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Introduction

Let y{G) denote the lattice of all subgroups of a group G. By an
^-isomorphism (lattice isomorphism) of G onto a group H, we mean an
isomorphism of £f(G) onto £?{H). By an JV £P-isomorphism (normaliser
preserving .^-isomorphism) of G onto H, we mean an ^-isomorphism if> such
that JV'(A*) = JV\A)* for all A e^(G). In this paper, we study certain
properties of groups which remain invariant under .^.Sf-isomorphisms.

In § 1, we show that JT^-isomorphisms can be characterised both
as commutator preserving ̂ -isomorphisms and as mixed commutator preserving
•^-isomorphisms. This result is closely related to recent work of Spring [11]
on ^-isomorphisms between finite ^-groups of exponent p. Spring proved,
amongst other things, that every 3?-isomorphism between such groups is
an Jf&-isomorphism and that j2?-isomorphic ^-generator ^-groups of
exponent p and class 2 are necessarily isomorphic if k 52 4. We give a simple
derivation of Spring's first result and of an analogous one of Pekelis [7]
for locally nilpotent, torsion-free groups.

Rottlander [9] has given an example of an ^"^-isomorphism between
non-isomorphic finite groups of the same order. In § 2, we give examples
of the same phenomenon between finite ^-groups x {p > 2). The groups
in the simplest examples are of order pl, exponent p2 and class 3 (p > 3),
and there are somewhat more complicated examples in which the groups
have exponent p (p > 5).

Theorem 2 (§ 4) deals with the effect of an ^K2f-isomorphism
<f> : y{G) -> y(H) on the central sections of G. (A section of G means a
factor group AjB, where B < A 5j G. The section is called central if B < G
and AjB -^ &[GIB).) A typical case of the theorem states that if the
restriction of </> to the factor commutator group GjG' is induced by an

1 It may be mentioned that the well known ^-isomorphisms between non-isomorphic
modular ^-groups are not ./T-if-isomorphisms. Indeed, it can be deduced from Iwasawa's
work ([4], [5]) that ./T-Sf-isomorphic locally finite, modular ^-groups (and in particular
•SP-isomorphic abelian ^-groups) are necessarily isomorphic.
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isomorphism, then the same is true for the restriction of <f> to every factor
group G(l)/G(i+1) of the descending central series. The proof uses the calculus
of commutators and a general lemma (lemma 2, § 3) about multilinear
mappings. This lemma is a wide generalisation of the fact that bilinear
forms f(x, y), g(x, y) which vanish for the same pairs of vectors x, y are
scalar multiples of one another.

Theorem 2 is applied to prove that, in certain cases, •/f.Sf-isomorphic
groups must be isomorphic. Theorem 3 affirms 2 that this is so when the
groups belong to a nilpotent variety V and one of them is an almost free
group of V. Here, an almost free group of V means a factor group FjM,
where F is a free group of V and M is properly contained in the penultimate
member of the descending central series of F.

A consequence of theorem 3 is that (contrary to Spring's 3 assertion)
£f -isomorphic ^-generator />-groups of exponent p and class 2 are necessarily
isomorphic, whatever the value of k. The examples cited above show that
this result does not generalise to groups of exponent p and class > 2.

Because of the analogy between commutators in nilpotent groups and
products in nilpotent Lie algebras4, analogous theorems about lattice
isomorphisms between nilpotent Lie algebras are to be expected. Let ^
be a commutative ring with 1 and L a Lie algebra over !F. We denote by
Sf(L) the lattice of subalgebras of L. By an .^-isomorphism of L onto
a Lie algebra M over the same ring &', we mean an isomorphism of &(L)
onto H?(M). We shall merely state the principal results for Lie algebras
during the course of the paper, indicating points at which the proofs differ
significantly from those for groups.

Notation. Let *, y, xx, x2, • • • be elements of a group G. <a;lf x2, • • •>
denotes the subgroup generated by xx, x2, • • •. [x1, x2, • • -, xn] is the simple
M-fold commutator defined inductively by: [x, y] = x^y^xy, [xlt • • •, xn] =
[ > i , • • •. * _ i ] , *.] (» ^ 3).

