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Abstract. The existence of transversal ejection-collision orbits in the restricted
three-body problem is shown to imply, via the KAM theorem, the existence, for
certain intervals of (large) values of the Jacobi constant, of an uncountable number
of invariant punctured tori in the corresponding (non-compact) energy surface. The
proof is based on a comparison between Levi-Civita and McGehee regularizing
variables. That these transversal ejection-collision orbits do actually exist was proved
in [5] in the case where one of the primaries has a small mass and the zero-mass
body revolves around the other (and for all values of the Jacobi constant compatible
with the existence of three connected components for the Hill region); it is proved
here without any restriction on the masses, well in the spirit of Cbnley’s thesis [3].

Part of our setting and notations are collected in figure 1; they are essentially those
of [2], [3] and [5].

The position of the zero-mass body in the moving frame is given by the complex
number x; in the variables x, y = dx/dt+ iwx, (one half of) the Jacobi constant
becomes

H(x,y) =yl +i(xy —xp) = 2v/|x| = 2p/|x + 1] = p(x + 2) + 21,
and Newton’s equations read
dx/dt=9H /sy, dy/dt=—-0H/ox.

{We have used the usual normalization G =1, g+ » =1, which implies w =1, and
chosen the same constant 2u as Conley.)

The value —1/¢* of H (which is taken large and negative) defines our main
parameter &. If € is small enough, there are three Hill regions and we shall suppose
(as Conley does) that the zero-mass body rotates around the primary of mass ».

Notice that the limit situation £ =0 corresponds to a collision.t Fixing &, we
regularize this collision (as Conley did) using Levi-Civita variables

x=22%, y=w/ez, dt=2¢|x|dt

+ For a general view of collision problems see [6].
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and get the new equations (in R*=C?)
dz/dt'=9K /ow, dw/dt'=-9K/3z,
K(z, w)={1+2ie(Zw— zw)}|z|*+|w| - ve’ — ne’g(2),

g(2) =2|z[{1/122°+ 1| = 1+ 22+ (2)*} = [z{2]=z[*+ 3(z* + (2)) + O([2[*)}.
These new equations have the following property: the energy surface K =0 is close
to (and diffeomorphic to) the 3-sphere |z|*+|w|* = ve’; if we restrict the Levi-Civita
mapping (z, w) > (x, y) to the complement (diffeomorphic to an open solid torus)
of the ‘circle’ z =0, we get an orbit preserving twofold covering of the energy surface
H =—-1/¢* of the restricted three-body problem.

The structure of K is nice enough. If one keeps only the leading (quadratic)
terms, the linear flow one obtains (Hopf flow) is, up to the twofold covering, the
usual regularization of the two-body problem by the geodesic flow on the round
2-sphere ([2], [7]). If one forgets only the last term ue’g(z) (which is of order 6
in z), one obtains the still integrable two-body problem in a rotating frame: the
complement in the energy surface of two linked periodic orbits (corresponding to
the direct and retrograde circular motions having the given value of the Jacobi
integral) is foliated by invariant tori parametrized by the angular momentum. The
‘middle’ torus, corresponding to zero angular momentum, contains the ‘circle’ z=0
and each integral curve lying on this torus is made up of ejection-collision orbits
(figure 2).
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FIGURE 2

When the perturbation we’g(z) is added, the two periodic orbits associated to
circular movements continue to exist [3]: they now correspond to quasi-circular
direct and retrograde motions of the zero-mass body in the rotating frame. As in
[3], one can take these orbits as the boundary of an annulus of section; moreover,
one can choose this annulus so as to contain the ‘circle’ z =0 (figure 3; also compare
with [1]). Our results will be stated in terms of the Poincaré first return map P. on
such an annulus A.

FIGURE 3

THEOREM 1. If uv # 0 and ¢ is small enough, the intersection of the ‘circle’ z =0 with
its image under P, consists of exactly eight transversal points.

