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Motivated by an interest in inciting instabilities and mixing for heat transfer enhancement
in ducts, flow in a channel with repeated wedge-shaped protrusions is considered for
various blockage ratios (wedge height to duct height), pitch (distance between wedges)
and wedge angles. The stability of the two-dimensional base flow and its dependence
on the geometric parameters is elucidated through a global linear stability analysis. A
linearly unstable two-dimensional mode was found, contrasting similar confined flow
set-ups. However, the primary instability is a three-dimensional mode manifesting as
counter-rotating streamwise vortices over the wedge tip. Analysis of the kinetic energy
budget indicates a lift-up mechanism leading to instability, with the dominant energy
gain of the global three-dimensional mode due to shear in the base flow. Structural
sensitivity and receptivity of the instability to momentum forcing identifies the core of
the instability and locations important for flow control. An endogeneity approach is used
to show that the local perturbation pressure gradient component dominates the distribution
of the local contribution to the growth rate of the linear global eigenmode in most
cases considered, despite its net contribution being identically zero. Weakly nonlinear
Stuart–Landau analysis reveals that the primary bifurcation is supercritical across all
tested geometric parameter combinations. This is consistent with the finding of low
linear transient growth amplifications at subcritical Reynolds numbers, being orders of
magnitude lower than in similar channel flow set-ups.

Key words: absolute/convective instability

1. Introduction

The power generation efficiency of magnetic confinement nuclear fusion reactors will
be strongly dependent on the effective transfer of heat from the sidewall of the reactor
chamber to the fluid flowing through the surrounding cooling blankets, as it carries the heat
from the reactor for power generation (Sukoriansky et al. 1989; Barleon, Casal & Lenhart
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1991; Smolentsev et al. 2010). The strong magnetic field required to confine plasma in
the reactor chamber inhibits the turbulence and mixing desirable for efficient heat transfer
from the duct walls into the flow. The present study draws motivation from this problem.
Even though a number of techniques to enhance the duct heat transfer rate have been
studied, including the insertion of bluff bodies for vortex generation (Frank, Barleon
& Müller 2001; Dousset & Pothérat 2008), oscillating bodies for active enhancement
(Hussam, Thompson & Sheard 2012a) and electrically generated vortices (Hamid, Hussam
& Sheard 2016), the use of surface protrusions for heat transfer enhancement has only
recently begun to receive attention (Murali, Hussam & Sheard 2021), although an
understanding of the hydrodynamic mechanisms destabilising these flows is lacking.
The literature contains many investigations into the use of surface modifications in
hydrodynamic flow through ducts (see Bhagoria, Saini & Solanki 2002; Karwa 2003;
Alam, Saini & Saini 2014 and references therein), but most have focused on the heat
transfer characteristics of high Reynolds number (Re) turbulent flows. However, in the
cooling blankets of fusion reactors, the bulk flows are generally in a steady or transitional
state (Smolentsev, Vetcha & Abdou 2013), so interest is in mechanisms promoting the
destabilisation of steady, laminar flows.

Past studies investigating hydrodynamic flow past two-dimensional surface-mounted
obstacles at low Re include Tropea & Gackstatter (1985) and Carvalho, Durst & Pereira
(1987) who focused only on the two-dimensional flow conditions. Those studies found
that, at low blockage ratios, the reattachment length for the low Re cases compared
well with high Re results. In the present study, flow in a hydrodynamic channel with
periodically repeating surface wedges is considered, as this geometry was found to
outperform rectangular steps and other geometries in terms of heat transfer efficiency
in high Re flows (Bhagoria et al. 2002). Design and control of flow in cooling blanket
ducts requires a thorough understanding of the flow dynamics focused on the steady and
transitional regimes. Due to the lack of coverage of flows in similar set-ups, this study
aims to characterise the hydrodynamic flow in a channel with repeated wedge-shaped
protrusions covering the steady and transitional regimes. Additionally, from a fundamental
perspective, understanding the onset of transition in non-parallel flows is an ongoing
area of interest and the present study adds to the existing understanding in this aspect
as well. Moreover, such a characterisation will add to our present knowledge on separating
and reattaching flows which are significant in numerous engineering applications (Larson
1959; Chilcott 1967; Alam et al. 2014).

The perpendicular front face of the wedge-shaped protrusions under investigation in
this paper presents a sudden partial obstruction similar to the well-known forward-facing
step (FFS) geometry (Stüer, Gyr & Kinzelbach 1999; Wilhelm, Härtel & Kleiser
2003; Lanzerstorfer & Kuhlmann 2012b), while the inclined rear surface may invoke
recirculating flows similar to backward-facing step (BFS) flows (Armaly et al. 1983;
Ghia, Osswald & Ghia 1989; Kaiktsis, Karniadakis & Orszag 1996; Barkley, Gomes &
Henderson 2002; Blackburn, Barkley & Sherwin 2008a). One key differentiating feature
of the present work is the streamwise-periodic repetition of the geometric feature. Flows
past BFS and FFS have been found to be extremely sensitive to incoming flow conditions
(Gartling 1990; Barkley et al. 2002; Marino & Luchini 2009; Lanzerstorfer & Kuhlmann
2012b), making a direct comparison with these geometries difficult.

Thus, for a system comprising flow through a channel with repeated wedge-shaped
protrusion, this study aims to:

(i) Characterise the long-time dynamics of hydrodynamic flow and its dependence on
the geometry of the protrusion and flow conditions by quantifying the eigenmodes
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Figure 1. Flow geometry with periodic condition enforced at the vertical boundaries x = 0 and x = lp + lw.
Flow is left to right.

causing breakdown of the two-dimensional flow using a global linear stability
analysis.

(ii) Understand the mechanisms causing the onset of primary instability via analysis of
the energetics of the perturbation.

(iii) Characterise the short-time dynamics of the flow via a transient growth analysis.
(iv) Perform an adjoint analysis to understand the sensitivity of the flow to structural

modifications and elucidate regions in the flow that are important from a flow control
perspective.

Beyond contributions in the aforementioned areas, this work lays the foundation for future
work into the magnetohydrodynamic (MHD) duct analogue.

The paper is organised and presented as follows: § 2 contains a description of the
flow set-up and discussion of the governing equations. Details of the mesh used, mesh
resolution study and validation are given in § 3. The results are discussed by starting
with a description of two-dimensional flow through the duct in § 4, where base flow
regimes, separation and reattachment characteristics and their dependence on the flow and
geometric parameters of surface protrusion are explained. Thereafter, the breakdown of the
steady two-dimensional (2-D) solutions to infinitesimally small 2-D and 3-D perturbations
is characterised in detail in § 5, following which the sensitivity of the flow to forcing
and structural modifications, and endogeneity of the leading eigenmodes are discussed
in § 6. In § 7, linear transient growth is considered. The results sections are closed by
discussion of weakly nonlinear effects on 3-D transitions in § 8. The main findings are
then summarised in the conclusions, § 9.

2. Methodology

2.1. Problem set-up
The problem set-up for the present study is shown in figure 1. The fluid is Newtonian
and incompressible with kinematic viscosity ν and density ρ. Dimensionless geometric
parameters associated with the flow set-up are: blockage ratio β = hw/2L, where hw and
2L are the wedge and duct height, respectively, pitch γ = lp/L, where lp is the distance
between the wedges and wedge angle φ = tan−1(hw/lw), which is the angle that the
tapered wedge surface makes with the horizontal. A streamwise-periodic flow domain is
considered, no-slip boundary conditions are applied on the bottom and top walls and flow
is maintained at a constant flow rate having a mean horizontal velocity U0.
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2.2. Governing equations
The flow is governed by the dimensionless incompressible Navier–Stokes equations,

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

∇2u, (2.2)

where lengths, velocity u, time t and pressure p are respectively scaled by L, U0, L/U0 and
ρU2

0. The Reynolds number is defined as Re = U0L/ν.
At the interface between adjacent elements, each node on one element edge shares a

single global node with its counterpart on the edge of the adjacent element. This preserves
(C0) continuity of the velocity and pressure values across element interfaces in the global
solution. Element edge nodes along the left periodic boundary are connected to the edge
nodes along the right periodic boundary in the same fashion. The periodic boundary is
therefore numerically indistinguishable from any other element interface within the flow
domain. In (2.2), pressure is decomposed into a streamwise-periodic fluctuating part and
a background horizontal linear pressure gradient, i.e. p = p̃ − F(t)x; F(t) only enters the
horizontal momentum equation, and its value is determined within each time integration
step to maintain the desired flow rate. The numerical implementation to maintain the
desired flow rate is explained in Appendix A.

An in-house solver based on a nodal spectral-element method for spatial discretisation
in the x–y plane (Karniadakis & Sherwin 2005) and a third-order operator splitting scheme
based on backward differentiation for time integration (Karniadakis, Israeli & Orszag
1991) is used for the simulations reported herein. A two-way refinement in terms of
the number of elements (h-refinement) and polynomial order (p-refinement) is possible
using this discretisation. For the 3-D direct numerical simulations, discretisation in the
spanwise z-direction is via a Fourier series expansion of the flow variables (Karniadakis
& Triantafyllou 1992; Sheard, Fitzgerald & Ryan 2009) which imposes a spanwise
periodicity in the z-direction.

2.3. Linear stability analysis
Linear stability analysis (Jackson 1987) is used to study the stability of 2-D flows by
decomposing the flow variables {u, p} into a 2-D component {U, P} and a small 3-D
disturbance, {u′, p′}, i.e.

u = U + εu′, p = P + εp′, (2.3a,b)

where |ε| � 1. The linearised Navier–Stokes equations (LNSE) are obtained from (2.2)
and (2.3a,b) and retaining terms of order O(ε), resulting in

∇ · u′ = 0, (2.4)

∂u′

∂t
= −N ′(u′) − ∇p′ + 1

Re
∇2u′, (2.5)

where N ′ is the linearised advection operator N ′(u′) = (U · ∇)u′ + (u′ · ∇)U . The
perturbations are further decomposed into Fourier modes having spanwise wavenumber
k as

(u′, p′) =
∫ ∞

−∞
(û, p̂)(x, y, t)eikz dk. (2.6)

Linearisation decouples the equation governing the evolution of each Fourier mode,
reducing the stability analysis from a 3-D problem in Re to a set of 2-D problems in
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(Re, k). Since the base flow is planar (has no z-component), a phase-locked form of the
perturbation is used (Barkley & Henderson 1996), further halving the computational cost
of evolving the perturbation field. With respect to the enforcement of a constant flow
rate on the base flow described in § 2.2, linearised perturbation fields having a non-zero
wavenumber intrinsically satisfy a zero flow rate and so do not require special treatment.
However, this is not the case for 2-D (zero-wavenumber) perturbations. A zero flow
rate is imposed on these fields during time integration in a similar fashion to flow rate
enforcement on the base flow.