Let X, Y, Xlt X2, • • • be subgroups of G. X ^ Y (X < Y) means
that A' is a subgroup (normal subgroup) of Y; X < Y (X < Y) excludes
equality. J^G{X) (or Jf{X) if no confusion can arise) is the normaliser of
X in G. <Z1( X2, • • •> or Xx u X2 u • • • denotes the subgroup generated
by X1,X2,---. [XltXa,--;Xn] is the simple »-fold commutator
defined inductively by: [X, Y] = <[*, y]\xeX,ye Y>, [ I , , • • -, Xn] =

] (n ^ 3).

w ^ G(2) ^ • • • denotes the descending central series of G.
G' = G(2) = [G, G] is the commutator group of G. <P(G) is the Frattini

1 A similar result for free polynilpotent groups has been given by Smel'kin [10] (theorem
10).

• Spring [11] cites a 5-generator counterexample without carrying through the proof.
4 See G. Higman [3], M. Lazard [6].

https://doi.org/10.1017/S1446788700025295 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025295


456 D. W. Barnes and G. E. Wall [3]

subgroup, 3?(G) the centre, of G. Gm denotes the subgroup generated by
the w-th powers of the elements of G.

Homomorphisms <f>, ip • • • of groups or lattices will be written ex-
ponentially: x** = (a;*)*'. If <f>: G -*• H is a (group) epimorphism and BjA
a section of G, the equations (xA)*' = (xA)* (x e B) define an epimorphism
<f>' : B\A -> B*jA*\ similarly, if y is an ^.Sf-isomorphism of F onto H,
the equations {XjA)*' = X*\A* (X/A eSC(B/A)) define an Jf2-iso-
morphism y>' of BjA onto B^jA^. It is convenient to call <f>', %p' the restrictions
of <f>, y> to BjA. We say that an JS?-isomorphism y> of G onto /f is induced
by an isomorphism if there exists a group isomorphism <£ : G -*• H such
that X* = X* whenever I e J ? ( G ) .

1. ./fCSP-isomorphisms

An .^-isomorphism <f>: &(G) -*• 3?(H) is called
(a) normaliser preserving if JV(A)* =JV{A*) for all A ^ G,
(b) commutator preserving if (A')* = {A*)' for all A ^ G,
(c) mixed commutator preserving if [A, J5]«* = [A*, B*] for all

A.B^G.

THEOREM 1. The properties (a), (b), (c) of an ^-isomorphism are all
equivalent.

PROOF, (a) => (b). If i ' ^ B ^ i g G , then Jf(B) > A and so
Jf{B)* =Jr(B)* ^A*. Thus every subgroup of A*HA')+ is normal.
Hence A^KA')* is abelian, or A*j(A')* has a subgroup isomorphic to the
quaternion group, which is impossible since the latter is not JS?-isomorphic
to an abelian group. Therefore (A1)* ^ (A*)'. Similarly

and so, by applying <f> to this we have {A*)' ^ (A')*. Hence {A')* = (A*)'.
(b) => (c). Since

[A, B] = u { [ X , Y]\X ^A,Y ^B,X,Y c y c l i c } ,

it is sufficient to consider the case A, B cyclic. But if A, B are cyclic, the
formula

shows that [̂ 1, S] < 4 u B a n d thus that [^, S] = (A u B)'.
(c) =>• (a). B ^JV{A) if and only if [A, B] ^ A.

COROLLARY 1. JVJ?-isomorphisms preserve central and derived series (and
thus solubility, derived length, nilpotency, class of nilpotency, etc.).
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The next corollary is a known result, due to Pekelis [7] in the torsion-
free case and to Spring [11] in the prime exponent case. Our theorem gives
a simple unified proof.

COROLLARY 2. Let G be a locally nilpotent group, and <f> an ^-isomorphism
of G onto a group H. If

. . either (a) G is torsion-free
* or (b) G has prime exponent p and is non-abelian

then <f> is an ~W£?-isomorphism.

PROOF. By the proof of the theorem, it is sufficient to show that
(AT)* = (M*)' for each 2-generator subgroup M of G. Notice that M is
nilpotent. Set N = M*.

Suppose first that G has exponent p. Then M is a finite /i-group.
Hence, if M is non-abelian, N must be a ^-group (Suzuki [12], thm. 12,
p. 12). The same conclusion holds when M is abelian for M is contained
in a non-abelian finitely generated subgroup of G. It is clear that N is
finite and has exponent p. Hence (AT)* = (#(M))* = <P(N) = N'.

Suppose secondly that G is torsion-free. Then H is torsion-free.
A torsion-free group is abelian if and only if its subgroup lattice is
modular (Suzuki [12], prop. 1.12, p. 19). Thus &(M)* = &(N). Let
1 < ^i(M) < • • • < &C(M) = M be the ascending central series of M.
Since the factor groups Mj&^M) are torsion-free the same argument
shows that S^M)* = &i(N) for all i. In particular, N = &e(N) whence
H is nilpotent.