THEOREM 2. If uv # 0, in any neighbourhood of € =0 in R™, there exists an interval
of values of € such that the ‘circle’ z =0 intersects an uncountable number of invariant
curves of P,, each in a finite number of points. Moreover, in each of these intervals
there are at least two values of & such that the ‘circle’ z =0 contains a pair of points
a, P.(a) belonging to the same invariant curve of P,.
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The interpretation of theorem 2 is clearly that, for a certain set of large values of
Jacobi constant, the original problem admits invariant punctured tori which can
even contain ejection-collision orbits (see figure 8).

Proof of theorem 1. We blow up z =0 by choosing polar coordinates in a transversal
section:
z=¢re®, x=v+iu=rw/z, dr'=rdt".

This amounts to adding a 2-torus boundary to the complementary open torus and
leads naturally to McGehee-like coordinates (compare with [5]); the transformed
equations read

dr/dt"=rv,

do/dt"=u—2¢r,

du/dt" = —uv+u Im {7(5g/87)},

dv/dt"=u*—r*+4us®r*+ u Re {2(3g/9%)},
with the integral

(1/)K =u’+v°—v+r’—4&°r*u— ug(z),
so that the compactified energy surface corresponding to H = —1/¢? becomes the
solid torus of equation
w+vi=sw

As we could guess, the flow on and near the boundary (the collision manifold)

is qualitatively the same as in the McGehee regularization of the Kepler problem

([4], [5]); it is depicted in figure 4, which shows the two circles of equilibria C,
and C_ on the torus u’+ v’ = v and their asymptotic trajectories W, and W_.

w_
v - CL

W, G e

FIGURE 4

The assertion of theorem 1 is obviously equivalent to the existence of eight ‘simple’
transversal ejection-collision orbits, i.e. orbits going ‘directly’ (without following
part of the boundary torus) from one circle of equilibria to the other, along which
W, and W_ intersect transversally. Without the perturbation coming from the terms
pe’g(z), we get an integrable situation in which trajectories of this kind generate
an annulus W, = W_ bordered by the circles of equilibria; in the Levi-Civita
variables, the union of this annulus with the ‘circle’ z=0 is nothing but the
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zero-angular-momentum invariant torus, and the corresponding first return map P,
leaves z = 0 invariant. The proof of theorem 1 will be obtained by perturbation from
the even simpler integrable case € =0, for which we easily compute explicitly the
solutions belonging to W, = W_. Indeed, because of the integral u>+ v>—v+r>=0,
the restriction of the system to W, = W_, whose equation is then u =0, can be written
dr/dt"=ry, de/dt"=0, dv/dt"=v>—v,
and the solution with initial conditions
u,(0) =0, 05(0) =0, ro(0) =V, 60(0) = 6,
is seen to be
ro(1") = (Vv)/cosh (Vut"),  0o(t")=0o,  uo(t")=0,
vo(t") = —Vv tanh (Vwt").

When £ >0, we call r,, 8., u,, v., the unique solution in W, defined by 6,(0) = 6,,
v.(0) =0. Such a solution is well defined and unique because, for ¢ small enough,
the part of W, in the region v=0 intersects transversally the annulus v =0 along
a curve u = ¢(8), ||¢|lo= O(e). By an argument similar to that of [8], one sees that
this solution approximates uniformly the former one on the whole interval of time
[0, +oof:

re(t") =ro(t") +e°n (1) + O(e™),
0.(1") = Bo(1") + £°0,(1") + O("*),
u (1) = uo(t") + £°u (") + O(e°™"),
v (1") = vo(t") + £ %0, (1) + O(e™),
where the O are uniform, 6,(0) =0, v,(0) =0 and, when "> +00,
lim ry (") =1lim u,(¢") =lim v,(¢") = 0.

In the sequel it will be simpler to work with the new time s =+/vt"; the derivative
with respect to s will be denoted by " and the same notation r,,..., will be used
when these functions are considered as functions of s.

One first notices that ¢ must be at least 6 in order to have u, #0, otherwise
du,/dt" = —vyu,, i.e. u, = (tanh s)u, or u, =y cosh s, where the constant y must be
zero if u, is to have limit 0 at s > +00. Now, with ¢ =6, one gets

du,/dt" = —vou, +[(un/e°) Im {2(3g/32)}. o,
ie.
u, = (tanh s)u, —12(/Vv)(r,)® sin 46,.