Introducing a linear evolution operator A (τ ) representing time integration of a
linearised perturbation field over time interval τ , and assuming exponential growth over
long times, linear stability is dictated by

A (τ )ûi = μiûi, (2.7)

where μi are the (complex) eigenvalues and ûi the corresponding eigenvectors of A . The
eigenvalue max |μi| determines the instability growth rate σ and phase speed ω through

μ = e(σ+iω)τ , (2.8)

where τ can be chosen arbitrarily for a steady base flow. For a given Re and k, |μ| > 1
denotes a flow where the mode grows exponentially in time, |μ| = 1 corresponds to neutral
stability and, when |μ| < 1, the modes decay in time and hence the base flow is linearly
stable.

Steady 2-D base flow solutions are first computed either directly using the timestepper
mentioned earlier, or with the BoostConv algorithm augmenting it for unstable steady
states (Citro et al. 2017). The eigenvalue problem is then solved by an implicitly restarted
Arnoldi iteration method for a range of spanwise wavenumbers (Barkley & Henderson
1996; Sheard et al. 2009). In this implementation, the perturbation field is initialised to a
randomised field, and time integration over time interval τ is used to capture the action of
A on the perturbation field. Iteration continues until the eigenvalues have converged to an
accuracy of 10−8. The implicitly restarted Arnoldi iterations are implemented through the
ARPACK package (Lehoucq, Sorensen & Yang 1998).

2.4. Span-averaged perturbation kinetic energy evolution
The instability mechanism causing the base flow to become unstable is explained by
considering the energy transfer from the base flow to the eigenmodes by analysing its
domain integrated kinetic energy (Lanzerstorfer & Kuhlmann 2012a,b; Sheard, Hussam &
Tsai 2016). The perturbation kinetic energy (PKE) equation is obtained by taking the dot
product of u′ with (2.5), since

u′ · ∂u′

∂t
= ∂k′

∂t
, (2.9)

where k′ is the kinetic energy of the perturbation per unit mass. Averaging the resulting
equation in the spanwise direction (in tensor notation with the summation convention used
for brevity) yields

∂k′

∂t
= −u′

iu
′
j
∂Ui

∂xj
− 2

Re
s′

ijs
′
ij, (2.10)
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where s′
ijs

′
ij is the spanwise-averaged double dot product of the strain-rate tensor s′

ij. It is
possible to relate the growth rate of the eigenmode to (2.10) through (2.6) as

σ = 1
2Ek

∫
Ω

∂k′

∂t
dΩ = − 1

2Ek

∫
Ω

[
u′

iu
′
j
∂Ui

∂xj
+ 2

Re
s′

ijs
′
ij

]
dΩ, (2.11)

where Ek = ∫
Ω

k′ dΩ is the total PKE in the domain Ω (Sheard et al. 2016). Each term on
the right-hand side of (2.11) contributes to the instability growth rate and can be written in
short as

σ = 〈P〉 + 〈D〉, (2.12)

where 〈P〉 comprises the production terms and 〈D〉 the dissipation term, each of which
are given by

〈P〉 = 〈P1〉 + 〈P2〉 + 〈P3〉 + 〈P4〉

= − 1
2Ek

∫
Ω

[
u′2 ∂U

∂x
+ u′v′ ∂U

∂y
+ u′v′ ∂V

∂x
+ v′2 ∂V

∂y

]
dΩ, (2.13)

〈D〉 = − 1
Ek

∫
Ω

1
Re

s′
ijs

′
ij dΩ. (2.14)

2.5. Receptivity and structural sensitivity analyses
To study the receptivity and sensitivity of the flow to initial conditions, momentum forcing
or base flow variation, the adjoint LNSE are obtained following the method described in
Barkley, Blackburn & Sherwin (2008), and are given by

∇ · u∗ = 0, (2.15)

∂u∗

∂(−t)
= −N∗(u∗) − ∇p∗ + 1

Re
∇2u∗, (2.16)

where N∗ is the linearised advection operator of the adjoint equations, N∗(u∗) = −(U ·
∇)u∗ + (∇U)T · u∗, and u∗ and p∗ are the respective adjoint velocity and pressure
fields, and the perturbation is evolved backwards in time. An eigenvalue decomposition
is used to obtain the adjoint eigenmodes, û∗, of the adjoint operator A ∗ using the same
computational method as described in § 2.3.

The amplitude of a global mode can be shown to be dependent on initial condition (û0)
and momentum forcing ( f̂ ) as

Ak =
∫

û∗
k · [û0 + f̂ ] dΩ∫

û∗
k · ûk dΩ

. (2.17)

Thus, the location of maximum amplitude of the adjoint mode gives the region of
maximum receptivity of the perturbations to initial condition and momentum forcing, as
explained in Giannetti & Luchini (2007).

Hill (1995) and later Giannetti & Luchini (2007) have shown that the overlap region of
the direct and the adjoint mode is most sensitive to any localised feedback. The sensitivity
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is given by

Sk(x, y) = |ûk||û∗
k |∫

û∗
k · ûk dΩ

, (2.18)

where ûk and û∗
k are the direct and adjoint eigenmodes for a linearised perturbation field

with spanwise wavenumber k corresponding to a growth rate. Further details can be found
in Giannetti & Luchini (2007).

The wavemaker region as obtained from structural sensitivity analysis identifies the
regions in the flow where the eigenvalue of the linearised evolution operator changes
the most and how the global instability mode is affected by exogenous modification of
A . Another concept developed by Marquet & Lesshafft (2015) is the endogeneity of the
eigenmode, in which the sensitivity to localised changes of the operator is confined to
changes that preserve the local structure of the operator. The endogeneity of eigenmode
(μk, ûk) is therefore described by

E(x, y) = û∗
k(x, y) · (A ûk)(x, y), (2.19)

the domain integral of which can be shown to be equal to the eigenvalue μk. Equation
(2.19) can be expanded to isolate the individual contributions of each term in the
momentum equation to E(x, y) as

E(x, y) = − u∗ · [(U · ∇)u′]︸ ︷︷ ︸
Econv

− u∗ · [(u′ · ∇)U]︸ ︷︷ ︸
Eprod

− u∗ · ∇p︸ ︷︷ ︸
Epres

+ 1
Re

u∗ · ∇2u′
︸ ︷︷ ︸

Ediss

. (2.20)

Although (2.20) holds similarity to (2.11), the endogeneity recovers the local contribution
to the growth rate (Eσ (x, y)) and frequency of the global eigenmode (Eω(x, y)) and
individual contributions from each term on the right-hand side of (2.20). While the
pressure contribution to endogeneity is expected to integrate to zero, it is nevertheless
included in the present implementation to capture its positive or negative local
contributions.

2.6. Transient growth
The interaction between the non-orthogonal eigenmodes of A can produce brief periods
of large amplification of the kinetic energy of the linearised perturbations, even when the
flow is asymptotically stable. The maximum growth in kinetic energy achievable over a
finite time τ is determined using the eigenvalue method described in Barkley et al. (2008).
The kinetic energy of the perturbation relates to the inner product (the 1/2 is omitted for
simplicity)

K = (u′, u′) ≡
∫

u′ · u′ dΩ. (2.21)

Transient growth of an initial disturbance u′(0) over an interval can thus be written as

K(τ )

K(0)
= (u′(τ ), u′(τ ))

(u′(0), u′(0))
= (A (τ )u′(0),A (τ )u′(0))

(u′(0), u′(0))
= (u′(0),A ∗(τ )A (τ )u′(0))

(u′(0), u′(0))
.

(2.22)

The maximum possible amplification of energy at time τ over all possible initial conditions
u′(0) is called the optimal energy growth G(τ ) and is given by

G(τ ) = max
u′(0)

K(τ )

K(0)
, (2.23)
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np L 2 f Qdiff σ |k=1 G|τ=1,k=0

3 4.20119 0.02806 0.000293 0.06808 4.75246
6 4.19953 0.02802 0.000296 0.06791 4.82950
9 4.19951 0.02802 0.000297 0.06791 4.82982
12 4.19951 0.02802 0.000297 0.06792 4.82981
15 4.19952 0.02802 0.000297 0.06792 4.83095
18 4.19953 0.02802 0.000297 0.06792 4.83095

Table 1. Convergence of solution with increasing order of element polynomial (np) for β = 0.25, γ = 2,
tan(φ) = 0.125 and Re = 400. Quantities shown are the converged L 2, friction factor f of the steady base
flow, percentage difference between the computed and target flow rate, Qdiff , growth rate σ of the leading
eigenmode at k = 1 and optimal energy growth G(τ = 1) at k = 0.

which is given by the largest eigenvalue of the operator A ∗(τ )A (τ ) (equivalent to the
largest singular value of the operator A ). For a given Re and k, the optimal mode is the
eigenvector corresponding to maximum optimal energy growth, Gmax at time τ = τopt
(Barkley et al. 2008).

Optimal energy growth and the corresponding initial fields producing them are obtained
by starting from a random perturbation, and capturing the action of A ∗A on u′ by time
integrating forward over τ using the linear evolution operator A and then backward using
the adjoint linear evolution operator A ∗. The eigenmodes here are evaluated using the
same method described in § 2.3.

3. Mesh resolution study

The solver has been validated for numerous flow simulations, stability analyses (Sheard
2011; Sapardi et al. 2017; Ng, Vo & Sheard 2018), transient growth analyses (Hussam,
Thompson & Sheard 2012b; Cassells et al. 2019) and energetics analyses (Sheard et al.
2016). Grid resolution is examined here for each of the analysis methods described in § 2.

A 594 h-element mesh with polynomial order np = 15 is adopted for β = 0.25, γ = 2,
tan(φ) = 0.125 for the base flow and eigenvalue computations based on preliminary
testing and refinement, and is shown in figure 2. For other β and γ cases, meshes were
constructed such that the size of the smallest elements along the boundaries and largest
elements remained the same as the mesh tested for grid resolution. The polynomial order
for the base flow and eigenvalue computations for all the cases was also preserved. A
polynomial order of 10 was used for both the base flow and eigenvalue computation for
β = 0.95, γ = 2 given the higher mesh density at the small constriction gap. Table 1
shows solution convergence with increasing element polynomial order for a test case
having β = 0.25, γ = 2, tan(φ) = 0.125 at Re = 400. The parameters tested for base

flow convergence are the norm, L 2 =
√∫

Ω
|u|2 dΩ (an integral 2-norm or Euclidean

norm of the velocity field), the friction factor f = (p/ld)L, where ld = lp + lw describes
the non-dimensional form of the pressure drop per unit length of the channel and
the percentage difference between the computed and target flow rate (Qdiff ). Spanwise
wavenumbers of k = 1 and k = 0 were used respectively to assess the convergence of
growth rates from linear stability analysis and the energy growth at τ = 1 from transient
growth analyses.

For validating the computed energy growth, the computed optimal mode for Re = 400 at
τ = 5.5 was used as the initial condition, and linearly evolved to time τ using (2.4)–(2.5).
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(a)

(b) (c)

Figure 2. (a,b) Details of the h-element mesh and (c) its subsequent p-refined mesh using np = 15. Close-up
views of the mesh resolution about the wedge tip are shown in (b,c). The particular geometric parameters here
are β = 0.25, γ = 2 and tan(φ) = 0.125. (b) Spectral elements, (c) np = 15 quadrature points.

