
4
Nonperturbative corrections

The effective Lagrangian for heavy quarks has an expansion in powers of αs(m Q)
and 1/m Q . The αs corrections were discussed in the previous chapter; the 1/m Q

corrections are discussed here. By dimensional analysis, these corrections are
proportional to �QCD/m Q , necessarily involve the hadronic scale �QCD, and
are nonperturbative in origin. By using the effective Lagrangian approach, we
can systematically include these nonperturbative corrections in computations
involving hadrons containing a heavy quark.

4.1 The 1/mQ expansion

The HQET Lagrangian including 1/m Q corrections can be derived from the
QCD Lagrangian following the procedure of Sec. 2.6. Substituting Eq. (2.43)
into the QCD Lagrangian gives

L = Q̄v (iv · D) Qv − Q̄v(iv · D + 2m Q)Qv + Q̄vi /DQv + Q̄vi /DQv, (4.1)

using /vQv = Qv and /vQv = −Qv. It is convenient to project four vectors into
components parallel and perpendicular to the velocity v. The perpendicular com-
ponent of any four-vector X is defined by

Xμ
⊥ ≡ Xμ − X · vvμ. (4.2)

The i /D factors in Eq. (4.1) can be replaced by i /D⊥ since Q̄v/vQv = 0.
The field Qv corresponds to an excitation with mass 2m Q , which is the energy

required to create a heavy quark–antiquark pair. Here Qv can be integrated out
of the theory for physical situations where the use of HQET is justified. This can
be done at tree level by solving the Qv equation of motion,

(iv · D + 2m Q)Qv = i /D⊥Qv, (4.3)
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4.1 The 1/m Q expansion 103

and substituting back into the Lagrangian Eq. (4.1), to give

L = Q̄v

(
iv · D + i /D⊥

1

2m Q + iv · D
i /D⊥

)
Qv

= Q̄v

(
iv · D − 1

2m Q
/D⊥ /D⊥

)
Qv + · · · , (4.4)

where the ellipses denote terms of higher order in the 1/m Q expansion. It is
convenient to express the term suppressed by 1/m Q as a sum of two terms, one
that violates heavy quark spin symmetry and one that doesn’t. Specifically,

/D⊥ /D⊥ = γμγν Dμ
⊥Dν

⊥ = D2
⊥ + 1

2
[γμ, γν]Dμ

⊥Dν
⊥. (4.5)

Using the identity [Dμ, Dν] = igGμν , and the definition σμν = i[γμ, γν]/2,
this becomes

/D⊥ /D⊥ = D2
⊥ + g

2
σμνGμν. (4.6)

It is not necessary to include any ⊥ labels on the μ and ν indices of the σμν term,
since Q̄vσμνv

μQv = 0. Substituting Eq. (4.6) into Eq. (4.4) gives

L = L0 + L1 + · · · , (4.7)

where L0 is the lowest order Lagrangian Eq. (2.45), and

L1 = −Q̄v

D2
⊥

2m Q
Qv − gQ̄v

σμνGμν

4m Q
Qv. (4.8)

In the nonrelativistic constituent quark model, the term Q̄v(D2
⊥/2m Q)Qv is the

heavy quark kinetic energy p2
Q/2m Q . It breaks heavy quark flavor symmetry

because of the explicit dependence on m Q , but it does not break heavy quark
spin symmetry. The magnetic moment interaction term−gQ̄v(σμνGμν/4m Q)Qv

breaks both heavy quark spin and flavor symmetries.
Equation (4.8) has been derived at tree level. Including loop corrections

changes the Lagrangian to

L1 = −Q̄v

D2
⊥

2m Q
Qv − a(μ) gQ̄v

σμνGμν

4m Q
Qv. (4.9)

The tree-level matching calculation Eq. (4.8) implies that

a(m Q) = 1 + O[αs(m Q)]. (4.10)

The μ dependence of the magnetic moment operator is canceled by the μ de-
pendence of a(μ). In the leading logarithmic approximation

a(μ) =
[
αs(m Q)

αs(μ)

]9/(33−2Nq )

, (4.11)
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104 Nonperturbative corrections

where Nq is the number of light quark flavors. Loop effects do not change the
coefficient of the heavy quark kinetic energy term. In the next section it is shown
that this is a consequence of the reparameterization invariance of the effective
Lagrangian.

4.2 Reparameterization invariance

The heavy quark momentum pQ is given by

pQ = m Qv + k, (4.12)

where v is the heavy quark four velocity and k is its residual momentum. This
decomposition of pQ into v and k is not unique. Typically k is of the order of
�QCD, which is much smaller than m Q . A small change in the four velocity of the
order of �QCD/m Q can be compensated by a change in the residual momentum:

v → v + ε/m Q,

k → k − ε.
(4.13)

Since the four velocity satisfies v2 = 1, the parameter ε must satisfy

v · ε = 0, (4.14)

neglecting terms of order (ε/m Q)2. In addition to the changes of v and k in
Eqs. (4.13), the heavy quark spinor Qv must also change to preserve the constraint
/vQv = Qv. Consequently, if

Qv → Qv + δQv, (4.15)

δQv satisfies (
/v + ε/

m Q

)
(Qv + δQv) = Qv + δQv. (4.16)

At linear order in (ε/m Q), one finds

(1 − /v)δQv = ε/

m Q
Qv. (4.17)

Therefore a suitable choice for the change in Qv is

δQv = ε/

2m Q
Qv. (4.18)

This satisfies /vδQv = −δQv, since v · ε = 0, so that Eq. (4.17) holds. The
solution to Eq. (4.17) is not unique, and we have chosen one that preserves the
normalization of the iv · D term. Other choices are equivalent to the above by a
simple redefinition of the field.
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4.3 Masses 105

In summary, the Lagrange density in Eq. (4.7) must be invariant under the
combined changes

v → v + ε/m Q,

Qv → eiε · x

(
1 + ε/

2m Q

)
Qv,

(4.19)

where the prefactor eiε · x causes a shift in the residual momentum k → k − ε.
Under the transformation in Eq. (4.19),

L0 → L0 + 1

m Q
Q̄v(iε · D)Qv,

L1 → L1 − 1

m Q
Q̄v(iε · D)Qv.

(4.20)

Consequently the Lagrangian, L0 + L1, is reparameterization invariant. This
would not be the case if the coefficient of the kinetic energy deviated from unity.
There can be no corrections to the coefficient of the kinetic energy operator
as long as the theory is regularized in a way that preserves reparameterization
invariance. Dimensional regularization is such a regulator, since the arguments
made in this section hold in n dimensions.

An important feature of reparameterization invariance is that it connects differ-
ent orders in the 1/m Q expansion, since the transformation Eq. (4.19) explicitly
involves m Q . Thus it can be used to fix the form of some 1/m Q corrections using
only information from lower order terms in 1/m Q , as was done for the kinetic
energy term.