If M is abelian, then N is also abelian because &(M) = S"(iV); in
this case, (AT)* = N' = 1. If M is non-abelian, then MI&C_2{M) is also
non-abelian and so M\2£e_x (M) is not cyclic. On the other hand, M\Zt_x (Af)
is torsion-free and a homomorphic image of the 2-generator group MjM'.
Hence M' = ST^M). Similarly N' = ^^(N). Hence (M')*=N', as
required.

The following inductive principle is useful for the construction of
f-isomorphisms.

LEMMA 1. Let G, H be finite5 groups and x a mapping of Jif{G) into
Then a is an ^V'££'-isomorphism if and only if

(i) a maps the interval of ^f(G) with end points &{G), G lattice-isomor-
phically onto the interval of J?(H) with end points <P{H), H;

(ii) for each maximal subgroup M of G, the restriction of a to Jj?(M)
is an ^^-isomorphism of M onto M";

(iii) (G')a = H'.

• It is sufficient to assume that each subgroup of G, H is contained in a maximal subgroup.
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PROOF. The conditions are clearly necessary. Let us prove that they
are sufficient.

(a) a is surjective. Let A e £C{H). If A = H, then A = G" by (i).
If A < H, let B be a maximal subgroup of H containing A. By (i), B = C*
for some maximal subgroup C of G. Then, by (ii), A = D* for some

(b) « is injective. Suppose ^4a = Ba, where .4, B eSC(G). We may
assume that .4 < G. Let C be a maximal subgroup of G containing A.
By (ii) and (i), A* ^ C < G" = # . Since Ba = ^", B < G. Let D be a
maximal subgroup of G containing B. By (ii), Ba ^ D', so that
S" ^ C" n Z>\ By (i), Ca n D* = (C n D)* and so B « ^ ( C n D)a. By
(ii) (applied to SC{D)), B^C n D. By (ii) (applied to Sf(Q), B = A.

(c) a t's an ̂ -isomorphism. It is sufficient to show that A ^B-e>A*^B"
for .4, Be^(G). Since a""1 exists (by (a), (b)) and clearly satisfies the
conditions of the theorem, it is sufficient to show that A fS B =*• A" ^ Ba.
If B = G, then 4* ^ tf = Ba. If J5 < G, let C be a maximal subgroup of
G containing B. Then A" ^ S a by (ii) applied to &{C).

(d) « is an Jf<£'-isomorphism. By theorem 1, it suffices to prove that
{A')* = (A')' for A e SC{G). If A = G, this follows from (iii). If ^ < G,
let 5 be a maximal subgroup of G containing A. Then (A1)' = (A*)' by
theorem 1 and (ii) applied to &(B).

The following is the analogue of theorem 1 for Lie algebras.

THEOREM 1'. Let L, M be Lie algebras over the same principal domain
R. Let <f>: &(L) -+ £f{M) be an isomorphism of the lattice jSf (L) of all sub-
algebras of L onto J?(M). Then the following are equivalent:

(a) Jf(A)* = JT{A*) for all subalgebras A^L,
(b) (A')* = (A*)' for all A^ L.

PROOF, (a) => (b). This follows as in theorem 1 once we have proved:
if every subalgebra of L is an ideal, then L is abelian.

To prove this, let a,beL. Then a, b belong to an i?-submodule
Rxx ® Rx2 © • • • © Rxn. Each Rxf is a subalgebra of L and is therefore
an ideal. For i ^ /, xtxs e Rxf n Rx, = 0. Thus

(W+• • •+<xnxn)(plx1+• • •+pnxn) = 0 for all a,.,/?,.efl

and in particular, ab = 0.
(b) => (a). This is obvious because, for A ^ L, xeL,

COROLLARY 1'. Jf£6'-isomorphisms of Lie algebras preserve central and
derived series.
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COROLLARY 2'. Let L, M be nilpotent Lie algebras over a field. Then
every <?-isomorphism </>: SC(L) ->• 3P(M) is Jf£e.

There is no equivalent for Lie algebras of part (c) of theorem 1, for
(Rx u Ry)' does not in general coincide with Rxy (x, y e L). In corollary 2',
it is essential to assume both algebras nilpotent, as it is possible for a nil-
potent algebra to be ^-isomorphic to a non-nilpotent algebra (for example,
the two 2-dimensional Lie algebras are .Sf-isomorphic).