The energy of the evolved mode was then normalised by its initial energy and subsequently
compared against the gain from the transient growth analysis: G(τ = 5.5) = 34.33102.
The energy ratio was found to be

K(5.5)

K(0)
= 0.00368

0.00011
= 34.32694, (3.1)

demonstrating a relative error of less than 0.1 % between G(τ ) and the computationally
evolved energy ratio, thus validating the accuracy of the transient growth analysis
implementation.

For validating the energetics analysis, the computed individual components of (2.12) are
summed, yielding an estimate of the growth rate that may be compared with that computed
from the linear stability analysis. These are shown in table 2 for β = 0.25 and Re = 400.
The relative error of growth rate from the energetics analysis is within 0.05 % of that
computed from linear stability analysis.

4. Two-dimensional flow

4.1. Flow regimes
Inspection of the computed 2-D flow solutions reveals that the flows may be classified
into five regimes, as shown in figure 3. Regime-1 (figure 3a), occurring at low Re, is
characterised by a single recirculation region that develops in front of the wedge. The flow
otherwise remains attached to the channel walls. The appearance of a recirculation region
at a sharp concave corner is a ubiquitous feature of low Reynolds number flows (Taneda
1979). This is similar to the low Re flow over a FFS in which a primary recirculation
region appears in front of the step (Mei & Plotkin 1986; Stüer et al. 1999). With an
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PKE LSA % difference in σ

〈P1〉 −0.00164 — —
〈P2〉 0.14484 — —
〈P3〉 0.00213 — —
〈P4〉 −0.00217 — —
〈D〉 −0.05237 — —
σ 0.09079 0.09078 0.02181

Table 2. Contribution of production and dissipation terms in (2.12) to the growth rate of the leading eigenmode
and its comparison with the growth rate obtained from linear stability analysis (LSA) for β = 0.25, γ = 2,
tan(φ) = 0.125 at Re = 400.

increase in Re, an adverse pressure gradient compels the flow to separate from the wedge
taper, subsequently reattaching to the bottom wall in the gap before the next wedge. This
creates another recirculation region extending from the tapered surface of the current
wedge to the gap between the current and the subsequent wedge (regime-2, figure 3b),
unlike the flow over a FFS where a secondary recirculation region forms immediately after
the step. In regime-3 (figure 3d), the recirculation region identified in regime-2 merges
with the recirculation region in front of the next wedge, forming a single recirculation
region extending from the slanted wedge surface of the current wedge to the front of
the next wedge. For higher blockage ratios of β � 0.5, an additional steady secondary
recirculation region is also observed immediately downstream of the wedge tip in regime-2
and regime-3 (figure 3c). Further increasing Re produces an unsteady flow. In unsteady
regime-4 (instantaneous snapshot in figure 3e), the steady recirculation region identified in
regime-3 begins to shed, introducing vortices which sweep over the bottom wall, whereas
the flow remains attached on the top wall of the channel. No vortex shedding from the
wedge tip is observed in this regime. The last regime encountered, regime-5 (instantaneous
snapshot in figure 3f ) is characterised by vortex shedding occurring at the wedge tip along
with entrainment of boundary layer vorticity into the bulk.

The regime maps for a range of β, γ and φ are plotted in figure 4. The Reynolds
number for the onset of each regime is termed ReRi, where i = 2–5 denotes the regime
of the flow observed at Re > ReRi; ReR5 = Recr,2D is the approximate critical Reynolds
number for the onset of 2-D vortex shedding in the flow. These threshold Reynolds
numbers for changes in the steady flow topology were determined visually, accurate to
within Re = ±10. The critical Re for onset of the unsteady regime (ReR4 for some
cases if it exists, ReR5 otherwise) is found through LSA, and is presented in § 5.1. The
value of Recr,2D decreases with increasing β, γ and φ. With increasing β, the range
of Re for each regime decreases and at higher blockage ratios, vortex shedding starts
after the flow passes through two steady regimes – regimes 1 and 2. Regime-4 is not
observed for β � 0.25. Within 0.3 � β � 0.35 regime-2 was not identified, whereas
within 0.5 � β � 0.65 regime-3 was not observed. A similar observation was made for
γ � 4. In the range of wedge angles investigated, the flow passes through each of the
flow regimes identified before becoming unsteady. At higher β and γ , each threshold Re
approaches a constant value. A similar trend can be seen with increasing φ for ReR4.

4.2. Steady separation and reattachment
To further characterise the steady 2-D flow, the behaviour of different recirculation regions
in the flow is elucidated by the migration of their separation and reattachment points
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(c) (d )

(a) (b)

(e) ( f )

–10 +10

Figure 3. (a–d) Two-dimensional steady flow regimes 1–3 and (e–f ) unsteady regimes 4–5. The streamlines
are shown in all cases, while an instantaneous snapshot of spanwise vorticity contours is included in the
unsteady cases; γ = 2, tan(φ) = 0.125 for all cases. Contours of spanwise vorticity are shown in the linear scale
at 20 equispaced levels. (a) Regime-1, β = 0.25, Re = 100. (b) Regime-2, β = 0.25, Re = 175. (c) Regime-2,
β = 0.65, Re = 75. (d) Regime-3, β = 0.25, Re = 200. (e) Regime-4, β = 0.25, Re = 450. ( f ) Regime-5,
β = 0.25, Re = 500.

along the bottom wall for various blockage ratios in figure 5. The recirculation regions
are places of accumulation of fluid which does not interact with the bulk flow. From a heat
transfer perspective, these are regions where high temperatures may develop and, lacking
convective transport and mixing, might lead to structural failure. A diagram illustrating the
location of the recirculation zones and nomenclature of the separation and reattachment
points is illustrated in figure 5(a). The recirculation region that forms in front of the
wedge (denoted as 1) have separation and reattachment points xs1 and yr1, respectively.
An increase in xs1 denotes its migration to the right whereas an increase in yr1 shows its
movement upward on the vertical wall. For the recirculation region denoted as 3, closed
and open circles respectively are used to denote the separation (xs3) on the tapered wall
and the corresponding reattachment (xr3) on the bottom wall between the current and the
subsequent wedge. An increase in either of these values denotes a shift to the right. For
β ≥ 0.5, an additional recirculation region-2 appears with separation starting at the wedge
tip and reattaching on the tapered wall (xr2), represented by open triangle symbols. An
increase in xr2 shows its movement to the right, away from the wedge tip.

The trendlines showing the growth of different recirculation regions are explained for
β = 0.25. The growth of recirculation region-1 is shown as a decrease in xs1 and increase
in yr1 with Re. Deviation from this trend is observed when recirculation region-3 forms
further downstream (represented by the first dashed line from the bottom in figure 5b,c).
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Regime-4

ReR2ReR3ReR4ReR5Recr,3D
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Vortex shedding
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Vortex shedding
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0

Figure 4. Regime maps as functions of Re and (a) β, (b) γ and (c) φ. The fixed geometric parameters are as
indicated in (a–c). The threshold Reynolds numbers for onset of each 2-D flow regime are shown in figure 3
and the 3-D instability thresholds are given by ReR2, ReR3, ReR4, ReR5 and Recr,3D; (a) γ = 2, tan(φ) = 0.125,
(b) β = 0.25, tan(φ) = 0.125, (c) β = 0.25, γ = 2.

Further, the growth of recirculation region-3 with Re is shown as an increase in xr3 and
an approximately linear decrease in xs3. A deviation in the trend of xs3 and yr1 is observed
when recirculation regions 1 and 3 merge, shown by the second dashed line from the
bottom in figure 5. A similar trend is observed for all blockage ratios (figure 5b,c), and
pitch and wedge angle variations (not shown). This behaviour was also found for flows past
a BFS (Erturk 2008), FFS (Marino & Luchini 2009) and in a 180 degree bend (Sapardi
et al. 2017).

5. Linear stability

LSA has been used in various confined flow set-ups to identify the bifurcation in the
solution branch, such as the steady 3-D bifurcation in flow over a BFS (Barkley et al. 2002;
Marquet et al. 2008; Lanzerstorfer & Kuhlmann 2012a), the stability boundary of flow
over a FFS (Lanzerstorfer & Kuhlmann 2012b) and flows in a 180 degree bend (Sapardi
et al. 2017). This section investigates the linear stability of the steady 2-D flows reported
earlier for a range of β and γ values. The stability of the flow to 2-D perturbations is first
discussed. Thereafter, the critical parameters, underlying eigenmodes and the mechanism
responsible for the 3-D bifurcation are elucidated.
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Figure 5. (a) A sketch showing the location of three identified recirculation zones and nomenclature of the
separation (closed symbols) and reattachment points (open symbols) along with plots showing their dependence
on Re and β and variation along bottom (b) horizontal and slanted wall and (c) vertical wall. Horizontal
dashed lines in (b,c) are used to represent the deviation from an existing trend due to the formation of a new
recirculation region or merging of two existing recirculation regions for β = 0.25, γ = 2 and tan(φ) = 0.125.

5.1. Two-dimensional instability
The 2-D stability of the flow is investigated in this section for a range of blockage ratios
and pitch values by performing a LSA on its steady-state solutions. The resulting growth
rates over a range of Re for a few β and γ combinations are shown in figure 6.

Over almost the entire range of Reynolds numbers that produce steady flow solutions,
the leading eigenmode has a real eigenvalue that remains stubbornly stable. This is
labelled as the M1 mode here. As the unsteady Reynolds number regime is approached,
evidence of a subdominant complex eigenmode is detected (labelled as M2 here). Using
the BoostConv algorithm of Citro et al. (2017) steady-state solutions at higher Reynolds
numbers are acquired, and analysis of these base flows reveals that this complex M2
mode rapidly overtakes the M1 mode, before becoming unstable at Reynolds numbers
consistent with the appearance of unsteady flow, as described in § 4.1. The perturbation
fields of the complex eigenmode (M2) responsible for the onset of 2-D unsteadiness
is shown in figure 7. The eigenmode appears as a wave extending over the flow
domain destabilising the shear layers on the bottom and top walls of the channel. By
contrast, these oscillatory structures are absent from the M1 eigenmodes, which instead
exhibits elongated streamwise structures extending the length of the domain. Since the
streamwise-periodic boundary conditions imposed on this system permit only an integer
number of oscillatory waves within the domain, it is possible that disturbances featuring
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Figure 6. Plots of growth rate (σ ) against Re. Real and complex eigenvalues are denoted by filled and open
symbols, respectively. Triangle, square and circle symbols represent modes M1, M2 and M3, respectively. All
cases here have a wedge angle of tan(φ) = 0.125; (a) β = 0.25, γ = 2, (b) β = 0.8, γ = 2, (c) β = 0.25,
γ = 1, (d) β = 0.25, γ = 8.

a non-integer number of waves over any one wedge unit could lead to a slightly lower
critical Reynolds number. This may explain the decrease in Recr,2D observed in the flow
with increasing γ for every fixed value of β. Beyond a certain γ where a sufficiently
wide bands of streamwise oscillation wavelengths are available, Recr,2D does not vary
significantly with an increase in γ (figure 4b).