4.3 Masses

Heavy quark symmetry can be used to obtain relations between hadron masses.
The hadron mass in the effective theory is m H − m Q , since the heavy quark mass
m Q has been subtracted from all energies in the field redefinition in Eq. (2.43).
At order m Q , all heavy hadrons containing Q are degenerate, and have the same
mass m Q . At the order of unity, the hadron masses get the contribution

1

2

〈
H (Q)

∣∣H0
∣∣H (Q)〉 ≡ �̄, (4.21)

where H0 is the order 1/m0
Q terms in the HQET Hamiltonian obtained from

the Lagrangian term Q̄v(iv · D)Qv, as well as the terms involving light quarks
and gluons. In this section, the hadron states |H (Q)〉 are in the effective theory
with v = vr = (1, 0). The factor 1/2 arises from the normalization introduced in
Sec. 2.7. Here �̄ is a parameter of HQET and has the same value for all particles
in a spin-flavor multiplet. The values will be denoted by �̄ for the B, B∗, D,
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106 Nonperturbative corrections

and D∗ states, �̄� for the �b and �c, and �̄� for the �b, �∗
b , �c, and �∗

c . In
the SU(3) limit, �̄ does not depend on the light quark flavor. If SU(3) breaking
is included, �̄ is different for the Bu,d and Bs mesons, and will be denoted by
�̄u,d and �̄s , respectively.

At order 1/m Q , there is an additional contribution to the hadron masses given
by the expectation value of the 1/m Q correction to the Hamiltonian:

H1 = −L1 = Q̄v

D2
⊥

2m Q
Qv + a(μ)gQ̄v

σαβGαβ

4m Q
Qv. (4.22)

The matrix elements of the two terms in Eq. (4.22) define two nonperturbative
parameters, λ1 and λ2:

2λ1 = −〈
H (Q)

∣∣Q̄vr D2
⊥Qvr

∣∣H (Q)
〉
,

16(SQ · S�)λ2(m Q) = a(μ)
〈
H (Q)

∣∣Q̄vr gσαβGαβ Qvr

∣∣H (Q)
〉
.

(4.23)

Here λ1 is independent of m Q , and λ2 depends on m Q through the logarithmic
m Q dependence of a(μ) in Eq. (4.11); λ1,2 have the same value for all states
in a given spin-flavor multiplet and are expected to be of the order of �2

QCD.
The naive expectation that the heavy quark kinetic energy is positive suggests
that λ1 should be negative. The λ2 matrix element transforms like SQ · S� under
the spin symmetry, since that is the transformation property of Q̄vr σαβGαβ Qvr .
Only the two upper components of Qvr are nonzero, since γ 0 Qvr = Qvr , and
Q̄vr σαβGαβ Qvr reduces to the matrix element of Q̄vrσ · BQvr , where B is the
chromomagnetic field. The operator Q̄vrσQvr is the heavy quark spin, and the
matrix element of B in the hadron must be proportional to the spin of the light
degrees of freedom, by rotational invariance and time-reversal invariance, so
that the chromomagnetic operator contribution is proportional to SQ · S�. Using
SQ · S� = (J2 − S2

Q − S2
�)/2, one finds that

m B = mb + �̄ − λ1

2mb
− 3λ2(mb)

2mb
,

m B∗ = mb + �̄ − λ1

2mb
+ λ2(mb)

2mb
,

m�b = mb + �̄� − λ�,1

2mb
,

m�b = mb + �̄� − λ�,1

2mb
− 2λ�,2(mb)

mb
,

m�∗
b

= mb + �̄� − λ�,1

2mb
+ λ�,2(mb)

mb
,

(4.24)
m D = mc + �̄ − λ1

2mc
− 3λ2(mc)

2mc
,
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4.4 �b → �ceν̄e decay 107

m D∗ = mc + �̄ − λ1

2mc
+ λ2(mc)

2mc
,

m�c = mc + �̄� − λ�,1

2mc
,

m�c = mc + �̄� − λ�,1

2mc
− 2λ�,2(mc)

mc
,

m�∗
c

= mc + �̄� − λ�,1

2mc
+ λ�,2(mc)

mc
.

The average mass of a heavy quark spin symmetry multiplet, e.g., (3m P∗ + m P )/4
for the meson multiplet, does not depend on λ2. The magnetic interaction λ2 is
responsible for the B∗ − B and D∗ − D splittings. The observed value of the
B∗ − B mass difference gives λ2 (mb) � 0.12 GeV2.

Equations (4.24) give the meson mass relation

0.49 GeV2 � m2
B∗ −m2

B � 4λ2 � m2
D∗ −m2

D � 0.55 GeV2, (4.25)

up to corrections of order 1/mb,c, and ignoring the weak m Q dependence of λ2.
Similarly, one finds that

90 ± 3 MeV = m Bs − m Bd = �̄s − �̄u,d = m Ds − m Dd = 99 ± 1 MeV,

345 ± 9 MeV = m�b − m B = �̄� − �̄u,d = m�c − m D = 416 ± 1 MeV.

(4.26)

The parameters λ1 and λ2 are nonperturbative parameters of QCD and have not
been computed from first principles. It might appear that very little has been
gained by using Eqs. (4.24) for the hadron masses in terms of �̄, λ1, and λ2.
However, the same hadronic matrix elements also occur in other quantities, such
as form factors and decay rates. One can then use the values of �̄, λ1, and λ2

obtained by fitting to the hadron masses to compute the form factors and decay
rates, without making any model dependent assumptions. An example of this is
given in Problems 2–3.

4.4 Λb → Λceν̄e decay

The HQET predictions for �b → �c form factors were discussed earlier in
Sec. 2.11. Recall that the most general form factors are

〈�c(p′, s ′)|c̄γ νb|�b(p, s)〉 = ū(p′, s ′)[ f1γ
ν + f2v

ν + f3v
′ν]u(p, s),

〈�c(p′, s ′)|c̄γ νγ5b|�b(p, s)〉 = ū(p′, s ′)[g1γ
ν + g2v

ν + g3v
′ν]γ5u(p, s),

(4.27)

where p′ = m�cv
′ and p = m�bv. It is convenient for the HQET analysis to

consider the form factors f j and g j as functions of the dimensionless variable
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108 Nonperturbative corrections

w = v · v′. Heavy quark symmetry implies that

〈�c(v′, s ′)|c̄v′�bv|�b(v, s)〉 = ζ (w) ū(v′, s ′)�u(v, s), (4.28)

with ζ (1) = 1. Consequently the form factors are

f1 = g1 = ζ (w), f2 = f3 = g2 = g3 = 0. (4.29)

In Sec. 3.4 perturbative QCD corrections to the matching of heavy quark currents
were computed. For the vector current, new operators of the form vμc̄v′bv and
v′μc̄v′bv were induced with calculable coefficients. These additional terms do
not represent any loss of predictive power because Eq. (4.28) gives the matrix
elements of these new operators in terms of the same Isgur-Wise function ζ (w).