2. ./Ti^-isomorphisms between non-isomorphic p-groups

Let p be a prime > 2. We give examples of ̂ T^f-isomorphisms between
non-isomorphic finite ^-groups. By means of Lazard's theory [6], these
examples can be turned into examples of the same phenomenon for Lie
rings; and when the groups have exponent p the Lie rings become Lie
algebras over the field of p elements.

Wiman [13] and Blackburn8 [2] have determined those ^-groups of
maximal class 7 which contain an abelian subgroup of index p. Such a
group G, of order pn (n 2: 3), is isomorphic to an abstract group An(y, <5)
defined by generators s, s^ s2, • • • and relations

LSi> SJ — S i+1 V = x» *n — S B + 1 — — '•)•

[Si. S,] = 1, (i, / ^ 1),

s" = s * _ , ,

•) . . . c — i (i > 2̂

(2.1)

SetBn(y) = ^4n(y,0).Then Bn(y) s Bn{y') if and only if the congruence
yXn-» = y> (mo(i p) Qas a solution x^O (mod p) (Blackburn, I.e.). On the
other hand, we now prove that if (a) yy' =£ 0 (mod p) and (b) when p = n— 1,
(y— l)(y' — 1 ) ^ 0 (mod p), then there exists an ~Y'&'-isomorphism of Bn(y)
onto Bn(y').

Since the result is trivial for n = 3, we assume n ^ 4. Let s, s^ • • •
and s', si, • • • be the generators of G = Bn(y) and H = Bn{y') respectively.
Choose an integer k such that y = ky' (mod p). Then the maximal sub-
groups of G, H are

1

and
• The reader is referred to section 4 of Blackburn's paper for the properties of maximal

class groups used here.
' The idea of looking at maximal class groups for examples was suggested to us by

J. L. Alperin.
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Hv = <s,, s2, • • •, sn_x>.

For X <p, the generators a = ss%, at = s2, • • •, an_2 = sn_t of Gx,
and the generators a' = s's?*, a[ — s2, • • •, a'n_2 = s'n_t of Hx, satisfy the
defining relations for ^4B_i(0, Xy). Hence there is an isomorphism

such that {ssi)"* = s's'^, s°{* = s4 ( 2 ^ t g » - l ) .
Gv is an abelian group whose defining relations are the last two

lines of (2.1). Hv is an abelian group with the same defining relations,
except that y' replaces y. We show that Hp = <sf, s2 • • •, ŝ ,_1>, where
(S*)"S2<*)'"' s'p — s'n~\- It will follow that there is an isomorphism

such that si' = sf, s"» = s'{ (2 ̂  i <: n—l).
For p > n— 1, the defining relations of HP reduce to s'f — s^,

s'f" = 1 (t ^ 2). In this case we may take sf = sj*, since s*p — s'*" = s'^-i, =
s^Li- For p = n—l, the defining relations are the same, except that
si* = s|,(Zi~1!. A similar choice of s* is possible by our assumption (b).
Finally, if p< n~\, then s ' ^ s ^ • • • s'n»_2 = s'-\ so that s'^ = a',
where a e <Sj, • • •, s'^}. We may therefore take sj = s'1o

y-y'.
We now define a mapping a : J? (G) -*• y{H) by:

K* = K"» if K £ G^ ( 0 ^ / i ^ p).

Since the isomorphisms a^ all agree on <s2, • • •, $„_!>, the definition is
unambiguous. All the conditions of lemma 1 are satisfied, so that a is an
^V ̂ "-isomorphism.

The simplest examples of non-isomorphic, ./•f jS?-isomorphic pairs
provided by our results are:

for p > 3, the groups Bt(l), B^k) of order p*. where k is a non-
quadratic residue (mod p);

for p = 3, the groups BB(l), B 6 ( - l ) of order 3s.
The groups in the above examples have exponent pk > p. We now

give examples of ^TjSP-isomorphisms between non-isomorphic groups of
exponent p. The groups in question are again groups of maximal class.

Let n be an integer, and p a prime, such that 8 ̂  n 5S p. Let Cn(e)
denote the group of order p" with generators s, slt s2, • • • and defining
relations
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[so s] = si+1 (i ^ 1; sn = sn+1 = • • • = 1),

[s,, s j = sf+8 (* ^ 2),

[«„ Si] = 1 (.-, / ^ 2),

Since Cn(e) is generated by s, st of order p and has class »—1 < £, it is
a group of exponent p. We prove that G = Cn(l), H = Cn(— 1) are JfSP-
isomorphic but not isomorphic.