To verify the findings from LSA, the steady-state solutions obtained at a Reynolds
number slightly beyond Recr,2D using the BoostConv algorithm are naturally evolved,
and the underlying disturbance structure is monitored. It is observed that the underlying
disturbance structure matches with the dominant mode (M2) obtained from LSA at
longer times. Snapshots of the disturbance field at a few time instances are shown in
figure 8 for β = 0.25, γ = 2 at Re = 480 as an example. Additionally, the frequency of
oscillation (flinear) obtained from linear evolution of the unstable mode M2 (flinear = 0.26
for β = 0.25, γ = 2, Re = 480 and flinear = 0.253 for β = 0.5, γ = 2, Re = 130) is found
to match closely with the frequency of oscillation (f ) of the unsteady 2-D flow (f = 0.261
for β = 0.25, γ = 2, Re = 480 and f = 0.251 for β = 0.5, γ = 2, Re = 130), thereby
supporting our finding that the onset of 2-D unsteadiness is due to the linear instability
mode M2.

5.2. Three-dimensional instability – growth rate and marginal stability
The stability of the steady flow to small 3-D perturbations is investigated in this section.
The growth rates of the leading eigenmode are shown in figure 9 as functions of Re and
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–0.03

–0.01 –0.009 +0.009+0.01

+0.03

(a) (b)

(c) (d)

(e) ( f )

Figure 7. Contours of the real part of ω̂z overlaid with the line contours of the real part of v̂ for modes (a–d)
M2 and (e, f ) M3. Base flow streamlines are also shown for reference. All cases here have a wedge angle
of tan(φ) = 0.125. Contours of ω̂z are shown in the linear scale at 20 equidistant levels, while line contours
of v̂ are shown at 8 equidistant levels with solid and dashed lines representing positive and negative values,
respectively, between −0.004 and 0.004 for (a–d, f ) and between −0.002 and 0.002 for (e); (a) β = 0.25,
γ = 2, Re = 450 (M2), (b) β = 0.8, γ = 2, Re = 85 (M2), (c) β = 0.25, γ = 8, Re = 300 (M2), (d) β = 0.5,
γ = 16, Re = 125 (M2), (e) β = 0.25, γ = 8, Re = 300 (M3), ( f ) β = 0.5, γ = 16, Re = 125 (M3).

(a) (b) (c)

(d) (e) ( f )

Figure 8. Evolution of spanwise vorticity field (ω̂z) of the underlying disturbance structure on naturally
evolving the flow from the steady-state solution for β = 0.25, γ = 2, tan(φ) = 0.125 at Re = 480. The line
contours of spanwise vorticity of the corresponding linear instability mode (M2) is shown at t = 254.2.
Contours of ω̂z of the disturbance field are shown in the linear scale at 20 equispaced levels between −0.05
(blue) to 0.05 (red), whereas the line contours of ω̂z for M2 are spaced at 10 equispaced levels in the same range
with solid and dashed lines representing positive and negative values, respectively; (a) t = 150, (b) t = 200,
(c) t = 250, (d) t = 252, (e) t = 253.6, ( f ) t = 254.2.

spanwise wavenumber k for selected β and γ combinations. The primary instability of the
steady flow occurs through a stationary 3-D eigenmode (having a real eigenvalue) for all
β and γ investigated in this study. The Re and k at which the maximum growth rate of the
perturbation is zero are the critical Reynolds number (Recr,3D) and wavenumber (kcr).

Inspection of the eigenvalue spectra for |(Re − Recr,3D)/Recr,3D| � 0.035 for different
cases indicates a single dominant mode to be responsible for the bifurcation. In figure 10
the full eigenvalue spectrum near Recr,3D is shown for selected cases. With increasing
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Figure 9. Plots of the growth rate (σ ) of the leading eigenmode against spanwise wavenumber k for different
Re. The stability analysis was conducted for wavenumbers up to k = 50, but only a small range of interest is
shown here for clarity, the remaining modes always decayed monotonically with increasing wavenumber; (a)
β = 0.25, γ = 2, (b) β = 0.8, γ = 2, (c) β = 0.25, γ = 1, (d) β = 0.25, γ = 8.

γ at a fixed blockage ratio the number of subdominant complex eigenvalues (all stable)
appear to increase and are spread across the complex plane. An increase in β at a fixed
γ shows complex subdominant eigenvalues (all stable) with only a single real eigenvalue
which corresponds to the dominant eigenmode. The first subdominant mode also appears
to move closer to the neutral curve with an increase in β and γ . The dominant modes for
different geometric parameter combinations are shown in figure 13 and the subdominant
complex mode for β = 0.8, γ = 2 is shown in figure 10(e) as an example. They appear
as counter-rotating streamwise vorticity structures concentrated near the wedge tip along
with other pairs near the top and bottom walls seen downstream, which appear as chevron
structures in the 2-D plane (not shown).

Marginal stability curves for selected blockage ratios and pitch values are shown in
figure 11. The flow is linearly unstable at given wavenumbers to the right of these
curves and stable to the left. With increasing blockage ratio, the curves shift to lower
Re irrespective of the pitch and the unstable wavenumber range grows wider, indicating
that higher blockages are more destabilising for the flow. At any fixed blockage ratio,
decreasing γ causes the flow to become more unstable, which is observed as a shift in
the neutral curves to the left. This is because the effect of the wedge on the flow becomes
greater with increasing constriction and decreasing distance between the wedges.

In figure 4(a,b), Recr,3D is overlaid on the regime maps of the 2-D base flows as functions
of β and γ . For all γ investigated here and for β � 0.5, Recr,3D is within regime-1, where
only a single recirculation region exists upstream of the wedge. For cases with β � 0.5,
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Figure 10. Eigenvalue spectra near the critical Reynolds number (Recr,3D). The leading and first subdominant
eigenvalues are indicated as (i) and (ii). Closed and open symbols denote real and complex eigenvalues,
respectively. (e) Positive (blue) and negative (yellow) iso-surfaces of streamwise vorticity (ω̂x) of the first
subdominant eigenmode of (d), while the leading modes labelled (i) are shown in figure 13. The wedge angle
tan(φ) = 0.125 for all cases; (a) β = 0.25, γ = 2, Re = 90, (b) β = 0.25, γ = 8, Re = 150, (c) β = 0.5,
γ = 2, Re = 60, (d) β = 0.8, γ = 2, Re = 60.

onset of three-dimensionality occurs within regime-2 when another recirculation region is
formed immediately after the wedge tip.

The resemblance of the wedge geometry to a FFS motivates a rescaling of Recr,3D
and kcr by constriction gap height (2L − hw), consistent with the length scale based
on the FFS downstream channel height used in Lanzerstorfer & Kuhlmann (2012b).
The rescaled values are denoted as Recr,β = 2Recr,3D(1 − β) and kcr,β = 2kcr(1 − β).
Similarly, to assess their variation with γ , they are rescaled based on the gap length lp,
i.e. Recr,γ = γ Recr,3D and kcr,γ = γ kcr. The variation of these modified critical Reynolds
number and wavenumber with β at a fixed pitch of γ = 2 and γ = 16, as well as their
variation with γ at a fixed blockage ratio of β = 0.25 and β = 0.8, are shown in figure 12.
Both Recr,β , kcr,β and Recr,γ , kcr,γ show a monotonic decrease with increasing β and
decreasing γ , irrespective of the fixed parameter. From figures 11 and 12 it can be observed
that the influence of β on the stability limit is greater at a larger pitch, whereas the influence
of γ is more pronounced at smaller values of β. On the other hand, the variation of critical
wavenumber is almost negligible when the fixed parameter is changed.

Dependence of Recr,β and kcr,β on blockage ratio is qualitatively similar to those in a
FFS set-up (Lanzerstorfer & Kuhlmann 2012b) in which the blockage ratio was termed the
constriction ratio. For β = 0.25 and β = 0.5 at γ = 2 (γ = 16) the critical wavelength
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Figure 11. Neutral stability curves of the flow for different β and γ . In (c) solid curves correspond to γ = 8
and dashed curves to γ = 16. All the cases have a wedge angle of tan(φ) = 0.125; (a) γ = 2, (b) β = 0.25, (c)
γ = 8, 16, (d) β = 0.8.
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Figure 12. Dependence of Recr,β and kcr,β on β at (a) γ = 2 and (c) γ = 16, and Recr,γ and kcr,γ on γ at (b)
β = 0.25 and (d) β = 0.8. All the cases have a wedge angle of tan(φ) = 0.125. Filled circle and left triangle
symbols in red in (b,d) are the corresponding Recr,γ and kcr,γ values for a double-wedge case.

941 A59-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

20
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.200


Flow in a channel with repeated wedge-shaped protrusions

β = 0.25, γ = 2, Re = 400

β = 0.5, γ = 2, Re = 100

β = 0.8, γ = 2, Re = 75

β = 0.95, γ = 2, Re = 75

β = 0.8, γ = 8, Re = 70

β = 0.25, γ = 2, Re = 200

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 13. (a,d,g,j,m) Positive (blue) and negative (yellow) iso-surfaces of streamwise vorticity ω̂x of the
leading eigenmodes, (b,e,h,k,n) spanwise velocity (ŵ) contours overlaid with base flow streamlines and
(c, f,i,l,o) positive and negative iso-contours of streamwise (û) (represented as translucent surfaces) and
transverse (v̂) velocities (represented as opaque surfaces) of the leading mode. All the cases have a wedge
angle of tan(φ) = 0.125. The ŵ contours are shown in the linear scale at 20 equispaced levels between −0.001
(blue) and 0.001 (red). (p–r) Show the corresponding quantities as in (a–c) for a double-wedge case.

of the leading eigenmode λcr for the present flow domain are 6.9hw (7.85hw) and 3.2hw
(3.31hw), respectively, which fall between the corresponding λcr for the FFS set-up, 3hs
and 1.8hs (Stüer et al. 1999; Lanzerstorfer & Kuhlmann 2012b) and BFS set-up, 10hs and
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Figure 14. Contours of ŵ appearing as counter-rotating rolls at x = 1.0 (middle of the primary recirculation
region), x = 2.3 (middle of the secondary recirculation region) and x = 6.0 along with the base flow streamline
for β = 0.5, γ = 2, tan(φ) = 0.125 at Re = 100. The ŵ levels are the same as in figure 13.

7.16hs (Blackburn et al. 2008a; Lanzerstorfer & Kuhlmann 2012a). The value of Recr,3D in
the present system is much lower than in those geometries. The disturbances from a leading
wedge carry on to subsequent wedges in the present set-up due to the streamwise-periodic
domain, therefore the flow is pre-disturbed at the inlet of a subsequent wedge, altering the
stability characteristics. Figure 4(b) demonstrates that Recr,3D increases with increasing
pitch. This is likely because a larger pitch effectively allows the disturbances to decay more
before re-entering the domain to interact with a subsequent wedge, thereby increasing the
stability. The increasing value of Recr,3D with increasing γ and decreasing β can also be
attributed to the fact that those changes direct the present set-up towards a plane channel
flow. These trends demonstrate that the periodic arrangement is favourable for promoting
instability; as the distance between adjacent wedges increases, the flow becomes more
stable.