In this section, nonperturbative corrections suppressed by �QCD/mc,b are
considered. These corrections arise from two sources. There are time-ordered
products of the 1/m Q terms in the Lagrangian with the heavy quark current.
These terms can be thought of as correcting the hadron states in HQET at order
1/m Q , or equivalently, as producing a 1/m Q correction to the current, and leaving
the states unchanged. For example, the chromomagnetic 1/mc correction to the
Lagrangian gives a correction to the current c̄v′�bv of

−i
a(μ)

2

∫
d4xT

(
gc̄v′

σμνGμν

2mc
cv′

∣∣∣∣
x

c̄v′�bv

∣∣∣∣
0

)
. (4.30)

Spin symmetry implies that for �b → �c matrix elements in HQET, the above
quark–gluon operator is equivalent to the hadronic operator

�̄(c)(v′, s ′)σμν

(1 + /v′)
2

��(b)(v, s)
Xμν

mc
, (4.31)

where Xμν depends on v and v′ and is antisymmetric in its indices μ and ν.
The σμν matrix must be next to �̄(c)(v′, s ′), and the � matrix must be next to
�(b)(v, s) because these matrices were next to c̄v′ and bv in Eq. (4.30). The
projector (1 + /v′)/2 arises because σμν and � were multiplied on the right and
left by cv′ and c̄v′ , respectively, in Eq. (4.30). The only possibility for X is
Xμν ∝ vμv′

ν − vνv
′
μ, with the constant of proportionality a function of w. With

this form for Xμν , Eq. (4.31) is zero since (1 + /v′)σμν(1 + /v′)v′
μ = 0. Thus

the chromomagnetic 1/mc correction to the charm quark part of the Lagrangian
has no effect on the �b → �ceν̄e form factors. Clearly, the same conclusion
holds for the 1/mb chromomagnetic correction to the bottom quark part of the
Lagrangian.

The kinetic energies of the bottom and charm quarks do not violate heavy quark
spin symmetry so they preserve f2 = f3 = g2 = g3 = 0 and can be absorbed into
a redefinition of the Isgur-Wise function ζ (w). It is important to know if this
correction to ζ preserves the normalization condition ζ (1) = 1 at zero recoil.
One can show that the normalization is preserved by an argument similar to
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4.4 �b → �ceν̄e decay 109

that used in proving the Ademollo-Gatto theorem. The 1/m Q kinetic energy
term in the Lagrange density changes the |�Q(v, s)〉 state in HQET to the state
|�Q(v, s)〉 + (ε/m Q)|SQ(v, s)〉 + · · · , where |SQ(v, s)〉 is a state orthogonal to
|�Q(v, s)〉, ε is of the order of �QCD, and the ellipses denote terms suppressed by
more powers of 1/m Q . At zero recoil, c̄v�bv is a charge of heavy quark spin flavor
symmetry so it takes |�b(v, s)〉 to the state |�c(v, s)〉, which is orthogonal to
|Sc(v, s)〉. Consequently at order 1/m Q the heavy quark kinetic energies preserve
Eq. (4.29) and do not change the normalization of ζ at zero recoil. Equivalently,
one can use an analysis analogous to that for the chromomagnetic operator. The
time-ordered product

−i
∫

d4xT

(
gc̄v′

D2
⊥

2mc
cv′

∣∣∣∣
x

c̄v′�bv

∣∣∣∣
0

)
(4.32)

is equivalent to the hadronic operator

�̄(c)(v′, s ′)
(1 + /v′)

2
��(b)(v, s)

χ1

mc
, (4.33)

where χ1 is an arbitrary function of w. Similarly, the b-quark kinetic energy
gives a correction term

�̄(c)(v′, s ′)�
(1 + /v)

2
�(b)(v, s)

χ1

mb
. (4.34)

The two χ1’s are the same (see Problem 4), since one can relate the form of
the matrix elements of the two possible time-ordered products by v ↔ v′ and
c ↔ b. Equations (4.33) and (4.34) give the following correction terms to the
form factors:

δ f1 = χ1

(
1

mc
+ 1

mb

)
,

δg1 = χ1

(
1

mc
+ 1

mb

)
,

δ f2 = δ f3 = δg2 = δg3 = 0.

(4.35)

This corresponds to a redefinition of the Isgur-Wise function:

ζ (w) → ζ (w) + χ1(w)

(
1

mc
+ 1

mb

)
. (4.36)

At zero recoil, for mb = mc, the vector current matrix element is normalized,
since it is a symmetry generator of the full QCD theory. Since ζ (1) = 1, this
implies that χ1(1) = 0. As a result, the effects of χ1 can be reabsorbed into ζ by
the redefinition in Eq. (4.36), without affecting the normalization at zero recoil.

In addition to the 1/m Q corrections to the Lagrange density, there are order
1/m Q terms that correct the relation between currents in full QCD and HQET.
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110 Nonperturbative corrections

These terms arise when one includes the 1/m Q corrections to the relation between
the quark fields in QCD and HQET. At tree level,

Q = e−im Qv · x
(

1 + i
/D

2m Q

)
Qv, (4.37)

where the relation in Eq. (2.43) and the solution for Qv in Eq. (4.3) have been
used. One could equally well have a ⊥ subscript on the covariant derivative.
These two forms for Eq. (4.37) are equivalent, since the difference vanishes by
the equation of motion (v · D)Qv = 0. Using Eq. (4.37) the relation between the
QCD current and HQET operators to order 1/m Q is

c̄γ νb = c̄v′

(
γ ν − i

←
Dμ

2mc
γ μγ ν + γ νγ μ

i Dμ

2mb

)
bv,

c̄γ νγ5b = c̄v′

(
γ νγ5 − i

←
Dμ

2mc
γ μγ νγ5 + γ νγ5γ

μ
i Dμ

2mb

)
bv.

(4.38)

Heavy quark spin symmetry implies for �b → �c matrix elements in HQET,
one can use

c̄v′ i
←
Dμ�bv = �̄(c)(v′, s ′)��(b)(v, s)[Avμ + Bv′

μ], (4.39)

where A and B are functions of w. The equation of motion (iv′ · D)cv′ = 0
implies that contracting v′μ into the above give zero, so

B = −Aw. (4.40)

The function A can be expressed in terms of �̄� and the Isgur-Wise function ζ .
To show this note that

〈�c(v′, s ′)|i∂μ(c̄v′�bv)|�b(v, s)〉
= [(

m�b − mb
)
vμ − (

m�c − mc
)
v′

μ

]〈�c(v′, s ′)|c̄v′�bv|�b(v, s)〉
= �̄�(v − v′)μζ ū(v′, s ′)�u(v, s). (4.41)

So for �b → �c matrix elements in HQET,

i∂μ(c̄v′�bv) = c̄v′ i
←
Dμ�bv + c̄v′�i Dμbv

= �̄�(v − v′)μζ�̄(c)(v′, s ′)��(b)(v, s). (4.42)

Contracting vμ into this and using the equation of motion (ivμDμ)bv = 0 implies
that

A(1 − w2) = �̄�ζ (1 − w), (4.43)
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giving

A = �̄�ζ (w)

1 + w
. (4.44)

In summary, putting all the pieces together gives

c̄v′ i
←
Dμ�bv = �̄�ζ

1 + w
�̄(c)(v′, s ′)��(b)(v, s)(vμ − wv′

μ). (4.45)

For the operator with the derivative on the bottom quark, one uses

c̄v′�i Dμbv = −(b̄vi
←
Dμ�̄cv′)†

= − �̄�ζ

1 + w
�̄(c)(v′, s ′)��(b)(v, s)(v′

μ − wvμ). (4.46)

Using these results with � = γ μγ ν , and so on, together with the fact that the
effect of 1/m Q corrections to the Lagrangian can be absorbed into a redefinition
of ζ , yields the following expression for the �b → �ceν̄e form factors at order
1/m Q :

f1 =
[

1 +
(

�̄�

2mc
+ �̄�

2mb

)]
ζ (w),

f2 = −�̄�

mc

(
1

1 + w

)
ζ (w),

f3 = −�̄�

mb

(
1

1 + w

)
ζ (w),

g1 =
[

1 −
(

�̄�

2mc
+ �̄�

2mb

)(
1 − w

1 + w

)]
ζ (w),

g2 = −�̄�

mc

(
1

1 + w

)
ζ (w),

g3 = �̄�

mb

(
1

1 + w

)
ζ (w).