We take the generators of G to be s, st, s2, • • • and those of H to be
s, Si, s2, • • •, so that the subgroup <(s, s2, • • •,> of order pn~~l is common
to both. Set V = 0{G) = <P(H) = <s2, • • •>. Then, denoting the endo-
morphisms v -*• v'-1, v -*• v'1'1, v -> v'*-1 of V by a, a1,a'1, we have

0 » - 2 = 0, <7n-3 ^ 0 , ^ = — a'x = ff2.

Using these facts, it is easy to see that an ^"^"-isomorphism a of G onto
H is defined as follows:

if K ^ V, K' = # ;
if L = i f n F < K < G , then K has the form

<.ss$t,L} or (s^.Ly (teV)

and we take

Ka = <ssiA*, L> or <s^, L>.

Suppose now that there exists an isomorphism 0 : G -*• H. If
seV = s"s/F, s*F = si'si'F, and if o> is the restriction of 0 to F, then

„«,.« = „.«_ ^̂  = „«,« for „ 6 v,
so that

Hence

Comparing coefficients of a, a2, cr3, a4, a5 on both sides (this is permissible
as an~3 p£ 0 and n ^ 8), and using the fact that wb—fiy pi 0 (mod p), we
get in succession the following congruences (mod p):
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On simplification, the second and third lines yield 7a2 = 1 and oc2 = 1,
giving the contradiction 7 = 1 . Thus 8 G ̂  H.

3. A lemma on multilinear mappings

The following lemma plays an essential part in the proof of theorem 2
in the next section.

LEMMA 2. Let Ax>- • •, At, L, M be [additive) abelian groups. Let
f{xlt • •', xt), g(xlt • •', a;,) be multilinear functions of the variables xt e Ai

(i = 1, • • -,t) with values in L, M respectively. Suppose that the values
of f, g generate L, M and that there exists an £?-isomorphism <f> of L onto M
such that

• •, *<)>* = <*(*!, • • •, xt)} (all xx, • • ; xt).

Then there exists an isomorphism a of L onto M such that

f(x1, • • -, xt)* = g(xlt • • •, xt) (all xlt • • •, xt).

Remark 1. The expected generalisation to /J-modules, R a principal
ideal domain, is valid and can be proved by the same method. E.g., when
the A ( are vector spaces over a field R and L — M = R, the generalisation
states that multilinear forms which vanish for the same values of the
variables are scalar multiples of one another.

Remark 2. The conclusion of the lemma is equivalent to the following
statement:

/(*)+/(»)H = 0 if and only if g{x)+g(y)+ • • • = 0.

(Here x denotes a row of variables xlt • • -,x, and so on.) In fact, if the
condition holds,

is a well defined 1 — 1 correspondence; it is then clearly an isomorphism.
The lemma is proved by induction on t. If t = 1, /, g are homomorphisms

of Ax onto L, M with the same kernel, so that f{x)*-+g(x) is an isomorphism

* The same conclusion holds for » = 7 provided that the congruence 7a* = 1 (mod p)
has no solution, i.e. if (7//>) ^ 1.
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between L, M. We assume now that t > 1 and that the lemma holds for
a smaller number of variables.

By remark 2, and since a given sum f{x)-\-f{y)-\- • • • involves only
finitely many values of the variables x{, yf, • • -, it is sufficient to prove
the lemma when the Ai are finitely generated. Then L, M are also finitely
generated. Hence there exists a family of subgroups (Lt) of L such that
(a) each factor group LjLt is cyclic of prime power order and (b) (").••£< = 0-
Define

(eLILt)

where M( = Lf. Then /,-, g( are multilinear mappings whose values generate
L[L(, M\Mi and </<(«)>*' = <£<(«)>, where <f>t is the restriction of <f> to
L\Li. Thus, if the lemma holds for each pair /(, g(, we have

/ ( * ) + / ( * ) + • • •eL(og(x)+g{t/)+ •••eMi

for each *. Therefore, since f|<£. = ° and f)iMi = °.

/ (*)+/(»)+ • • • = 0o g(x)+g{y)+ • • • = 0,

so that the lemma holds for /, g. Hence it is sufficient to prove the lemma
when L is cyclic of prime power order.