5.3. Three-dimensional eigenmodes and instability mechanism
In this section the 3-D eigenmodes and the underlying mechanism which destabilises
the steady base flow are discussed. Examples of these modes, visualised through their
streamwise vorticity ω̂x and velocities û, are shown in figure 13. Instability manifests as
a pair of counter-rotating streamwise vortices about the wedge for all blockage ratios.
For β � 0.5, as the influence of the top wall becomes greater, an additional pair of
streamwise vortices emerges near the top wall above the wedge. For β = 0.8 and β =
0.8, an additional pair of streamwise perturbation velocity streaks also forms after the
constriction near the top wall. The region of non-zero ŵ of the eigenmode extends from the
primary recirculation region over to the tip of the wedge and appears as counter-rotating
spanwise rolls concentrated inside and outside the primary recirculation region (figure 14).
For β � 0.5, when a recirculation region is formed downstream of the wedge tip, the
region of non-zero ŵ extends over the separating streamline of that recirculation region,
appearing as counter-rotating spanwise rolls located outside the secondary recirculation
region (figure 14). The structure of the eigenmodes appears to be unaffected by γ at the
blockage ratios investigated, an example of which is shown in figure 13(j). The eigenmodes
of the FFS (Lanzerstorfer & Kuhlmann 2012b) and BFS set-ups for lower expansion
ratios (Barkley et al. 2002; Lanzerstorfer & Kuhlmann 2012a) appear as spanwise rolls
concentrated entirely inside the recirculation region formed after the step. The eigenmodes
for the current set-up shows resemblance to those modes as, elucidated in figure 14, in
which ŵ contours in the middle of the primary and secondary recirculation regions and a
subsequent position further downstream in the flow domain are shown.

The imposition of streamwise periodicity over a single wedge in the present study raises
the question as to whether this constraint excludes modes or flow features that would span
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multiple wedges. To test this, simulations have been performed in domains containing two
successive wedges. Two distinct blockage ratios β = 0.25 and β = 0.8 were considered,
both having γ = 2 and tan(φ) = 0.125. The critical Reynolds number and wavenumber for
the double-wedge cases are found to match well with the corresponding values found using
a single wedge. These are shown in figure 12(b,d). The global modes for the double-wedge
cases also closely resemble the modes predicted using a single wedge, and are shown in
figure 13(m–o) for a single case. These results provide evidence in support of the periodic
single-wedge results reported herein as being representative of multi-wedge duct flows.

Barkley et al. (2002) found the region of maximum net outward angular momentum
decrease, based on a modified inviscid centrifugal instability criterion given by Rayleigh
(Bayly 1988), along the closed streamline of the recirculation region matching regions of
peak three-dimensionality (spanwise velocity component) in a BFS set-up. Hence, they
argued that centrifugal instability of the primary recirculation region was responsible
for destabilising the flow. The associated eigenmode appeared as two counter-rotating
spanwise velocity components concentrated entirely inside the recirculation region. This,
however, is not the case for the periodic wedge set-up here, as the spanwise velocity
component does not peak along the closed streamlines of the recirculation region. Another
common vortex instability mechanism, elliptical instability, arises in strained vortices
where perturbations grow strongly in the core of the strained vortex in the direction of
the principal strain (Bayly, Orszag & Herbert 1988; Thompson, Leweke & Williamson
2001; Lanzerstorfer & Kuhlmann 2012a). No evidence of elliptic instability was detected
in the eigenmodes in the present study.

For flow over a BFS, Ghia et al. (1989) argued that instability manifests as
Taylor–Görtler vortices in the bulk flow, forming along curved streamlines induced by
the strong recirculation regions on the top and bottom walls. They argue that, until the
appearance of the secondary recirculation region on the top wall, the dividing streamline
at the point of separation of the primary recirculation region remains almost parallel to the
flow direction and has a convex curvature further downstream and hence the flow remains
stable. Destabilisation of the flow begins with the formation of a secondary recirculation
region on the top wall. Taylor–Görtler vortices appear as streamwise counter-rotating
vortices. The formation of these vortices occurs in flow over concave curvature and also
when the dividing streamline of the recirculation region separates at an angle to the main
flow direction (Smith 1955; Drazin & Reid 2004). Unlike the flow topology in Ghia
et al. (1989), in the present set-up a secondary recirculation region on the top wall is
absent in the steady base flow where instability occurs. The separating streamline of
the recirculation region formed at the face of the wedge for higher blockage ratio has a
concave curvature and the modes appear as counter-rotating streamwise vortices over this
recirculation region. Since these modes persists even for lower blockage ratios, where the
separating streamline is almost parallel to the flow direction, this mechanism might not be
responsible for the onset of three-dimensionality in the flow. An assessment of the PKE
budget in § 5.4 will reinforce this point.

Formation of the streamwise velocity (û) streaks extending through the flow domain, as
shown in figure 13(c, f,i,l), is characteristic of the lift-up mechanism (Landahl 1975) where
a small transverse velocity component moves the fluid to a high-velocity region leading to
the formation of streaks. These streaks match with the experimental observation in a FFS
set-up (Stüer et al. 1999). For FFS (Lanzerstorfer & Kuhlmann 2012b) and BFS set-ups at
lower expansion ratio (Lanzerstorfer & Kuhlmann 2012a), this mechanism was found to
be responsible for the instability. As a first step to check whether the lift-up mechanism
underpins the instability here, the relative proportion of individual perturbation velocity

941 A59-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

20
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.200


S. Murali, Z.Y. Ng and G.J. Sheard

components to their norms is quantified. In figure 15(a–d), ratios of the integral of the
different velocity components of the leading eigenmode are plotted along the streamwise
direction (x) for blockage ratios ranging from β = 0.25 to β = 0.8 at γ = 2, along with
the contours of absolute velocity of the leading eigenmode for each case. The plotted
quantities are ratios of the following integrals:

Ii =
∫ 2L

yx,b

|ûi| dy, Itotal =
∫ 2L

yx,b

|û| dy, (5.1a,b)

where yx,b is the y coordinate of the bottom wall at the corresponding x-position and
indices i = 1 − 3 correspond to the velocity components û, v̂ and ŵ, respectively.

For β = 0.25 and γ = 2, I2 and I3 are an order of magnitude smaller than I1 and are
limited to the free shear layers formed in front of the wedge near the reattachment point
yr1 (figure 15a). With increasing β, I3 increases at the expense of I1 near the vertical
wedge wall, and for β � 0.65 (figure 15c,d), I3 exceeds I1 locally before relaxing back to
its pre-disturbed levels, indicative of the lift-up mechanism. Similar observations were
made for other β and γ combinations. Flows in a set-up with β = 0.5 when varying
γ (figure 15e–f ) are shown as examples to demonstrate that the contributions Ii remain
similar when varying γ as they did with β variation, indicating that the instability
mechanism is not influenced by changes in γ .

5.4. Energetics of the 3-D instability modes
This section utilises the energy analysis described in § 2.4 to investigate the factors that
contribute to perturbation growth. Local changes in the base flow and its contribution
to the growth rate of the leading eigenmodes are discussed. Contributions of the terms
in (2.12) to the growth rate of the leading eigenmode for all the investigated cases
are shown in table 3. The largest contribution (corresponding to the largest positive
value) to the growth rate, and thus the instability, comes from the production term
〈P2〉 = (1/2Ek)

∫
Ω

u′v′∂U/∂y dΩ for all cases investigated, whereas the most stabilising
contribution (corresponding to the negative value having largest magnitude) comes from
the dissipation term 〈D〉. At γ = 2, the production term 〈P1〉 has a net stabilising
contribution for lower blockage ratios β = 0.125, 0.25 and the highest blockage ratio
investigated here β = 0.8, whereas for intermediate blockage ratios 0.5 � β � 0.65, their
net contribution is positive, although an order of magnitude lower than the dominant
production term 〈P2〉. Terms 〈P3〉 and 〈P4〉 have net positive and negative contributions,
respectively, for all cases investigated, although they are typically more than an order
of magnitude smaller than the dominant production term 〈P2〉. The dominance of
the production term 〈P2〉 for all the cases investigated shows that the mode gains
energy predominantly through horizontal shear in the base flow. The streamwise velocity
dominance of the perturbations in the flow domain as shown in § 5.3 along with the fact
that 〈P2〉 is the largest contributor to σ confirms that the lift-up mechanism is responsible
for the instability in the range of geometric parameters investigated.

Spatial contours of the terms of (2.10), which are the integrands of (2.13)–(2.14), are
shown in figure 16. These plots for different β and γ combinations are visually similar to
those already shown in figure 16. The regions in the flow domain where the streamwise
and transverse velocities of the eigenmode grow due to strong streamwise and transverse
velocity gradients in the base flow respectively are shown in the contours of P1 and
P4. The streamwise velocity of the eigenmode grows predominantly in the region aft
of the wedge tip (above the second recirculation region for β � 0.5) and before the wedge.
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Figure 15. Variation of I1/Itotal (dashed line), I2/Itotal (dash-dotted line) and I3/Itotal (thin solid line) with
streamwise coordinate x. Contours of absolute velocity (|û|) of the leading mode in the flow domain are also
shown in the linear scale at 10 equispaced levels. The wedge angle for all cases here is tan(φ) = 0.125; (a)
β = 0.25, γ = 2, Re = 400, (b) β = 0.5, γ = 2, Re = 100, (c) β = 0.65, γ = 2, Re = 75, (d) β = 0.8, γ = 2,
Re = 75, (e) β = 0.5, γ = 8, Re = 70, ( f ) β = 0.5, γ = 16, Re = 100.

With increasing blockage ratio, the gain in the latter region is higher due to increasing
streamwise velocity gradient in the base flow, as seen from the contours of P1. The
transverse velocity growth magnitude is highest inside the recirculation region formed
before the wedge, where P4 is stabilising (light contours in figure 16 for P4). For higher
β, due to the steeper transverse gradient in the constriction region above and after the
wedge tip, a larger magnitude in v̂ is observed in a similar region where P4 makes a
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(β, γ , Re) 〈P1〉 〈P2〉 〈P3〉 〈P4〉 〈D〉
(0.125, 2, 500) −0.001295 0.100159 0.000712 −0.000218 −0.043747

(−2.33 %) (180.10%) (1.28 %) (−0.39 %) (−78.66%)
(0.25, 2, 400) −0.001638 0.144841 0.002134 −0.002166 −0.052374

(−1.80 %) (159.52%) (2.35 %) (−2.38 %) (−57.68%)
(0.5, 2, 100) 0.021612 0.299900 0.011426 −0.012951 −0.226354

(23.08 %) (320.31%) (12.20 %) (−13.83 %) (−241.76%)
(0.65, 2, 75) 0.011952 0.472378 0.013503 −0.016230 −0.387833

(12.75 %) (503.79%) (14.4 %) (−17.31 %) (−413.63%)
(0.8, 2, 75) −0.129045 0.870714 0.006960 −0.006641 −0.617654

(−103.79 %) (700.31%) (5.6 %) (−5.34 %) (−496.78%)
(γ , β, Re)
(1, 0.25, 400) −0.001087 0.148284 0.002294 −0.002217 −0.055197

(−1.18 %) (161.04%) (2.49 %) (−2.41 %) (−59.95%)
(4, 0.25, 250) −0.003434 0.139211 0.001973 −0.001423 −0.066520

