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Abstract. We present a dispersion relation for a plane-polarized electromagnetic
wave in plasmas composed of cold electrons, relativistically hot electrons and bi-
Maxwellian protons. It is shown that the free energy in proton-temperature aniso-
tropy drives purely growing electromagnetic modes in our three-component plasma.
Expressions for the growth rates and thresholds of instabilities are presented. The
present results are relevant for explaining the origin of spontaneously generated
magnetic fields in laboratory and astrophysical plasmas.

1. Introduction

About 40 years ago, Weibel [1] discovered a purely growing electromagnetic in-
stability in an unmagnetized plasma with a bi-Maxwellian electron velocity dis-
tribution. Thus, the free energy in the electron temperature anisotropy generates
quasi-stationary magnetic fields [1, 2]. The thermal Weibel instability may account
for spontaneously generated magnetic fields in inertial confinement fusion plasmas
[3–8], as well as in interplanetary spaces [9–11] and in astrophysical environments
(e.g. cluster of galaxies [12]). The importance of relativistic thermal Weibel instabil-
ity [13, 14] has also been recognized in the context of large-scale magnetic fields in
a number of astrophysical sources, such as the gamma-ray bursts and relativistic
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jets [15, 16]. Recently, large-scale toroidal magnetic fields have been observed in
the Galactic Centre [17], accompanied with splendid filamentary radio arcs [18].
Recent simulations [19] and laboratory experiments [20] have revealed that the

absorption of intense laser pulses into electrons produces relativistically hot elec-
tron components within a dense plasma. Our objective here is to show that the pre-
existing proton-temperature anisotropy can generate quasi-stationary magnetic
fields in plasmas with cold and relativistically hot electrons. For this purpose, we
present a dispersion relation for a plane-polarized electromagnetic wave in our
multi-species plasma. The new dispersion relation admits purely growing instabil-
ities. The growth rates and thresholds of the instabilities are presented.
The propagation of the electromagnetic wave is governed by the Faraday law

∂B
∂t

= −c∇ × E (1)

and the Maxwell equation

∇ × B =
4π

c
(Jc + Jh + Ji) +

1
c

∂E
∂t

, (2)

where c is the speed of light in vacuum; B and E are the wave magnetic and electric
fields, respectively; and Jc , Jh and Ji are the current densities of cold electrons,
relativistically hot electrons and hot ions, respectively. For the electromagnetic
fields, we express B = ∇ ×A and E = −c−1∂A/∂t, where A is the vector potential.
The Coulomb gauge is ∇ · A = 0.
We are interested in obtaining a dispersion relation for a plane-polarized electro-

magnetic wave (with A = x̂Ax exp(−iωt + ikz), where x̂ is a unit vector along the
x-axis in a Cartesian co-ordinate system and Ax is the x-component of the vector
potential, ω is the frequency, and k is the wave number along the z axis) in our
three-species plasmas. The equilibrium distribution functions of cold electrons, hot
electrons and hot protons are a delta function, a relativistic Maxwellian distribution
function [21] and a bi-Maxwellian distribution function [22, 23], respectively. The
current density associated with cold electrons is

Je = −enc0uc , (3)

where e is the magnitude of the electron charge; nc0 is the unperturbed number
density of cold electrons; and the cold electron fluid velocity is

uc = x̂
eAx

mec
. (4)

Here me is the rest mass of electrons.
Furthermore, formec

2�Th , where Th is the hot-electron temperature, the current
density associated with relativistically hot electrons is [21]

Jh = −x̂
nh0e

2cAx

3Th
. (5)

The proton current density Ji in the presence of an equilibrium bi-Maxwellian
proton distribution function reads [23]

Ji = x̂
Z2

i ni0e

mic2

[
1 +

Ti⊥
Ti‖

W (ξ)
]

Ax, (6)
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where Zi is the proton charge state; ni0 is the unperturbed proton number density;
Zini0 = nc0 + nh0 ; mi is the ion mass; Ti⊥ and Ti‖ are the proton temperatures
across and along the propagation vector k = ẑk, where ẑ is the unit vector along
the z-axis. Furthermore, we have denoted W (ξ) = −1 − ξZ(ξ), where Z(ξ) is the
plasma dispersion function [24], with ξ = ω/kVT ‖ and VT ‖ = (2Ti‖/mi)1/2 .
By using the definition of the electromagnetic fields B and E, we can combine

(1) and (2) and Fourier transform the resultant equations to obtain the dispersion
relation

k2c2

ω2 = 1 −
ω2

pc

ω2 − mec
2

3Th

ω2
ph

ω2 −
ω2

pi

ω2

[
1 +

Ti⊥
Ti‖

W (ξ)
]

, (7)

to obtain which we have used (3), (5) and (6). We have denoted ωpα = (4πnα0e
2/

me)1/2 and ωpi = (4πni0Z
2
i e2/mi)1/2 , where the subscript α equals c for cold

electrons and h for relativistically hot electrons.
We analyze (7) in two limiting cases. First, consider the limit ξ�1, so thatG(ξ) =

1/2ξ2 . Here we have from (7)

k2c2

ω2 = 1 −
ω2

pc

ω2 − mec
2

3Th

ω2
ph

ω2 −
ω2

pi

ω2

(
1 +

k2Ti⊥
miω2

)
, (8)

which for ω�kc yields

k2c2 + Ω2
p = −

ω2
pi

ω2

k2Ti⊥
mi

, (9)

where Ωp = (ω2
pc + ω2

pi + mec
2ω2

ph/3Th)1/2 . Equation (9) admits a purely growing
mode (ω = iγ), with the growth rate

γ =
kVT ⊥ωpi√

2(k2c2 + Ω2
p)1/2

. (10)

The threshold is
Ti⊥
Ti‖

�
(k2c2 + Ω2

p)
ω2

pi

. (11)

Second, consider the limit |ξ|�1, so thatW (ξ) = −1− i
√

πξ. Here (8) with ω�kc
yields

1 +
ω2

pi

(k2c2 + Ω2
p)

[
1 − Ti⊥

Ti‖

(
1 + i

√
π

ω

kVT ‖

)]
= 0, (12)

which admits a purely growing solution, with the growth rate

γ =
kVT ‖√

π

Ti‖

Ti⊥

[
Ti⊥
Ti‖

− 1 −
(k2c2 + Ω2

p)
ω2

pi

]
, (13)

provided that

Ti⊥
Ti‖

> 1 +
(k2c2 + Ω2

p)
ω2

pi

. (14)

In summary, we have shown the existence of purely growing electromagnetic
instabilities in a plasma with cold electrons, relativistically hot electrons and non-
relativistic bi-Maxwellian protons. It is found that the free energy in proton-
temperature anisotropy drives purely growing magnetic fields. Proton-anisotropy-
driven instabilities may saturate when the gyrofrequency in the saturated magnetic
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field Bs is comparable to the growth rate of instabilities. The saturated magnetic
field can be associated with a large-scale magnetic field which may coexist with cold
electrons, relativistically hot electrons and protons having a bi-Maxwellian distri-
bution function. Such a scenario might occur in intense laser-plasma interaction
experiments [8] and in astrophysical environments [22]. Finally, we note that the
present investigation can be readily generalized for multi-component plasmas with
a relativistic bi-Maxwellian proton distribution function. Here we should follow
the analysis of Yoon [14] and Mart’yanov et al. [25] for investigating relativistic
proton-anisotropy-driven magnetic fields in plasmas.
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