Suppose L cyclic of order pm. Since <f> is an ^"-isomorphism, M is cyclic
of order qm for some prime q. Now (kf (x) >* = <.f{kx1, x2, •••,)>* =
ig(kxu x2, • • •)> = <.kg(x)}, so that f(x), g(x) have the same order. Hence
q = p. We may therefore assume that L — M.

The assertion of the lemma in this case is that

(3.1) f(x) = kg(x) for all x,

where A is a fixed integer prime to p. Let rx denote the order of f(x). We
know, since g{x) also has order rn, that

f(x) = kxg{x),

where kz is prime to p. It is sufficient to prove th&t

(3.2) km = kv (mod r,) whenever rx^ry> 1.

For tfien (3.1} will bald with £ = £,, where x is such that rs has the largest
possible value.

Consider the homomorphisms a, /3 : A t ->• L defined by

Since a, ft are non-zero, the inverse images a~J^)Af) and fi~2(pAfj are
s\sbgiowps oi A, oi index p. A.n abe^ian gToup cannot be the set-theoretical
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union of two proper subgroups. Therefore we can choose a e A t such that
a $ *rl{j>A*) and a $ ̂ {pAf). Then a' $ pA\ and a" £ pA*, so that

Thus,if u and v denote the rows of variables xx, • • •,xt_x, a and ylt-", yt-i,
 a>

we have
A* = </(«)>, A? = </(«)>

and therefore

(3.3) ru^rx, rv^rv.

Let us now apply the lemma in the case t = 1 to the linear mappings
<x,x':At->L given by

a(«) = /(«!, • • •, *,_!, a), a'(a) = gfa, • • -, x^, a).

We deduce that

(3.4) *. = *. (modr.).
since ru "2:rx. Similarly

(3.5) kv = kv(modrv).

Finally, let us apply the lemma to the multilinear forms

X(zi> • • •> zt-i) = /(*i> • • % «t - i , « ) .

V(*i. • • •. zt-i) = gizi. • • •> Zt-i. «)•

We deduce that

(3.6) kn = k

where p is the smaller of ru, rv. Putting together the results (3.3) —(3.6),
we get (3.2) as required.

4. The main results

We study properties of a fixed ^T^f-isomorphism between two groups
G, H. It is convenient for this purpose to represent G, H as factor groups
of an auxiliary group F. In the applications, F will be a suitable free,
or relatively free, group.

Let <f>: SC(G) -*• -S?(.ff) be an ^^-isomorphism and X : F -*• G,
ft : F -> H epimorphisms. We say that <j> is compatible with the pair X, ft
UK** = K* for allK e &(F). When this is the case, the equations (xx)e = x>1

(x e F) clearly define an isomorphism 0 :G -»• H and <j> is the ^-isomor-
phism induced by 6.

More generally, we say that <f> is compatible with the pair X, ft on the
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section P/Q of F if K** = K* whenever Q g K <; P, i.e. if the restriction
of <f> to PXIQX maps PXJQX onto P^jQ11 and is compatible with the restrictions
X', p' of X, n to P/(?.

THEOREM 2. Let X : F ^>- G, /* : F -+ H be epimorphisms and <f>: &(G) ->
SC(H) an J'S£'-isomorphism. Let PJQi, • • •, PtIQt be central sections of F
on each of which <f> is compatible with the pair X, JX. Let

P = [Plt • • ; Pt]

Q - [0i, P . , • • •. Pt] [Pi. Qt, • • •. P J • • • [Pi, Pz, • • •, Qtl

Then PjQ is a central section of F and ^ is compatible with the pair X, fi
on P\Q.

PROOF. We prove the theorem for two sections P1/Q1, PJQz- The
theorem for t sections then follows in an obvious way by induction.

Since

[P, G] = [Px, P2,G]^ [G, Plt P,] [P2( G, P J

P\Q is a central section. Let w, v e Plt x, y e P 2 . Since PjQ ^ %{G\Q),
we have

[uv, x] = v""1^, x]v[v, x] = [M, as] [», x] (mod 0).

Similarly,
[u, xy] = [u, x][u, y] (mod Q).