(−4.92 %) (199.43%) (2.83 %) (−2.04 %) (−95.29%)
(8, 0.25, 250) −0.005087 0.113144 0.001351 −0.001006 −0.061782

(−10.91 %) (242.69%) (2.89 %) (−2.16 %) (−132.52%)
(16, 0.25, 200) −0.004909 0.079200 0.000755 −0.000439 −0.064428

(−48.24 %) (778.18%) (7.41 %) (−4.32 %) (−633.03%)
(1, 0.8, 70) −0.086481 0.862769 0.009527 −0.011245 −0.671733

(−84.11 %) (839.07%) (9.27 %) (−10.93 %) (−653.29%)
(4, 0.8, 70) −0.138681 0.811758 0.007523 −0.002556 −0.608351

(−199.02 %) (1164.95%) (10.79 %) (−3.67 %) (−873.04%)
(8, 0.8, 70) −0.118398 0.604534 0.004802 −0.002238 −0.459115

(−400.29 %) (2043.85%) (16.26 %) (−7.57 %) (−1552.21%)

Table 3. Contributions of volume integrated quantities of each term in (2.12) and their percentage relative
contribution to the growth rate σ (enclosed in brackets) of the leading eigenmode for different β and γ at Re
as indicated. The wedge angle is tan(φ) = 0.125 in all cases. The largest destabilising (positive terms) and
stabilising (negative terms) contributions are shown in bold.

positive contribution to the growth rate (dark contours in figure 16 for P4). The locations
in the flow domain making the largest contribution to the perturbation growth rate due to
strong horizontal and vertical shear in the base flow are shown in the contour plots for P2

and P3, respectively. Most of the dissipation D̄ is observed to occur about the wedge.
The bottom row for each case shows the combined contributions of the terms shown (

∑
)

to the growth of the leading eigenmode, superimposed by ŵ line contours. The region
of maximum ŵ growth found in § 5.3 is where the net contribution

∑
makes a highly

stabilising contribution to the growth rate of the eigenmode, whereas the region dominated
by the streamwise velocity contribution is where

∑
makes the highest contribution to

the growth rate. This confirms the statement made in § 5.3 that the Taylor–Görtler-type
instability is not responsible for the formation of streamwise counter-rotating vortices.

6. Adjoint modes, sensitivity and endogeneity

In this section, the dynamics of the flow is explained further by computing the adjoint
eigenmodes and their structural sensitivity for different geometric parameters which
could also be useful from a flow control perspective. The power of adjoint analysis for
flow control and sensitivity study was established for cylinder wakes by Giannetti &
Luchini (2007). Similar analysis for FFS (Marino & Luchini 2009) and smoothed BFS
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1
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( j)

(l)

β = 0.25, Re = 400 β = 0.65, Re = 75

(c)

(e)

(g)

(i)

(k)

Figure 16. Contours of terms from the spanwise-averaged PKE evolution equation (2.10) and their
corresponding sum for the leading eigenmode overlaid with line contours of ŵ. Fixed geometric parameters
used are γ = 2 and tan(φ) = 0.125. Contours are shown in linear scale at 10 equispaced levels with the darker
(lighter) shade indicating destabilising (stabilising) effect on the base flow.

set-ups (Marquet et al. 2009) revealed regions for placement of active and passive flow
control mechanisms. The region of largest magnitude of the adjoint modes is where the
flow is most receptive to initial conditions or momentum forcing which an active flow
control device could exploit to produce an optimal response in terms of amplification of
the instability (Hill 1995; Akervik et al. 2007; Giannetti & Luchini 2007). Hill (1995) and
later Giannetti & Luchini (2007) have also shown that the overlap region is most sensitive
to any localised feedback, which could be by the introduction of a passive structure to the
flow (Strykowski & Sreenivasan 1990), as it has the most impact on the eigenvalue of the
linearised operator. The sensitivity field hence shows the wavemaker region or the location
of the origin of the instability (Chomaz 2005).

An analysis of the receptivity and sensitivity of the flow is carried out for a Re > Recr,3D
for a range of blockage ratios and pitch values. The regions in the flow most receptive to
momentum forcing is shown in the left column of figure 17. For γ = 2, the receptive region
spans the incline of the wedge until the separation point and stretches further downstream
with increasing β. For larger γ , additional receptive regions form in the gap between
wedges (figure 17i,k), similar to what is observed in a FFS set-up (Marino & Luchini 2009;
Lanzerstorfer & Kuhlmann 2012b). The sensitive location given by the overlap region of
the adjoint and direct mode’s magnitude is shown for different β and γ in the right column
of figure 17. The wavemaker is located in the region of strong base flow shear extending
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0 +0.006 0 0.5

0 +0.003 0 0.3
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(c) (d)
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(k) (l )

β = 0.25, γ = 2, Re = 400

Sk|û∗
k|

β = 0.5, γ = 2, Re = 100

β = 0.65, γ = 2, Re = 75

β = 0.8, γ = 2, Re = 75

β = 0.5, γ = 8, Re = 75

β = 0.5, γ = 16, Re = 100

Figure 17. Receptivity to initial condition/momentum forcing (a,c,e,g,i,k) and structural sensitivity
(b,d, f,h,j,l) of the unstable 3-D eigenmodes. Contours are shown in the linear scale at 10 equispaced levels.

downstream of the wedge tip. At γ = 2 and with increasing blockage ratio (β ≥ 0.5), a
recirculation region forms immediately after the wedge tip causing a shift in the most
sensitive region away from the wedge tip, to between the two recirculation regions on
the tapered wedge surface. With increasing pitch, the sensitive locations appear to extend
further downstream from the wedge tip to the gap between the wedges (figure 17j,l). These
sensitive regions strongly resemble the contours of P2 in figure 16. These are regions in
the flow that are important for the placement of a passive flow control mechanism in the
flow (Strykowski & Sreenivasan 1990; Akervik et al. 2007; Giannetti & Luchini 2007;
Marquet et al. 2009).
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β = 0.25, γ = 2, Re = 400
Endogeneity Eσ,conv Eσ,prod Eσ,pres Eσ,diss Eσ

0.01253 0.12245 0.00003 −0.04421 0.09080
PKE — 〈P〉 — 〈D〉 〈∑〉

— 0.14317 — −0.05237 0.09080

β = 0.5, γ = 2, Re = 100
Endogeneity Eσ,conv Eσ,prod Eσ,pres Eσ,diss Eσ

0.02824 0.22494 0.00012 −0.15967 0.09363
PKE — 〈P〉 — 〈D〉 〈∑〉

— 0.32008 — −0.22635 0.09373

β = 0.8, γ = 2, Re = 75
Endogeneity Eσ,conv Eσ,prod Eσ,pres Eσ,diss Eσ

0.06163 0.46487 0.00063 −0.40230 0.12482
PKE — 〈P〉 — 〈D〉 〈∑〉

— 0.74199 — −0.61765 0.12433

β = 0.5, γ = 16, Re = 100
Endogeneity Eσ,conv Eσ,prod Eσ,pres Eσ,diss Eσ

0.01424 0.12210 0.00000 −0.12036 0.01599
PKE — 〈P〉 — 〈D〉 〈∑〉

— 0.16041 — −0.14440 0.01601

Table 4. Comparison of the contribution of volume integrated quantities of each term in (2.12) and the domain
integral of the real part of individual terms in (2.20) with the growth rate σ of the leading eigenmode for
different β and γ at Re as indicated. The wedge angle is tan(φ) = 0.125 in all cases. Positive (negative) terms
have a destabilising (stabilising) contribution.

The endogeneity distribution and the real part of the individual contributions in (2.20)
are examined to understand the local contribution to the growth rate of the destabilising
eigenmode and to compare the integral values contributing to the growth rate found
from the PKE analysis. The largest positive contribution to the growth rate of the global
mode comes from the production due to base flow shear, whereas the largest negative
contribution is from viscous dissipation of the perturbation velocity, consistent with the
energetics analysis in § 5.4. However, a distinction from the PKE analysis is that there
is also a destabilising contribution from convection of the perturbation by base flow
velocity and the pressure forces. The convection contribution is modest, being almost an
order of magnitude smaller than the production contribution. The pressure contribution
should intrinsically integrate to zero, so its small finite values (being four to five orders of
magnitude smaller than the production contributions) can be interpreted as an indication
of the error level in the endogeneity calculations. These values are compared in table 4.

The total endogeneity field shown in figure 18(e) shows a local stabilising contribution
(negative values) around the wedge tip and a destabilising contribution (positive values) to
the growth rate of the global mode in regions covering approximately half the constriction
height. Similar observation was also made for blockage ratios up to β = 0.8 all with
γ = 2 and β = 0.5, γ = 8, although the destabilising region occupied more of the
constriction gap with increasing blockage ratio. The individual component contributions
in figure 18(a–d) shown for β = 0.25, γ = 2 with tan(φ) = 0.125, reveal that the local
contribution from the perturbation pressure gradient term swamps the total endogeneity, as
Eσ closely resembles Eσ,pres for this case, and does not exhibit similarity to the wavemaker
region obtained from the sensitivity analysis (figure 17c,d). This contrasts with the case of
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(a) (b)

(c) (d)

(e)

–0.5 0.5

( f )

Figure 18. (a–d) Contribution of the real part of the individual endogeneity terms in (2.20) to the (e)
endogeneity distribution and ( f ) sum of the convection, production and the dissipation contributions for
β = 0.25, γ = 2 and tan(φ) = 0.125 at Re = 400. Note that E = Eσ as the global mode has a real eigenvalue.
Contours are shown in the linear scale at 20 equispaced levels; (a) Eσ,conv , (b) Eσ,prod , (c) Eσ,pres, (d) Eσ,diss,
(e) Eσ , ( f ) Eσ,conv + Eσ,prod + Eσ,diss.

2-D instability of the circular cylinder wake, in which the local endogeneity distribution
exhibited qualitative similarity to the wavemaker region found from the sensitivity studies
(Marquet & Lesshafft 2015; Paladini et al. 2019). However, the region contributing
most strongly to the growth rate predicted from the spanwise-averaged distribution of
all contributions from the PKE analysis (figure 16) resembles more closely the sum of
contributions from Eσ,conv , Eσ,prod and Eσ,diss, as shown in figure 18( f ). In contrast, the
endogeneity for a longer pitch case of γ = 16 at β = 0.5 (figure 19e) showed a different
distribution compared with the previous case, with a weaker distribution of the pressure
contribution, which also shows a different distribution from the aforementioned case. In
this case, the endogeneity distribution matches with the wavemaker region predicted from
an exogeneous approach (figure 17k,l) with a stronger distribution around the wedge tip
for the endogeneity field. The fields showing the individual contributions for this case are
shown in figure 19(a–d), with the sum of contributions from Eσ,conv , Eσ,prod and Eσ,diss
shown in figure 19(e). The sudden constriction due to the presence of the wedge might
be one possible reason for the local pressure gradient to contribute significantly to the
growth rate for all blockage ratios with the low pitch of γ = 2 investigated in this study.
The impact of the subsequent wedge relaxes further with increasing γ , which may explain
why the pressure term has a weaker influence on the endogeneity in the case of γ = 16,
β = 0.5.
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Flow in a channel with repeated wedge-shaped protrusions

(a) (b)

(c) (d)

(e) ( f )

–0.05 0.05

–0.0015 0.0015 –0.05 0.05

Figure 19. (a–d) Contribution of the real part of the individual endogeneity terms in (2.20) to the (e)
endogeneity distribution and ( f ) sum of the convection, production and the dissipation contributions for
β = 0.5, γ = 16 and tan(φ) = 0.125 at Re = 100. Note that E = Eσ as the global mode has a real eigenvalue.
Contours are shown in the linear scale at 20 equispaced levels; (a) Eσ,conv , (b) Eσ,prod , (c) Eσ,pres, (d) Eσ,diss,
(e) Eσ , ( f ) Eσ,conv + Eσ,prod + Eσ,diss.