Finally, as u, >0 when s » +00,

U = 12M(V)5/2(J (1/cosh’ x) dx) sin 46, cosh s.

From this we conclude that the intersection with the annulus v =0 of the part of
W, below it is the graph of a function 8+ u = ¢(8), where

&(0)= 12;;,(V)5/2(J B (1/cosh” x) dx) e®sin 40+ O(&").
1]
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Using the invariance of our equations under the transformation
(0’ r’ u’ v’ t”)H(_o’ r’ u’ _v’ _t”)’
we get that the intersection of the same annulus v =0 with the part of W_ above it

is nothing but the graph of 68— ¢(—8). .
As the intersection of these two curves is obviously composed (for £ small enough)

of eight transversal points, the conclusion follows (figure 5). 0
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FIGURE 5. u>0.

Remarks. (i) Because of the twofold covering involved in the Levi-Civita variables,
these eight points correspond to only four points in the McGehee compactification
of the original problem which appears in [5] (invariance of the equations under
0->0+7).

(ii) The annulus v =0, which plays such a prominent role in this proof, is closely
related to the annulus A. Indeed, if we set (see [2] and [3])

L=wtifz, &L=w+ifz, fP=1+2ie(Gw—2zW),

we get
v=[1/(el&s - &N Im (£6),  u=[1/(2¢|& - EDI(&L - &)

In particular, v = 0is equivalent to Arg £, + Arg & = 0(mod 7); but the same equation
mod 2w, which corresponds to v =0, |u|=+7/2, is just the annulus A when u =0
and is very close to the actual annulus A in the general case (see [2] and [3]).

Finally, u = 0 is equivalent to |£,]> — |£&|* = 0, which is of course the zero-momentum
invariant torus in the case w = 0. So, in this case, W, = W_ has the equation u =0,
happily compatible with our calculations.

We have depicted in figure 6 the (integrable) flow when u =0.

(iii) Finiteness in theorem 1 already follows from analyticity; indeed, it is not
difficult to prove that P, is real analytic up to the boundary for the differential
structure on the annulus which comes from its embedding in the energy sphere. On
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FIGURE 6. u =0. A is bounded by the direct (D) and retrograde (R) circular periodic orbits.

each component of the boundary it is even analytically conjugate to a rotation
whose angle can be simply deduced from the derivative at its fixed point of the
return map defined by the corresponding periodic orbit on a transversal section.

We now come to the proof of theorem 2. In a course [2] based on Conley’s thesis,
the first author computed a truncated normal form of the Poincaré return map on
the annulus A in coordinates ¢, p which identifies A to a subannulus of (R/Z) xR
whose boundaries are approximately given by [p|=1:

P, p)={d+1-ve’/2-3(1~p/NV’°p+ O("), p+ O(e")};

in these coordinates the ‘circle’ z =0 appears as the graph of {:R/Z - R whose C°
norm ||{[lo is O(&?).
Remark 1. Though very natural, the coordinates ¢, p are analytic in the interior
but not differentiable up to the boundary; this will cause no trouble in the sequel.

Remark 2. Theoretically, a normal form of P, could be pushed further on, but we
did explicit calculations only to this order, which is enough for what follows.

Let us fix 0> 0 and B =0; there certainly exists (an uncountable number of) ¢,

such that
(i) 0<e,<gy/2,
(ii) Vp/a.  |(v/2)())’=3-p/ql=[3(1 - u/$)v*(£,)%)/ g7~

If € belongs to the interval [£}, £]] defined by
—(v/2) ~(1~p /v e’ = —(v/2)(&,)* = ~(¥/2) &>+ (1 — ./ 4) V£,
we set p =r; + o, where r, = r|(¢) is defined by
—(v/)e* -1~ p/4) v e’r, = —(v/2)(&,)%;
notice that |r,|=3. In the new variables (¢, o), the return map becomes
P.(¢,0)={¢+1~(¥/2)(e,)’ 31— u/4)v’e®a+ O(¢"), o+ O(e")}
and is certainly defined for |o|<}.