Taking v e Qt and y e Q2, we deduce that the coset of Q containing [u, x]
depends only on the cosets of Qlt Q2 containing u, x. Hence

are bilinear functions of the variables uQx e P^Qi and xQ2 e P2IQ2 wit
values in PA/(?\ P/1/0/1 respectively. It is clear that the values of /, g generate

Q, P^Q11.
Now, since <f> is mixed commutator preserving and is compatible with

the pair A, ft on each of PJQlt P»IQt,
 w e have

and

<[«, *], Q>» = <[<«, ft), <«, ft)], 0)**

= <[<«. <?!>'. <*. ft)'], <?">
= <[«. * ] , <?>"•
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Thus the restriction, <f>', of <j> to PXJQX maps PXJQX onto P"JQ" and satisfies
(f(uQi> xQ2)y*' — (i(uQi- xQi)y- By lemma 1, there is an isomorphism
a : Px/Qx -> Pf/Q/1 such that f(uQlt xQ2)' = g{uQx, xQ2), i.e. ([«, x]Q)x* =
([«, *]())>'. Hence, if 0 g .ff g P, we have (KXJQX)X = (if/p") and so,
since a induces <£', (KXIQX)*' = /£>/<?<". Thus ifA* = K>, which proves the
theorem.

Notation. If ^ : £?(G) -> ^"(/f) is an -/^-isomorphism, let
fa : :S? (GU)JGU+1)) -+JiP(HU)IHu+1)) denote its restriction to the «-th factor
G{l)IQit+1) of the descending central series (i = 1, 2, • • •).

COROLLARY. Let <f>: &{G) -> SC(H) be an Jfg'-isomorphism such that
fa : &(GIG')^-&(HIH') is induced by an isomorphism 6 :GjG' - • HjH'.
Then every fa is induced by an isomorphism.

PROOF. We may of course assume G and H nilpotent. Represent G
as a factor group FjM of a free group F. Let A : F -*• F/M = G,
a.: G ->• GjG' be the canonical epimorphisms. Since F is free, the epi-
morphism XaBl : F -> HjH' can be lifted to a homomorphism /i : F -*• H
such that H'Fr = H. Since F is nilpotent, F" = H. Clearly, <f> is compatible
with the pair X, y. on FjF'. By the theorem (with all sections PflQj equal
to FJF'), </> is compatible with the pair A, /< on F(()JFii+1). Hence fa is
induced by an isomorphism.

For the proof of the next theorem we require the following technical
result.

LEMMA 3. Let F be a finite, relatively free, 2-generator p-group of class 3,
and j>\Se{F)^- JC(F) an ^^-automorphism of F. Let p* be the exponent
of F(3). Then the restriction, tp, of <f> to FIF'F"' is induced by an automorphism
of FJF'F''.

PROOF. It is not difficult to see that F has generators x, y and defining
relations of the form

a*' = y'r = z"' = M*1 = v»' = 1 (r ̂  s ^ t),

[x, u] = [y, u] = [x, v] = [y, v] = 1,

where
z = [x, y], u = [as, z], v = [y, z].

Replacing F by FjF*, we may assume that r = s = t and F' = F'F".
Let <a;>«s = (X), <y>* = <F> and write

7 = [ Z , F], £ / = [ Z , Z ] , V=[Y,Z].

Since <£ is mixed commutator preserving,

<*>* = <Z> (mod Fw), <M>*
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Now, since F ' is the direct product of 3 cyclic groups of order p*, the restric-
tion of <f> to F' is induced by an automorphism of F' (Baer [1]; cf. Suzuki
[12], p. 35). Hence

= <ym"V**>

for certain fixed integers m, n. On the other hand, if

<:*V>* = <Za'y^'> (mod F'),
then

Hence <#"«/>* = <_X"maYn"> (mod F'), and so y> is induced by the auto-
morphism afyfiF' - • X^Y^F' of F/i7 ' . This proves the lemma.

Let V be a nilpotent variety (i.e. a variety consisting of nilpotent
groups) and F a free group of V. Let c be the class of F. Then a factor
group

(3.1) G = FjM, M<FM,

will be called an almost free group of V. Notice that the class of G is c and
that GjGie) ~ FIFic) is relatively free.

THEOREM 3. Let V be a nilpotent variety, G a non-abelian almost free
group of V. Let <j> be an *Y'&'-isomorphism of G onto a member H of V. Then

PROOF. Represent G in the form (3.1) and let X : F -+ F/Af = G,
a.: F -*• GjG' be the canonical epimorphisms. Since G is non-abelian, GjG'
is relatively free and so is a (restricted) direct product of isomorphic cyclic
groups. Since G is non-cyclic, the number, k, of cyclic factors is at least 2.
Therefore G/G' ~ HjH'. Let 0 be any isomorphism of G\G' onto HjH'.
Since ffeFandffg &{H), the epimorphism Aa0 : F -»- HjH' can be
lifted to an epimorphism /i : F -*• H. Let N = ker /i.