(4.47)

The leading order predictions for the form factors in Eq. (4.29) involved a single
unknown function ζ (w). The result including 1/m Q corrections involves a single
unknown function, as well as the nonperturbative constant �̄�. Many of the
leading order relations survive even when the 1/m Q corrections are included
in �b decay form factors. In the next section, we will see that fewer relations
hold for meson decay including 1/m Q corrections, but some important ones
continue to hold even at this order. The �QCD/m Q corrections are expected to
be numerically small, of the order of ∼10–20%.
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At the zero-recoil point w = 1, the matrix elements of the vector and axial
vector currents in �b decay become

〈�c(p′, s ′)|c̄γ νb|�b(p, s)〉 = [ f1 + f2 + f3]vν u(p′, s ′)u(p, s),

〈�c(p′, s ′)|c̄γ νγ5b|�b(p, s)〉 = g1 ū(p′, s ′)γ νγ5u(p, s).
(4.48)

One can see from Eq. (4.47) that at w = 1, f1 + f2 + f3 and g1 do not receive
any nonperturbative 1/m Q corrections, so that the decay matrix element has no
1/m Q corrections at zero recoil, a result known as Luke’s theorem. Note that
the individual form factors can have 1/m Q corrections at zero recoil, but the
matrix element does not. A similar result will be proven for B decays in the next
section.

4.5 B̄ → D(∗)eν̄e decay and Luke’s theorem

The analysis of 1/m Q corrections for �b → �c semileptonic decay can be re-
peated for B̄ → D(∗) semileptonic decay. To determine the 1/m Q corrections
using the weak currents in Eq. (4.38), one needs the matrix elements of c̄v′ i

←
Dμ�bv

and c̄v′�i Dμbv between B̄ and D(∗) meson states at leading order in 1/m Q . For
this, one can use

c̄v′ i
←
Dμ�bv = Tr H̄ (c)

v′ �H (b)
v Mμ(v, v′)

c̄v′�i Dμbv = −(b̄vi
←
Dμ�̄cv′)† = −Tr H̄ (c)

v′ �H (b)
v M̄μ(v′, v)

(4.49)

where

Mμ(v, v′) = ξ+(v + v′)μ + ξ−(v − v′)μ − ξ3γμ (4.50)

is the most general bispinor constructed out of v and v′. There is no term propor-
tional to εμαβνv

αv′βγ νγ5 since it can be eliminated by using the three-γ matrix
identity in Eq. (1.119) to write

−iεμαβνv
αv′βγ νγ5 = γμ/v/v

′ − vμ/v
′ − wγμ + v′

μ/v, (4.51)

which can be absorbed into the other terms using H (b)
v /v = −H (b)

v ,/v′ H̄ (c)
v′ = −H̄ (c)

v′ .
The equation of motion, (iv′ · D)cv′ = 0, implies that

ξ+(w + 1) − ξ−(w − 1) + ξ3 = 0. (4.52)

By an argument similar to that used to derive Eq. (4.41), one finds that for
B̄ → D(∗) matrix elements,

i∂μ(cv′�bv) = c̄v′ i
←
Dμ�bv + cv′�i Dμbv

= −�̄(v − v′)μ ξ Tr H̄ (c)
v′ �H (b)

v , (4.53)
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which implies using Eqs. (4.49) and (4.50) that

ξ−(w) = 1

2
�̄ξ (w). (4.54)

When combined with Eq. (4.52), this yields

ξ+(w) = w − 1

2(w + 1)
�̄ξ (w) − ξ3(w)

w + 1
. (4.55)

The 1/m Q corrections to the B̄ → D(∗) form factors that were defined in
Eq. (2.84) from the 1/m Q terms in the currents given in Eq. (4.38) are

δh+ = [(1 + w)ξ+ + ξ3]

(
1

2mc
+ 1

2mb

)
− (w − 1)ξ−

(
1

2mc
+ 1

2mb

)
,

δh− = [(1 + w)ξ+ + 3ξ3]

(
1

2mc
− 1

2mb

)
− (w + 1)ξ−

(
1

2mc
− 1

2mb

)
,

δhV = ξ−
(

1

mc
+ 1

mb

)
− ξ3

(
1

mb

)
,

(4.56)
δh A1 = ξ+

(
1

mc
+ 1

mb

)
+ ξ3

1 + w

(
1

mc
+ 2 − w

mb

)
,

δh A2 = (ξ+ − ξ−)

(
1

mc

)
,

δh A3 = −ξ3

(
1

mb

)
+ ξ−

(
1

mb

)
+ ξ+

(
1

mc

)
,

where ξ+ and ξ− are given in Eqs. (4.54) and (4.55).
One also needs to evaluate the 1/m Q corrections from the Lagrangian. The

time-ordered product of the c-quark chromomagnetic operator with the weak
currents, Eq. (4.30), can be written as

Tr H̄ (c)
v′ σμν

(1 + /v′)
2

�H (b)
v

Xμν

2mc
, (4.57)

as for the �b → �c case. The only difference is that Xμν is now a general bispinor
that is antisymmetric in μ and ν. The most general form for Xμν that does not
give a vanishing contribution is

Xμν = iχ2(vμγν − vνγμ) − 2χ3σμν. (4.58)

A similar result holds for the b-quark chromomagnetic moment. The c-quark
kinetic energy term gives a time-ordered product contribution

−Tr H̄ (c)
v′

(1 + /v′)
2

�H (b)
v

χ1

mc
, (4.59)
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with a similar expression for the b-quark kinetic energy. These give

δh+ = χ1

(
1

mc
+ 1

mb

)
− 2(w − 1)χ2

(
1

mc
+ 1

mb

)
+ 6χ3

(
1

mc
+ 1

mb

)
,

δh− = 0,

δhV = χ1

(
1

mc
+ 1

mb

)
− 2(w − 1)χ2

(
1

mb

)
− 2χ3

(
1

mc
− 3

mb

)
,

(4.60)

δh A1 = χ1

(
1

mc
+ 1

mb

)
− 2(w − 1)χ2

(
1

mb

)
− 2χ3

(
1

mc
− 3

mb

)
,

δh A2 = 2χ2

(
1

mc

)
,

δh A3 = χ1

(
1

mc
+ 1

mb

)
− 2χ3

(
1

mc
− 3

mb

)
− 2χ2

(
1

mc
+ w − 1

mb

)
.