7. Linear transient growth

A large transient growth associated with convective instabilities has been found in the
linearly stable region in similar channel flow set-ups such as BFS (Blackburn, Sherwin
& Barkley 2008b), rounded BFS (Marquet et al. 2008) and stenotic flows (Blackburn
et al. 2008b; Griffith et al. 2008). Such large transient amplification of disturbances over
short time scales can occur in flows due to non-modal interactions, potentially triggering
a bypass transition. By contrast, the analysis to follow demonstrates that both 2-D and 3-D
disturbances in the present set-up exhibit modest linear transient growth.

7.1. Optimal growth of 2-D disturbances
The 2-D optimal disturbances in the linearly stable 2-D regimes from § 5.1 are presented
for various combinations of β and γ over a range of Reynolds numbers. Optimal energy
gain for a range of Re is shown in figure 20(a) as a function of time τ for β = 0.25
with γ = 2. For Re > 40, the optimal mode achieves a gain exceeding unity, reaching
a maximum value Gmax at an optimal time τopt, both of which increase with increasing
Re. For Re � 400, a second peak with lower gain than the first peak is observed, which
is due to the interaction of the disturbance structure with the subsequent wedge and
the free shear layers near the vertical wall of the wedge. Eventually, the energy in the
disturbance structure monotonically decreases with increasing time horizon for all Re
in the range investigated. This is in agreement with the observation from the LSA,
where the 2-D perturbations are asymptotically stable. In the contour plot in figure 20(b),
log10 G(τ ) is plotted on the Re − τ plane. The point on the Re axis where log10 G(τ ) = 0
gives a Reynolds number ReE below which all perturbations decay without any transient
growth. For the case shown in figure 20(b) with β = 0.25 and γ = 2, ReE ≈ 42.09 while
Recr,2D = 446, as predicted from the stability analysis in § 5.1, the difference between
these Reynolds numbers indicating the range where convective instabilities may be excited
to an absolute state depending on the disturbance shape and amplitude.

The 2-D optimal modes (shown in the first panel of figure 21) are composed of
narrow inclined structures of alternately sign, opposing the mean flow direction that are
concentrated before the first separation point of the base flow after the wedge tip (xs3 in
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Figure 20. (a) Two-dimensional optimal growth log10 G(τ ) curves for Re from 40 to 430. Dashed horizontal
line represents the neutral line and, (b) contours of log10 G(τ ) (positive to negative shown as red to blue) plotted
on Re − τ plane for β = 0.25 with γ = 2, tan(φ) = 0.125.

figure 5). The linear evolution of the optimal mode at Re = 400 is elucidated in figure 21
and is also provided in the first video in the supplementary material available at https://
doi.org/10.1017/jfm.2022.200. Over time, the disturbances are advected downstream by
the base flow, and the slanted structures are slowly rotated to an upright orientation by the
background shear, suggesting the energy gain in the disturbance structure is by the 2-D
Orr mechanism (Orr 1907). On interaction with the subsequent wedge, the disturbance
structure also gains energy from the free shear layers about the wedge tip. This can be
observed from the increased density of line contours of PKE carried by the disturbance
as it impinges on the subsequent wedge (figure 21, panel corresponding to τopt). Similar
observation can be made from the energy contours corresponding to the subsequent peaks
labelled as T2 and T3 and T4 in figure 22 suggesting a contribution to the energy growth
of the disturbance at impingement on the wedge wall. The lower energy gain in the
subsequent peaks indicates that the optimal mode gains energy predominantly through
its tilting in the base flow direction (the Orr mechanism), as this feature is only present
through the primary E(t)/E(0) maximum.

The influence of γ and β on the disturbance energy on linear evolution starting from
the optimal mode is shown in figure 22. At β = 0.25 and large γ , the base flow reattaches
to the channel bottom wall well before the subsequent wedge (xr3 in figure 5) unlike at
γ � 2, where the recirculation region extends across the entire gap between the wedges.
The energy gain from the larger extent of the free shear layer near the wedge wall at
lower γ could possibly be the reason for a higher optimal energy gain in those cases.
The energy in successive peaks is also observed to be lower at higher γ (figure 22a)
since the disturbances decay much more in the gap before reaching the subsequent wedge.
Contours showing the linear evolution of the optimal mode for γ = 8 are provided in the
supplementary material. At a low pitch of γ = 2, increasing the blockage ratio also results
in a lower optimal growth (shown for β = 0.5 in figure 22b) since channel wall interactions
at large blockage ratios limit the tilting of the optimal disturbances, and hence their energy
gain. The linear evolution of the optimal mode for a higher blockage ratio case of β = 0.5,
γ = 2 at Re = 100 is also provided in the supplementary material.

The variation of Gmax and τopt for various combinations of β and γ are shown in
figure 23 for Reynolds numbers interpolated at Re/Recr,2D = 0.85 and 0.95. In the range
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–0.1 0.10

(a)

(d)

(g)

( j)

(b)

(e)

(h)

(k)

(c)

( f )

(i)

(l)

Figure 21. Spanwise perturbation vorticity (ω̂z) contours overlaid by perturbation kinetic energy contours
(black line contours) for β = 0.25, γ = 2 at Re = 400, and its linear evolution over time. The initial condition at
t = 0 corresponds to the optimal mode, and the subsequent time instants of each frame correspond to the marker
positions shown in figure 22(a). The dividing streamline of the base flow is shown in white. The ω̂z contours
are shown in linear scale at 20 equispaced levels whereas energy iso-contours are shown at 5 equispaced levels
between 0 and 0.0006; (a) t = 0, (b) t = 2, (c) t = 3, (d) t = τopt = 5.5, (e) t = 8, ( f ) t = 10, (g) t = 11.2 (T2),
(h) t = 12.7, (i) t = 15.2 (T3), (j) t = 16.8 (T4), (k) t = 20, (l) t = 37.8.
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t
Figure 22. Comparison of energy curve obtained by linear evolution of 2-D optimal mode for different (a) γ

at β = 0.25 and (b) β at γ = 2. Wedge angle tan(φ) = 0.125 for all the cases.

of parameters investigated, Gmax is highest in the range 1 � γ � 4 for β = 0.25, whereas
for β = 0.5, Gmax decreases monotonically until γ ≈ 8 and a slightly higher value is found
at γ = 16. The optimal time horizon (τopt) appears to increase with γ in the low range for
both β = 0.25 and 0.5, and decreases slowly at higher γ � 8 for β = 0.25, whereas it
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(a) (b)
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Re = 0.85Recr,2D

Re = 0.95Recr,2D
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Re = 0.95Recr,2D

β = 0.5

Figure 23. Variation of (a) Gmax and (b) τopt with γ for β = 0.25 (filled symbols, solid line) and β = 0.5
(open symbols, dashed line). Square symbols are interpolated at Re = 0.85Recr,2D and triangle symbols at
Re = 0.95Recr,2D.
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Gmax ∼ e3.09ε
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Figure 24. (a) Variation of the optimal energy growth G(τ ) represented as functions of spanwise wavenumber
(k) and time (τ ) for β = 0.5, γ = 2 at ε = 0.92 and (b) variation of maximum optimal energy growth Gmax
with ε = Re/Recr,3D. For all the cases tan(φ) = 0.125.

appears to plateau for β = 0.5. The largest energy gain possible (Gmax) is consistently
lower at a higher blockage ratio of β = 0.5 than those obtained at β = 0.25 for all γ in
this study due to the limited tilting of the disturbances explained earlier.

7.2. Optimal growth of 3-D disturbances
Attention is now turned to the optimal growth of 3-D disturbances for subcritical
Reynolds numbers, i.e. Re < Recr,3D. For different Reynolds numbers, transient growth
amplification factors are determined for various spanwise wavenumbers k and time
horizons τ . For each τ , optimal energy growth increases to maximum, before decreasing
with increasing k. An iso-surface plot showing the variation of the optimal energy
growth for β = 0.5, γ = 2 at ε = Re/Recr,3D = 0.92 is given in figure 24(a). An optimal
wavenumber kopt exists corresponding to Gmax for each Reynolds number.
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(a) (b)

Figure 25. Plot showing the positive (blue) and negative (yellow) streamwise vorticity (ω̂x) iso-contours of
the 3-D optimal mode for (a) β = 0.25, γ = 2, ε = 0.99 and (b) β = 0.8, γ = 2, ε = 0.98.

To demonstrate how the maximum optimal growth over all possible spanwise
wavenumbers Gmax changes on approaching Recr,3D and when varying blockage ratio and
pitch, three different geometric parameter cases are considered (figure 24b). At a lower
blockage ratio of β = 0.25 with γ = 2, and γ = 8, the maximum optimal growth varies
exponentially as Gmax ∼ e2.76ε and Gmax ∼ e3.09ε, respectively. At a higher blockage
ratio of β = 0.8 at γ = 2, an exponential increase in the maximum optimal growth,
Gmax ∼ e4.5ε was found, although the maximum growth remained a very modest
Gmax ∼ 10 even on approaching the critical Reynolds number for 3-D transition. The
implication of these results is that transient growth is unlikely to trigger a subcritical route
to instability (e.g. bypass transition ignited by strong transient growth) in this system. The
3-D optimal initial disturbance fields for all the investigated parameters take the form of
inclined streamwise opposite-signed structures lying along the inclined wedge surface and
are shown in figure 25 for selected cases. On linear evolution of these optimal modes, the
disturbance quickly takes the form of the linear global mode before decaying due to the
subcritical Reynolds numbers.

Although the energy gain observed in the current set-up is lower than in the BFS flow
(Blackburn et al. 2008a), rounded BFS flow (Marquet et al. 2008) and constricted flow
(Blackburn et al. 2008b), the energy gain mechanism remains similar. The subsequent
energy gain due to the streamwise-periodic set-up in this study (observed in 2-D transient
growth) is, however, novel. For comparison, maximum 2-D optimal growth Gmax for
the BFS (Blackburn et al. 2008a) and constricted flow set-ups (Blackburn et al. 2008b)
at Re = 500 and Re = 400 were Gmax ∼ 104, that for a slanted BFS at Re = 800 was
Gmax ∼ 102, while for the present set-up Gmax ∼ 101. The maximum 3-D optimal growth
for the BFS (Blackburn et al. 2008a) at ε ∼ 0.67 was Gmax ∼ 104, whereas for the present
set-up Gmax ∼ 101 at a similar ε value.

