglutide on cardiovascular disease is signifi-
cantly stronger in the Asian Pacific area than other regions of the
world (Gerstein et al., 2019). Moreover, the effect of metformin also
differed among different ethnic groups, with African Americans
having a greater response to metformin than was observed for
European Americans (Williams et al., 2014).

The use of genetics in guiding the pharmaceutical treatment of
diabetes is an important step toward the precision treatment of
diabetes. A typical successful example is the application of genetics
in treatment of monogenic diabetes. In that case, a specific single
gene mutation is causal for the development of diabetes and tar-
geted treatment can well bypass the etiological defect, such as the
use of sulfonylurea in MODY3 caused by the mutation of HNF1A
gene (Pearson et al., 2003). However, type 2 diabetes is much more
complex than MODY, which is influenced by the complex inter-
action of hundreds of etiological gene variants and environmental
risk factors. Traditionally, genetic studies of drug response in type
2 diabetes have focused on candidate genes known to relate to
etiological processes or drug transport or metabolism. Studies have
shown that a variant in the SLC22A1 gene encoding the organic
cation transporter 1 (OCT1) is involved in the cellular transport of
metformin and influenced the individual response to metformin
(Shu et al., 2007). Similarly, a variant inMATE1 (Becker et al., 2009)
was also associated with metformin response. Studies also found
thatKCNJ11/ABCC8 risk variant increases, butTCF7L2 risk variant
reduces glycemic response to sulfonylureas (Pearson et al., 2007;
Feng et al., 2008). The PPARG risk variant was associated with
reduced glycemic response to thiazolidinediones (Kang et al., 2005).
GWAS in the pharmacogenetics of diabetes made no assumptions
about the drug mechanism and metabolism, and have therefore
provided novel insights into genetic factors related with response to
antidiabetic medication, and successfully identified variants at the
ATM and SLC2A2 genes as modulators of individual response to
metformin (GoDARTS and UKPDS Diabetes Pharmacogenetics
Study Group et al., 2011; Zhou et al., 2016). GWAS of response to
other antidiabetic drugs was still necessary to establish the drug
response prediction system based on genetics to guide clinical
treatment.

The management of diabetes is a comprehensive approach, and
glucose monitoring, patient education and lifestyle intervention
also played essential roles in diabetes treatment in addition to
diabetes medications. Currently, the use of remote continuous
glucose monitoring (CGM) enables monitoring of a complete view
of glucose control over 24 h (Battelino and Danne, 2019), and the
in-depth insights of glucose and direct feedback provided by CGM
system have efficaciously controlled the blood glucose and reduced
the incidence of hypoglycemia (Beck et al., 2017). The accurate
CGM also enabled the personalized lifestyle intervention prescrip-
tion tailored to each diabetic patient. An AI-based decision support
system named the Advisor Pro was recently developed. This system
sends the data from CGM to a cloud server and uses AI to deter-
mine required insulin doses remotely. Studies showed that insulin
doses recommended by the Advisor Pro had no significant differ-
ence compared with that given by physicians, suggesting this to be a
convenient approach in managing diabetes (Nimri et al., 2018;
Nimri et al., 2022). With the rapid development in the AI field, it
is highly possible that AI will introduce a revolutionary shift in
management of diabetes from conventional therapeutic strategies
to data-driven precision treatment, based on the combination of
individual genetic and glucose monitoring information and
decision-making systems based on machine learning.

Lifestyle modifications and first-line medication treatment do
not prevent the progressive decline of β-cell mass and function in
some patients. Therefore, advanced strategies need to be developed
to address this issue. Stem cell therapy for the treatment of diabetes
has made great progress in recent years (Furuyama et al., 2019;
Siehler et al., 2021). Both type 1 diabetes and type 2 diabetes can
benefit from stem cell therapy. Studies showed that stem cell
therapy increased serum C-peptide and reduced glycosylated
hemoglobin (HbA1c) in subjects with type 1 diabetes or type
2 diabetes, but had no significant effect on fasting glucose (Zhang
et al., 2020). Additionally, stem cell therapy improved insulin
requirements in subjects with type 2 diabetes (Zhang et al., 2020).
Different types of stem cells affect the clinical efficacy of therapy for
diabetes. Bone marrowmononuclear cells were more effective than
mesenchymal stem cells in the treatment of type 1 diabetes, whereas
both bone marrow mononuclear cells and mesenchymal stem cells
had favorable effects on type 2 diabetes (Zhang et al., 2020). This all
suggests that stem cell therapy for the treatment of diabetes is an
attractive and potential strategy, but is still facing enormous chal-
lenges, for instance, the need for greater diversity in the source of
stem cells, and also inconsistency in stem cell preparation, evalu-
ation systems and safety.

Future outlook

The heterogeneity of diabetes creates challenges for the wider
applicability of precision medicine in successful treatment of this
disease. Although the implementation of precision medicine in
diabetes is progressing well, more recent developments within
precisionmedicine may benefit both newly diagnosed patients with
diabetes, as well as those exposed to glycemic toxicity for years.
Multidisciplinary cooperation will be conducive to further in-depth
analysis and understanding of diabetes. Currently, our knowledge
on the association of individual genetic background with the
pathogenesis and drug response of diabetes is increasing rapidly.
The application of AI in the management of diabetes enables the
objective and comprehensive analysis and process of a large num-
ber of individual multi-dimensional genetic, anthropometric, clin-
ical, biochemical and imaging information, and might provide a
solution for precision diagnosis and treatment of diabetes. The
concept and tools of precision medicine help to accurately predict,
diagnose and treat diabetes and its complications. Although there is
still a long way to go, precision medicine will become the driving
force for early intervention, early prevention and accurate man-
agement of diabetes in the future.
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