The expressions for the form factors are given by adding Eqs. (4.56) and (4.60)
to Eq. (2.95). In addition, there are the perturbative corrections discussed in
Chapter 3. We will see in the next section that there is a connection between
these two seemingly very different kinds of terms.

The 1/m Q corrections to the form factors are parameterized in terms of one
unknown constant �̄, and four unknown functions ξ3, χ1 − 3, so there are several
new functions in the expressions for the meson decay form factors at order 1/m Q .
At zero recoil, the B̄ → D matrix element of the vector current is normalized
when mc = mb. This gives the constraint χ1(1) + 6χ3(1) = 0. There is also a
constraint from the B̄∗ → D∗ matrix element being absolutely normalized at
w = 1 when mb = mc. We have not computed this matrix element, since it is
not relevant for the phenomenology of B decays. However, it is straightforward
to compute this matrix element at zero recoil, and show that the constraint is
χ1(1) − 2χ3(1) = 0, so that

χ1(1) = χ3(1) = 0. (4.61)

Using these relations, one can derive Luke’s result for the absence of 1/m Q

corrections to the meson matrix elements of the weak currents at zero recoil.
The B̄ → D matrix element of the vector current at zero recoil is proportional
to h+(1), and the B̄ → D∗ matrix element of the axial current at zero recoil is
proportional to h A1 (1). It is easy to see that δh+(1) = δh A1 (1) = 0 using the
results derived above.

The absence of 1/m Q corrections to the matrix elements of the weak cur-
rents at zero recoil allows for a precise determination of |Vcb| from experi-
mental semileptonic B decay data. Extrapolation of the experimental value for
d�(B̄ → D∗eν̄e)/dw toward w = 1 gives

|Vcb||FD∗(1)| = (35.2 ± 1.4) × 10−3, (4.62)
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where FD∗(w) was defined in Eq. (2.87). At zero recoil, the expression for
FD∗(w) simplifies, giving FD∗(1) = h A1 (1). In the m Q → ∞ limit FD∗(1) = 1;
however there are perturbative and nonperturbative corrections,

FD∗(1) = ηA + 0 + δ1/m2 + · · · , (4.63)

where ηA is the matching coefficient for the axial current, which was determined
in Chapter 3 at order αs . It has been computed to order α2

s , and is numerically
ηA � 0.96. The zero in Eq. (4.63) indicates the absence of order 1/mc,b nonper-
turbative corrections, and δ1/m2 + · · · stands for the nonperturbative corrections
of the order of 1/m2

Q and higher. Estimates of these corrections using phe-
nomenological models like the constituent quark model lead to the expectation
δ1/m2 + · · · � −0.05. Putting these results together, and assigning a 100% un-
certainty to the model-dependent estimate of the nonperturbative effects yields
the theoretical prediction

FD∗(1) = 0.91 ± 0.05. (4.64)

Combining this with the experimental value in Eq. (4.62) yields

|Vcb| = [38.6 ± 1.5(exp) ± 2.0(th)] × 10−3, (4.65)

for the b → c element of the CKM matrix.
The theoretical error in Eq. (4.64) is somewhat ad hoc. To have complete

confidence that the theoretical uncertainty in the value of Vcb is indeed only 5%,
and to try and reduce it further, it is necessary to have another high precision
determination of |Vcb| using a different method. Fortunately, as we shall see in
Chapter 6, |Vcb| can also be determined using inclusive B decays.

The zero-recoil B̄ → D vector current matrix element also has no order
�QCD/m Q corrections, i.e., h+(1) = 1 + O(�2

QCD/m2
Q). However, B̄ → Deν̄e

is not as useful as B̄ → D∗eν̄e for determining Vcb. There are two reasons for
this. First, the differential decay rate for B̄ → Deν̄e vanishes faster as w → 1
than the differential decay rate for B̄ → D∗eν̄e. This makes the extrapolation to
zero recoil more difficult. Second, FD(1) depends on both h+(1) and h−(1), and
h−(1) does receive O(�QCD/m Q) corrections.

4.6 Renormalons

Suppose QCD perturbation theory is used to express some quantity f as a power
series in αs :

f (αs) = f (0) +
∞∑

n = 0

fnα
n+1
s . (4.66)
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Typically, this perturbation series for f is an asymptotic series and has zero
radius of convergence. The convergence can be improved by defining the Borel
transform of f ,

B[ f ](t) = f (0)δ(t) +
∞∑

n = 0

fn

n!
tn, (4.67)

which is more convergent than the original expansion in Eq. (4.66). The original
series for f (αs) can be recovered from the Borel transform B[ f ](t) by the inverse
Borel transform

f (αs) =
∫ ∞

0
dt e−t/αs B[ f ](t). (4.68)

If the integral in Eq. (4.68) exists, the perturbation series in Eq. (4.66) for f (αs)
is Borel summable, and Eq. (4.68) gives a definition for the sum of the series.
While this provides a definition for the sum of the series in Eq. (4.66), it does
not mean that it gives the complete, nonperturbative value for f . For example,
exp(−1/αs) has the power series expansion

exp(−1/αs) = 0 + 0αs + 0α2
s + · · · (4.69)

whose sum is zero. If there are singularities in B[ f ](t) along the path of inte-
gration, the Borel sum of f is ambiguous. The inverse Borel transform must be
defined by deforming the contour of integration away from the singularity, and
the inverse Borel transform in general depends on the deformation used.

Singularities in the Borel transform B[ f ](t) arise from factorial growth in the
coefficients fn at high orders in perturbation theory. For example, suppose that
for large n, fn is of the order of

fn ∼ awn(n + k)! (4.70)

The Borel transform then has a pole of order k + 1 at t = 1/w:

B[ f ](t) ∼ ak!

(1 − wt)k+1
+ less singular. (4.71)

One source of singularities in B[ f ] in QCD is infrared renormalons. Infrared
renormalons are ambiguities in perturbation theory arising from the fact that the
gluon coupling gets strong for soft gluons. The infrared renormalons produce
a factorial growth in the coefficients fn , which gives rise to poles in the Borel
transform B[ f ]. The renormalon ambiguities have a power law dependence
on the momentum transfer Q2. For example, a simple pole at t = t0 in B[ f ]
introduces an ambiguity in f , depending on whether the integration contour is
deformed to pass above or below the renormalon pole. The difference between

https://doi.org/10.1017/9781009402125.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402125.005
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Fig. 4.1. The bubble chain sum. The blob is the gluon vacuum polarization at one loop.

the two choices is proportional to

δ f ∼
∮

C
dt e−t/αs (Q) B[ f ](t) ∼

(
�QCD

Q

)2β0t0

, (4.72)

where β0 defined in Eq. (1.90) is proportional to the leading term in the QCD β

function that governs the high-energy behavior of the QCD coupling constant,
and the contour C encloses t0. It is useful to write the Borel transform B[ f ](t)
in terms of the variable u = β0t . The form of the renormalon singularity in
Eq. (4.72) then implies that a renormalon at u0 produces an ambiguity in f that
is of the order of (�QCD/Q)2u0 . This ambiguity is canceled by a corresponding
ambiguity in nonperturbative effects such as in the matrix elements of higher
dimension operators.