Now, it follows from results of Baer [1] (cf. Suzuki [12], p. 35) that
either
(a) ^ : jg?(G/C) -> y(HjH') is induced by an isomorphism, or
(b) GJG' is finite and k = 2.
In case (a), we may suppose that <j>x is induced by 0, so that $ is compatible
with the pair A, n on F /F ' . By theorem 2, <£ is compatible with the pair
A, fi on each factor group F(,,/F(,+1) . Thus

(M n F(,,)F(,.+1) = (Nn F ( t , )F<m ) (» = 1, 2, • • •)

and therefore, since M < FU), M = N. Hence G z H.
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In case (b), G itself is finite. Hence G is the direct product of its Sylow
subgroups P , , • • •, Pm. Suppose Pi is a Sylow ^-subgroup. Since <j> is ~W£P
and P( is noncyclic, Pf is a prgroup. It follows that Pf, • • •, P£ are the
Sylow subgroups of If (Suzuki [12], p. 5). If Pt is abelian, it is the direct
product of 2 cyclic groups of the same order and so P , ~ Pf. It is therefore
sufficient to prove the theorem when G, H are finite (non-abelian) 2-
generator />-groups.

It is not difficult to see that, when c = 2 or 3, G and H are groups
with generators x, y and defining relations of the form

(c = 2) x*" = y*' = z*' = u = v = 1,

(c = 3) z'- = yv" = z"' = w*v = v>* = 1,

[x, «] = [y, «] = [x, v] =\y,v} = 1,

where z = [x, y], u = [x, z], v = [y, z]. Since corresponding factors
G(,)/G(i+1), Hu)/Hu+1) are ^"^f-isomorphic and so isomorphic, the indices
a, /?, y, 8 are the same for both G, H. Hence G ^ H.

Suppose finally that c ;> 4. We remark that HjHU) is a homomorphic
image of F/F(c), and that # / # e has the same order as FfFc (since
FjFic) s G/G(e) and G/G(c,, HjH(c) areJ^^f-isomorphic p-groups). Therefore
HIHU) ~ F/F(c, and so N < FU). Set K = G'G»', L = H'H*, where £'
is the exponent of FM. Let ^' : £e{G\K) -+ Se{E\L) be the restriction of
<f> to GjK. Since c ^ 4 and F/F,c) s GIGM S ^//f,c), G/G(4) and HjHU)

are relatively free groups of class 3 and the exponent of G(3)/G(4) is p' ^ pr.
By lemma 3, <f>' is induced by an isomorphism 0'. Thus, if we choose the
isomorphism 6 : GjG' -+ E\H' of the first paragraph of the proof in such
a way that 6' is the restriction of 0 to GjK, then ^ is compatible with the
pair X, n on F/F'F*'. By theorem 2 (with each P,/@,. equal to FjF'F1'),
4> is compatible with the pair X, n on F( c ) . Thus {M n FU))F{e+1) =
(N n F,C))F(C+1), i.e. M = N. Hence G ~ H. This proves the theorem.

In some cases it is unnecessary to postulate that H e V since this
follows from the existence of the ^K^-isomorphism <j>. The following is
the simplest example.

COROLLARY 1. Let V = Vty?, c) be the variety of all nilpotent groups
of class c' fg c and exponent p*' < p^. Let G be a non-abelian almost free
group of V and <f> an Jf&-isomorphism of G onto a group H. Then G ~ H.

Recalling that every ^-isomorphism of a group of prime exponent
is an ./r.^-isomorphism, we get

COROLLARY 2. Let G be a non-abelian, almost free group of V{p, c) and
<f> an <?-isomorphism of G onto a group H. Then G ~ H.

In particular:
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COROLLARY 3. Let G be a nilpotent group of class 2 and exponent p.
Let <f> be an ^-isomorphism of G onto a group H. Then G s H.

Lie rings. The analogue of theorem 2 for Lie algebras over a principal
ideal domain holds. (The arguments involving the mixed commutator
preserving property can all be rephrased in terms of the commutator
preserving property). Theorem 3 has the following analogue.

THEOREM 3'. Let V be a nilpotent variety of Lie rings, L a non-abelian
almost free ring of V. Let </> be an J/"l£'-isomorphism of L onto a member M
of V. Then L ~ M.
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