8. Weakly nonlinear interactions in 3-D transition

The linear analysis predicated on the assumption that perturbations are infinitesimally
small, thus excluded nonlinear effects. In this section, 3-D simulations are performed
to compare the flow structures in the linear and weakly nonlinear stage of the 3-D flow
evolution with the linear global modes found from LSA. The modest transient growth
predicted in § 7.2 suggests that subcritical instability triggered by transient growth is
unlikely to occur in this system (Reddy & Henningson 1993; Trefethen et al. 1993;
Henningson & Reddy 1994). Hence, a weakly nonlinear analysis using the Stuart–Landau
equation is used to deduce the nature of the departure from linear growth of the primary
bifurcation of the steady 2-D flow.

For the 3-D simulations, the out-of-plane domain length is selected to match the
wavelength of the dominant eigenmode predicted in § 5. The flow is initialised with the
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m 〈Ek〉 〈Ek,0〉 〈Ek,1〉 〈f 〉
4 103.4757648 97.7367472 2.2307017 0.3205642
8 103.3375062 97.9133503 2.1424547 0.3186637
16 103.2938412 97.8721093 2.1414328 0.3183805
32 103.2463183 97.8256900 2.1411869 0.3182413

Table 5. Convergence of flow properties with increasing number of Fourier modes (m) using a test case of β =
0.5, γ = 2, tan(φ) = 0.125, Re = 100. Quantities shown are the time-averaged values of the volume integral
of the kinetic energy of the flow 〈Ek〉, fundamental mode 〈Ek,0〉, dominant mode 〈Ek,1〉 and the time-averaged
friction factor, where the double overline represents the time average.

10–36

10–26

10–16

10–6

〈Ek,m〉

t = 215

t

t = 243

0 100

2 3

1

200 300 400

Figure 26. Evolution of domain integral of kinetic energy (〈Ek,m〉) in 16 Fourier modes with time for β =
0.25, Re = 400. The dashed bold line represents the energy in the fundamental mode (〈Ek,0〉), energy in the
dominant mode (〈Ek,1〉) is given by the solid bold line. The other thin lines represent the energy evolution in the
subdominant modes. The transient, linear and nonlinear saturation regions are given by 1, 2 and 3, respectively.
A section of region 1 is shown for clarity.

2-D base flow solution superimposed with small random 3-D perturbations. Resolution
testing found m = 16 Fourier modes to sufficiently resolve the flow, with parameters
converging to within 0.05 % relative to the solutions from the m = 32 test case, as shown
in table 5. The simulations in this section thus use 16 Fourier modes to discretise the flow
variables in the spanwise direction.

To elucidate the evolution of three-dimensionality in the flow, a case with β = 0.25 was
evolved for Re = 400, well beyond the critical Reynolds number of Recr = 86.85 predicted
in § 5. A plot showing the time evolution of the kinetic energy of each Fourier mode is
given in figure 26. The evolution may be divided into three regions. The initial stage (1)
represents the short-term dynamics of the flow where a transient rise in the energy of first
three Fourier modes can be observed, followed by a linear growth stage (2). The growth
rate of the leading Fourier mode here (d〈Ek,1/2〉/dt = 0.09080) matches well with the
growth rate predicted from linear stability analysis (σ = 0.09077). Stage 3 is where the
nonlinear dynamics dominates the flow dynamics. The flow structure in the linear stage
(t = 215) demonstrates that a structure consistent with the eigenmodes predicted from the
LSA (figure 13a) has emerged from the initial white-noise perturbation. It is also seen that
the flow structure holds resemblance to the linear mode even in the weakly nonlinear stage
(t = 243) as shown in figure 27.

To understand the nonlinear departure of the bifurcation from 2-D to 3-D states, the
Stuart–Landau equation is used. This model has been widely used to classify weakly
nonlinear features of the bifurcation in various flow simulations such as flows past
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(b)(a)

Figure 27. Plots showing the positive (blue) and negative (yellow) streamwise vorticity iso-contours of the
flow in the linear and weakly nonlinear stages as it evolves for β = 0.25, γ = 2, tan(φ) = 0.125 at Re = 400.
The corresponding times are indicated in figure 26; (a) t = 215 (linear stage), (b) t = 243 (weakly nonlinear
stage).

(b)(a)

0
–0.05

0.05

0.10

0d
 l

o
g
 |A

|/
 d

t

1 2 3 4

|A|2
5 6 7 8 0

–0.05

0.05

0.10

0

1 2 3 4

|A|2
5 6

Figure 28. Plots of d log |A|/dt against |A|2 with a negative slope (l > 0) showing a supercritical bifurcation
of the 2-D flow to a 3-D state. The growth rate of the corresponding critical eigenmode is represented as a
diamond symbol. The cases here have fixed parameters γ = 2 and tan(φ) = 0.125; (a) β = 0.25, Re = 400,
(b) β = 0.5, Re = 100.

cylindrical (Provansal, Mathis & Boyer 1987; Dušek, Gal & Frauniè 1994), spherical
(Thompson et al. 2001), triangular (Ng et al. 2018) and toroidal bluff bodies (Sheard,
Thompson & Hourigan 2004a,b), and confined flows such as a 180 degree bend (Sapardi
et al. 2017). In this model (Landau & Lifshitz 1976), the evolution of the perturbations is
modelled as a complex oscillator following:

dA
dt

= (σ + iω)A − l(1 + ic)|A|2A + . . . , (8.1)

where A = |A|eiφt is the complex amplitude of a signal. The real part of (8.1) thus reduces
to (at second order)

d log |A|
dt

= σ − l|A|2. (8.2)

The sign of l is an indicator of the type of bifurcation of the flow. When l > 0 (negative
slope at |A| ≈ 0), the bifurcation is supercritical, whereas when l < 0, the bifurcation is
subcritical.

For the present study, the time history of the leading Fourier mode’s energy was used
as the signal (A in (8.1)) and the analysis was carried out for β in the range 0.125 − 0.5
at γ = 2 and for β = 0.25 at an intermediate γ = 4. Figure 28 shows plots of d log |A|/dt
against |A|2 for two representative cases. The bifurcation was found to be supercritical
for all tested parameter combinations. As the underlying eigenmodes for each of these
cases have positive real eigenvalues, the flow undergoes a change to the 3-D state via a
supercritical pitchfork bifurcation.
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9. Conclusions

This study characterises the flow in a channel with repeated flow-facing wedge-shaped
protrusions. Two-dimensional transition in the flow was found to occur through a global
complex mode appearing as a wave spanning the streamwise domain length. Increasing
blockage ratio, pitch and wedge angle prepones this transition to a lower Re. The onset of
three-dimensionality in the 2-D base flow occurs through a stationary mode, well before
the onset of the 2-D instability. This holds for the ranges of blockage ratios and pitch
values that were considered in this study. Increasing blockage ratio and decreasing pitch
both result in a decrease in the critical Reynolds number Recr,3D. Onset of 3-D effects
in the flow is observed mostly near the wedge. The instability is characterised by the
formation of a streamwise velocity streak induced by the counter-rotating streamwise
vortices near the wedge tip. The lift-up mechanism is found to be responsible for this
instability. A PKE budget of the instability modes showed that the production due to
horizontal shear in the base flow is responsible for most of the energy gain in all cases.
The corresponding locations of maximum shear were in the region ahead and after
the wedge tip. The wavemaker region in the flow found though sensitivity analysis is
similarly located, further supporting the previous finding from energetics analysis. The
significant regions in the flow for placement of an active or passive control mechanism are
identified through receptivity and sensitivity analysis. For most of the cases considered,
the local pressure gradient component of the endogeneity distribution was found to feature
prominently in the total endogeneity field, the sum of which retrieves the growth rate of the
global eigenmode, despite its net contribution being intrinsically zero. This emphasises its
role in the local endogenous eigendynamics in this system. It is also found that the flow
does not aid a significant transient energy growth, unlike similar confined flow set-ups
(Blackburn et al. 2008a,b; Marquet et al. 2008). Three-dimensional flow computations
verified the predictions from the LSA, showing that these flows are unstable through a
global linear mode. The onset of the 3-D state was also shown to be via a supercritical
pitchfork bifurcation for selected parameter combinations.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.200.
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Appendix A. Implementation of constant flow rate

The implementation in the numerical scheme to obtain a constant flow rate is
described. Pressure is decomposed into a background pressure gradient part and
a streamwise-periodic fluctuating part, p = p̃ − F(t)x; thus the momentum equation
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(2.2) becomes
∂u
∂t

+ (u · ∇)u = F(t)ex − ∇p̃ + 1
Re

∇2u, (A1)

where F(t) is a time-varying horizontal forcing function that is dynamically adjusted to
obtain a desired flow rate.

Following a similar approach to that described in Karniadakis et al. (1991), to integrate
from time n to time n + 1, the equations are cast at the future time, the time derivative term
is approximated using backwards differencing, and an appropriate-order extrapolation of
the nonlinear term to the future time is used. The momentum equation then becomes

γ0un+1 − ∑Ji−1
q=0 αqun−q

t
=

Je−1∑
q=0

βqN(un−q) + Fn+1ex − ∇p̃n+1 + 1
Re

∇2un+1. (A2)

Under the third-order scheme, the coefficients are γ0 = 11/6, α0 = 3, α1 = −3/2, α2 =
1/3, β0 = 3, β1 = −3 and β2 = 1.

The solution of the momentum equation is split into four sub-steps, which are identical
to the standard scheme, except for the addition of the second sub-step

u∗ − ∑Ji−1
q=0 αqun−q

t
=

Je−1∑
q=0

βqN(un−q),

u∗∗ − u∗

t
= Fn+1ex,

u∗∗∗ − u∗∗

t
= −∇p̃n+1,

γ0un+1 − u∗∗∗

t
= 1

Re
∇2un+1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A3)

The sequence of calculations is therefore

(i) Extrapolate velocity field to time n + 1 : ũn+1 = ∑Je−1
q=0 βq(un−q).

(ii) Evaluate first intermediate velocity field from u∗ = ∑Ji−1
q=0 αqun−q + tN(ũn+1).

(iii) The forcing is determined by prescribing the target velocity on u∗∗ (note that
intermediate velocity fields are upscaled by α0; here, utarget is the desired mean
horizontal velocity): Fn+1 = (γ0utarget − u∗)/t.

(iv) Form second intermediate velocity field from computed forcing u∗∗ = u∗ +
tFn+1.

(v) Obtain pressure from solution of Poisson equation ∇2p̃n+1 = (∇ · u∗∗)/t (this
is constructed by taking the divergence of the pressure sub-step, and enforcing
the divergence-free constraint on the second intermediate velocity field; pressure
boundary conditions are imposed during this calculation).

(vi) Evaluate third intermediate velocity field from u∗∗∗ = u∗∗ − t∇p̃n+1.
(vii) Obtain the final velocity field from the Helmholtz equations ∇2un+1 −

(γ0Re)/t un+1 = −Re/t u∗∗ (the velocity boundary conditions are imposed
during this calculation).
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