Clearly, one is not able to sum the entire QCD perturbation series to determine
the renormalon singularities. Typically, one sums bubble chains of the form given
in Fig. 4.1. One can consider a formal limit in which the bubble chain sum is the
leading term. Take QCD with N f flavors in the limit N f → ∞, with a = N f αs

held fixed. Feynman diagrams are computed to leading order in αs , but to all
orders in a. Terms in the bubble sum of Fig. 4.1 with any number of bubbles are
equally important in this limit, since each additional fermion loop contributes
a factor αs N f , which is not small. QCD is not an asymptotically free theory in
the N f → ∞ limit, so the procedure used is to write the Borel transform as a
function of u but still study renormalons for positive u. The singularities in u
are taken to be the renormalons for asymptotically free QCD. This procedure is
a formal way of doing the bubble chain sum while neglecting other diagrams.

The Borel transform of the sum of Feynman graphs containing a single bubble
chain can be readily obtained by performing the Borel transform before doing
the final loop integral. In the Landau gauge, the bubble chain sum is

G(αs, k) =
∞∑

n = 0

i

k2

(
kμkν

k2
− gμν

)
(−β0αs N f )n[ln(−k2/μ2) + C]n, (4.73)

where k is the momentum flowing through the gauge boson propagator, C is a
constant that depends on the particular subtraction scheme, and β0 = −1/6π

is the contribution of a single fermion to the β function. In the MS scheme,

https://doi.org/10.1017/9781009402125.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402125.005


118 Nonperturbative corrections

C = −5/3. The Borel transform of Eq. (4.73) with respect to αs N f is

B[G](u, k) = 1

αs N f

∞∑
n = 0

i

k2

(
kμkν

k2
− gμν

)
(−u)n

n!
[ln(−k2/μ2) + C]n

= 1

αs N f

i

k2

(
kμkν

k2
− gμν

)
exp[−u ln(−k2eC/μ2)]

= 1

αs N f

(
μ2

eC

)u
i

(−k2)2 + u
(kμkν − k2gμν). (4.74)

The 1/αs has been factored out before Borel transforming, because it will be
canceled by the factor of g2 from the gluon couplings to the external fermion line.
The Borel transformed loop graphs can be computed by using the propagator in
Eq. (4.74) instead of the usual gauge boson propagator in the Landau gauge:

(kμkν − k2gμν)
i

(k2)2
. (4.75)

By construction, HQET has the same infrared physics as the full QCD theory.
However, because the ultraviolet physics differs in the two theories (above the
scale m Q at which the theories are matched), the coefficients of operators in
the effective theory must be modified at each order in αs(m Q) to ensure that
physical predictions are the same in the two theories. Such matching corrections
were considered in Chapter 3.

Since the two theories coincide in the infrared, these matching conditions de-
pend in general only on ultraviolet physics and should be independent of any in-
frared physics, including infrared renormalons. However, in a mass-independent
renormalization scheme such as dimensional regularization with MS, such a
sharp separation of scales cannot be achieved. It is easy to understand why in-
frared renormalons appear in matching conditions. Consider the familiar case
of integrating out a W boson and matching onto a four-Fermi interaction. The
matching conditions at one loop involve subtracting one-loop scattering ampli-
tudes calculated in the full and effective theories, as indicated in Fig. 4.2, where
C0 is the lowest order coefficient of the four-Fermi operator, and C1 is the αs

correction. For simplicity, neglect all external momenta and particle masses, and
consider the region of loop integration where the gluon is soft. When k = 0, the
two theories are identical and the graphs in the two theories are identical. This

c1(μ) ∼ −

Fig. 4.2. Matching condition for the four-Fermi operator.
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is the well-known statement that infrared divergences cancel in matching con-
ditions. However, for finite (but small) k, the two theories differ at O(k2/M2

W )
when one retains only the lowest dimension operators in the effective theory.
Therefore, the matching conditions are sensitive to soft gluons at this order, and
it is not surprising that the resulting perturbation series is not Borel summable
and has renormalon ambiguities starting at O(�2

QCD/M2
W ).

However, this ambiguity is completely spurious and does not mean that the
effective field theory is not well defined. Since the theory has only been defined to
a fixed order, an ambiguity at higher order in 1/MW is irrelevant. The renormalon
ambiguity corresponded to the fact that the two theories differed in the infrared
at O(k2/M2

W ). When operators suppressed by an additional power of 1/M2
W in

the effective theory are consistently taken into account, the two theories will
coincide in the infrared up to O(k4/M4

W ), and any ambiguity is then pushed up
to O(�4

QCD/M4
W ). Consistently including 1/M4

W suppressed operators pushes
the renormalon to O(�6

QCD/M6
W ), and so on. In general, a renormalon at u = u0

in the coefficient function of a dimension D operator is canceled exactly by a
corresponding ambiguity in matrix elements of operators of dimension D + 2u0,
so that physical quantities are unambiguous. This cancellation is a generic feature
of all effective field theories, and it also occurs in HQET.

The HQET Lagrangian has an expansion in inverse powers of the heavy quark
mass, which can be formally written as

L = L0 + L1 + L2 + · · · + Llight,

L0 = Q̄v(i D · v)Qv − δm Q̄v Qv,
(4.76)

on scaling out the phase factor exp(−im0v · x) from the heavy quark field. Here
m0 is a mass that can differ from m Q by an amount of order �QCD, Llight is the
QCD Lagrangian for the light quarks and gluons, Qv is the heavy quark field,
and Lk are terms in the effective Lagrangian for the heavy quark that are of
order 1/mk

0. There are two mass parameters for the heavy quark in Eq. (4.76),
the expansion parameter of HQET m0, and the residual mass term δm. The two
parameters are not independent; one can make the redefinition m0 → m0 + �m,
δm → δm − �m. A particularly convenient choice is to adjust m0 so that the
residual mass term δm vanishes. Most HQET calculations are done with this
choice of m0, and this is the choice we have used so far in this book, but it is
easy to show that the same results are obtained with a different choice of m0.
The HQET mass m0 when δm = 0 is often referred to in the literature as the
pole mass m Q , and we will follow this practice here.

Like all effective Lagrangians, the HQET Lagrangian is nonrenormalizable, so
a specific regularization prescription must be included as part of the definition
of the effective theory. An effective field theory is used to compute physical
quantities in a systematic expansion in a small parameter, and the effective
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Lagrangian is expanded in this small parameter. The expansion parameter of the
HQET is �QCD/m0. One can then use “power counting” to determine what terms
in the effective theory are relevant to a given order in the 1/m0 expansion. For
example, to second order in 1/m0, one needs to study processes to first order in
L2, and to second order inL1. It is useful to have a renormalization procedure that
preserves the power counting. We choose to use dimensional regularization with
MS, and nonperturbative matrix elements must be interpreted in this scheme.
A nonperturbative calculation of a matrix elements, e.g., using lattice Monte
Carlo methods, can be converted to MS by means of a perturbative matching
procedure.