We recall now the statement of the invariant curve theorem in a form essentially
given in {9].
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THEOREM. Let0<y=1,C >0, B =0 be threereal numbers, w a real number satisfying
1

Vp/q, lo—p/q|=yC/|q|*?, and F a real analytic embedding of (R/Z)x[~1,1] into
(R/Z) xR,
F(¢’ 0) = {¢ to+ 70.+ yq)1(¢, U'), o+ 7¢2(¢’ 0.)}'

Suppose that F has the ‘intersection property’ (i.e. any embedded closed curve going
around the annulus must intersect its image under F) and consider a neighbourhood
A ={(¢,0),|Im¢p|=a,oce A} of (R/IZ)x[-3,5] in (C/Z)xC on which the complex
extension of F is defined. For each 7> 0 there is a >0 depending on C, B, 4 but
not on v, such that, if the C° norms on o of ®, and @, satisfy | D, ||+ || P2l <8,
there exists a unique real analytic function  :R/Z > [}, §] whose graph is an invariant
curve of F on which F is analytically conjugate to the rotation ¢ > ¢ +w, and such
that ||yllo<n (|| llo is the C° norm).

In the case where F = P,, one has (after the replacement of ¢ by —¢)

w==31+t/2)(&))’, y=31-p/4)ve"
¢i(¢, 0)=£Ai(¢’ g, 8), l=1’ 2,
where A, and A, are bounded on a certain complex domain & independently of «.

Now recall that P, is a homeomorphism onto itself of a closed annulus A
containing (R/Z) x [—3, 3] in its interior and that, because of its Hamiltonian origin,
it preserves a measure which gives a non-zero weight to every open set: obviously
this implies the ‘intersection property’.

So the theorem applies with, say, 7 =g as soon as £||A,||, < 8, which is obviously
realized if € is small enough.

Finally, if we allow ¢ to go through its allowed interval [}, £7] of length O[(&,)*]
centred on &,, we obtain a function 2, =r,(¢) + ¢,, depending continuously on &
(this is a consequence of unicity in the theorem), whose graph (in coordinates ¢,
p) is invariant under P,, and such that

fors:e,la 2522_%=%,
fore =¢7, ZES—§+%=-%.

The conclusion of theorem 1 now makes clear the existence of a set of values of
g, containing at least a subinterval of [£], €], for which the graph of X, intersects
the ‘circle’ z =0 (figure 7). As for theorem 1, the finiteness assertion comes from
analyticity.

The last statement in theorem 2 comes from the following.

LeMMA. Given (1) two closed curves ‘going around’ an annulus, depending con-
tinuously on a parameter and crossing each other as above, (2) a family of homeomorph-
isms of one of the curves onto itself depending on the same parameter, there exist at
least two values of the parameter for which two intersection points of the curves are
images of one another under the homeomorphism.

Proof. In the annulus of coordinates ¢, ¢ (¢ parametrizes the curve on which the
homeomorphism is defined), the set of intersection points (for all values of ¢) has
the homology of a circle £ =constant. The conclusion comes from the (obvious)
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FIGURE 7

existence of at least two points of intersection of this set with its image under the
homeomorphism (¢, €) > (f.(®), ), where £, is the given family of homeomorph-
isms. O

Final comments. (1) As was pointed out to us by C. Simo, it is easy to see that if
in the Hamiltonian K we replace g(z) by |z]*{2|z|*+3(z*+(2)*)}, and u and v by
1, we get the so-called Hill’s problem. Since only this part of the Taylor expansion
of g is used in our proofs, our results are also valid for Hill’s problem.

(2) Itis noticeable that the complicated dynamics we get in the rotating plane is
still perfectly compatible with complete integrability and reflects only the relative
position of the ‘circle’ z = 0 with respect to eventual invariant tori in the Levi-Civita
3-sphere. Figure 8, drawn in the McGehee solid torus (up to a linear change of

Two circles ‘at infinity’ (i.e. on the collision manifold);
their complement is homeomorphic to (T?—2 points)

FIGURE 8. This figure corresponds to a case where z =0 would intersect transversally in two points an
invariant torus of the system in the 3-sphere of Levi-Civita; we have represented an ejection trajectory.
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coordinates), is supposed to make this clear. On the other hand, it could happen
that z = 0 lies in a domain of instability. What features of the dynamics in the moving
frame could detect this are still unclear.
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