There is a renormalon in the relation between the renormalized mass at short
distances (such as the MS mass m̄ Q) and the pole mass of the heavy quark
at u = 1/2, which produces an ambiguity of the order of �QCD in the relation
between the pole mass and the MS mass. The heavy quark mass in HQET and
the MS mass at short distances are parameters in the Lagrangian that must be
determined from experiment. Any scheme can be used to compute physical
processes, though one scheme might be more advantageous for a particular
computation. The MS mass at short distances is useful in computing high-energy
processes. However, there is no advantage to using the “short distance” mass
(such as the running MS mass) in HQET. In fact, from the point of view of HQET,
this is inconvenient. The effective Lagrangian in Eq. (4.76) is an expansion in
inverse powers of m0. Power counting in 1/m0 in the effective theory is only
valid if δm is of the order of one (or smaller) in m0, i.e., only if δm remains finite
in the infinite mass limit m0 → ∞. When m0 is chosen to be the MS mass the
residual mass term δm is of the order of m0 (up to logarithms). This spoils the
1/m0 power counting of HQET, mixes the αs and 1/m0 expansions, and breaks
the heavy flavor symmetry. For example, using m0 to be the MS mass at μ = m0,
one finds at one loop that

δm = 4

3π
αsm0. (4.77)

In b → c decays, including this residual mass term in the heavy c-quark
Lagrangian causes 1/mc operators such as c̄v′

←
/D�bv/mc to produce effects that

are suppressed by αs rather than �QCD/mc. While physical quantities calculated
in this way must be the same as those calculated by using the pole mass, it un-
necessarily complicates the power counting to use a definition for m0 that leaves
a residual mass term that is not finite in the m0 → ∞ limit. Better choices for
the expansion parameter of HQET are the heavy meson mass (with δm of the
order of �QCD), and the pole mass (with δm = 0).

The MS mass at short distances can be determined (in principle) from ex-
periment without any renormalon ambiguities proportional to �QCD. The MS
quark mass can be related to other definitions of the quark mass by using QCD
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perturbation theory. The connection between the Borel-transformed pole mass
and the MS mass is

B[m Q](u) = m̄ Qδ(u) + m̄ Q

3π N f

[(
μ2

m̄2
Q

)u

e−uC 6(1 − u)
�(u)�(1 − 2u)

�(3 − u)

− 3

u
+ R�1 (u)

]
, (4.78)

where m̄ Q is the renormalized MS mass at the subtraction point μ, and the
constant C = −5/3 and the function R�1 (u) have no singularities at u = 1/2.
Equation (4.78) has a renormalon singularity at u = 1/2, which is the leading
infrared renormalon in the pole mass. Writing u = 1/2 + �u, we have

B[m Q](u = 1/2 + �u) = − 2μe−C/2

3π N f �u
+ · · · , (4.79)

where the ellipses denote terms regular at �u = 0. We will only work to leading
order in 1/m0, so poles to the right of u = 1/2, which are related to ambiguities
at higher order in 1/m0, are irrelevant. Although m Q is formally ambiguous at
�QCD, we have argued that physical quantities that depend on m Q are unam-
biguously predicted in HQET. We now demonstrate this explicitly for a ratio of
form factors in �b semileptonic decay.

The matrix element of the vector current for the semileptonic decay �b →
�ceν̄e decay is parameterized by the three decay form factors f1−3(w) defined in
Eq. (4.27). In the limit mb, mc → ∞, and at lowest order in αs , the form factors
f2 and f3 vanish. We will consider αs and 1/mc corrections, but work in the
mb → ∞ limit. Consider the ratio r f = f2/ f1, which vanishes at lowest order in
αs and 1/mc. The corrections to r f can be written in the form

r f (αs, w) ≡ f2(w)

f1(w)
= −�̄�

mc

1

(1 + w)
+ fr (αs, w), (4.80)

where the function fr (αs, w) is a perturbatively calculable matching condition
from the theory above μ = mc to the effective theory below μ = mc, and the
�̄� term arises from 1/mc suppressed operators in HQET. At one loop (see
Problem 5 of Chapter 3),

fr (αs, w) = −2αs

3π

1√
w2 − 1

ln
(
w +

√
w2 − 1

)
. (4.81)

The ratio r f = f2/ f1 is an experimentally measurable quantity and does not
have a renormalon ambiguity. The standard form for r f in Eq. (4.80) is obtained
by using HQET with the pole mass as the expansion parameter. The HQET
parameter �̄� is the baryon mass in the effective theory, i.e., it is the baryon mass
m�c minus the pole mass of the c quark. The pole mass has the leading renormalon
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b c

Fig. 4.3. The bubble chain sum for the radiative correction to the vector current form
factors.

ambiguity at u = 1/2 given in Eq. (4.79), which produces an ambiguity in the
1/mc contribution to f2/ f1 given by the first term in Eq. (4.80). There must
therefore also be a renormalon at u = 1/2 in the radiative correction to f2/ f1

given by the second term in Eq. (4.80). It is straightforward to show that this is
indeed the case.

The Borel-transformed series B[ fr ](u, w) in the 1/N f expansion is easily
calculated from the graph in Fig. 4.3, using the Borel-transformed propagator in
Eq. (4.74). The Borel transform of the Feynman diagram is

B[graph] = i

αs N f

4

3
g2

(
μ2

eC

)u

×
∫

d4k

(2π )4

γ ν(mc/v
′ + k/ + mc)γ αvμ(kμkν − k2gμν)

(k2 + 2mck · v′)(−k2)2+uk · v . (4.82)

The radiative correction to f2 (which determines fr ) is obtained from the terms in
Eq. (4.82) that are proportional to vα. Combining denominators using Eq. (1.45)
and Eq. (3.6), extracting the terms proportional to vα and performing the mo-
mentum integral, we obtain

B[ fr ](u, w) = 4(u − 2)

3π N f (1 + u)

(
μ2

eC

)u

mc

×
∫ ∞

0
dλ

∫ 1

0
dx

(1 − x)1+u x[
λ2 + 2λmcxw + m2

c x2
]1+u

. (4.83)

Rescaling λ → xmcλ and performing the x integral gives

B[ fr ](u, w) = 4

3π N f

(
μ2

m2
ceC

)u
(u − 2)�(1 − 2u)�(1 + u)

�(3 − u)

×
∫ ∞

0
dλ

1

[λ2 + 2λw + 1]1+u
. (4.84)
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4.7 v · A = 0 gauge 123

This expression has a pole at u = 1/2. Expanding in �u = u − 1/2 gives

B[ fr ](u = 1/2 + �u, w)

= 2μ

3π Nf mceC/2

1

�u

∫ ∞

0
dλ

1

[λ2 + 2λw + 1]3/2
+ · · ·

= 2μ

3π Nf mceC/2

1

�u

1

1 + w
, (4.85)

where the ellipsis denotes terms that are regular at u = 1/2.
The Borel singularity in Eq. (4.85) cancels the singularity in the first term

of Eq. (4.80) at all values of w, so that the ratio of form factors r f (αs, w) =
f2(w)/ f1(w) has no renormalon ambiguities. Therefore the standard HQET com-
putation of the 1/mc correction to f2/ f1 using the pole mass and the standard
definition of �̄� gives an unambiguous physical prediction for the ratio of form
factors.

The cancellation of renormalon ambiguities has been demonstrated by explicit
computation in this example, but the result holds in general.

4.7 v · A = 0 gauge

Calculations in HQET can be performed in almost any gauge. However, in the
v · A = 0 gauge, HQET perturbation theory is singular. Consider tree-level Qq
elastic scattering in the rest frame v = vr . In HQET, an on-shell heavy quark has
a four velocity v and a residual momentum k that satisfies v · k = 0. Suppose the
initial heavy quark has zero residual momentum and the final quark has residual
momentum k = (0, k). The tree-level Feynman diagram in Fig. 4.4 gives the Qq
scattering amplitude

M = −g2ūQ T AuQ
i

k2
ūq T A

/vuq , (4.86)

in the Feynman or Landau gauge, where uQ and uq are the heavy and light quark
spinors, respectively. The current conservation equation ūqk/uq = 0 was used to
simplify the result.

In the v · A = 0 gauge, the gluon propagator is

−i

k2 + iε

[
gμν − 1

v · k
(kμvν + vμkν) + 1

(v · k)2
kμkν

]
. (4.87)

Fig. 4.4. Heavy quark + light quark scattering amplitude at tree level.
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The heavy quark kinetic energy cannot be treated as a perturbation in this gauge,
because then v · k = 0 and the gluon propagator is ill defined. Including the
heavy quark kinetic energy in the Lagrangian, the residual momentum of the
outgoing heavy quark becomes kμ = (k2/2m Q, k) and v · k = k2/2m Q is not
zero. Note that the factors of 1/(v · k) in Eq. (4.87) lead to 2m Q/k2 terms in the
gluon propagator, so that the v · A = 0 gauge can mix different orders in the
1/m Q expansion.

It is instructive to see how the scattering amplitude in Eq. (4.86) arises in
the v · A = 0 gauge. The amplitude comes from the QQA vertex that is due
to the heavy quark kinetic energy term −Q̄v D2

⊥/(2m Q)Qv. Although this is a
1/m Q term in the Lagrangian, it can contribute to a leading-order amplitude in the
v · A = 0 gauge. The Feynman rule for Qv(k ′) → Qv(k)+ Aμ vertex arising from
an insertion of the kinetic energy operator is i(g/2m Q)(k⊥ + k ′

⊥)μ = i(g/2m Q)
(k + k′)μ − i(g/2m Q)v · (k + k′)vμ. In the case we are considering, v is chosen
so that k ′ = 0. The part proportional to vμ doesn’t contribute, since v · A = 0.
Since ūqk/uq = 0 only the vμkν + vνkμ term in the gluon propagator contributes,
and one can show that it reproduces Eq. (4.86) for large values of m Q .

In the v · A = 0 gauge the heavy quark kinetic energy must be considered as
a leading operator for on-shell scattering processes, because we have just seen
that it is the QQA vertex from this 1/m Q operator that gives rise to the leading
Qq on-shell scattering amplitude.

4.8 NRQCD

HQET is not the appropriate effective field theory for systems with more than
one heavy quark. In HQET the heavy quark kinetic energy is neglected. It occurs
as a small 1/m Q correction. At short distances the static potential between heavy
quarks is determined by one gluon exchange and is a Coulomb potential. For a
QQ̄ pair in a color singlet, it is an attractive potential, and the heavy quark kinetic
energy is needed to stabilize a QQ̄ meson. For QQ̄ hadrons (i.e., quarkonia)
the kinetic energy plays a very important role, and it cannot be treated as a
perturbation.

In fact the problem is more general than this. Consider, for example, trying to
calculate low-energy QQ scattering in the center of a mass frame using HQET.
Setting v = vr for each heavy quark, and using initial and final residual momenta
k± = (0, ±k) and k ′± = (0, ±k′) respectively, we find the one-loop Feynman di-
agram, Fig. 4.5, gives rise to a loop integral,∫

dnq

(2π )n

i

(q0 + iε)

i

(−q0 + iε)

i

(q + k+)2 + iε

i

(q + k ′+)2 + iε
. (4.88)

The q0 integration is ill defined because it has poles above and below the real axis
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Fig. 4.5. One-loop contribution to Q Q scattering.

at q0 = ±iε. This problem is cured by not treating the heavy quark kinetic energy
as a perturbation but including it in the leading-order terms. Then the denomi-
nators of the two heavy quark propagators become E + q0 − q2/2m Q + iε and
E − q0 − q2/2m Q + iε, where E = k2/2m Q = k′2/2m Q . Closing the q0 contour
in the upper half-plane, we find Eq. (4.88) is dominated (for large m Q) by the
residue of the pole at q0 = E − q2/2m Q + iε and is proportional to m Q . That is
why we obtained an infinite answer for Eq. (4.88) by using the m Q → ∞ limit
of the fermion propagators.

Properties of quarkonia are usually predicted as a power series in v/c, where v

is the magnitude of the relative QQ̄ velocity and c is the speed of light. For these
systems the appropriate limit of QCD to examine is the c → ∞ limit. In this
limit the QCD Lagrangian becomes an effective field theory called NRQCD. For
finite c there are corrections suppressed by powers of 1/c. In particle physics
we usually set h̄ = c = 1. Making the factors of c explicit, we find the QCD
Lagrangian density is

LQCD = −1

4
G B

μνG Bμν − cQ̄(i /D − m Qc)Q. (4.89)

In the above the zero component of a partial derivative is

∂0 = 1

c

∂

∂t
, (4.90)

and D is the covariant derivative

Dμ = ∂μ + ig

c
AB

μT B . (4.91)

The gluon field strength tensor G B
μν is defined in the usual way except that

g → g/c.
Although c is explicit, h̄ has been set to unity. All dimensionful quanti-

ties can be expressed in units of length [x] and time [t], i.e., [E] ∼ 1/[t] and
[p] ∼ 1/[x]. The Lagrangian L = ∫

d3xL has units of 1/[t] since the action
S = ∫ Ldt is dimensionless. It is straightforward to deduce that the gluon field
has units [A] ∼ 1/

√
[x][t] and the strong coupling g ∼ √

[x]/[t]. The fermion
field has units [ψ] ∼ 1/[x]3/2 while its mass has units [m Q] ∼ [t]/[x]2. With
these units m Qc2 has dimensions of energy and the strong fine structure constant
αs = g2/4πc is dimensionless.
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For the fermion field Q the transition from QCD to NRQCD is analogous to
the derivation of HQET. The heavy quark field is rewritten as

Q = e−im Qc2t
[

1 + i /D⊥
m Qc

+ · · ·
](

ψ

0

)
, (4.92)

where ψ is a two-component Pauli spinor. Using this field redefinition, we find
the part of the QCD Lagrange density involving Q becomes

Lψ = ψ†
[

i

(
∂

∂t
+ ig AB

0 T B
)

+ ∇2

2m Q

]
ψ + · · · , (4.93)

where the ellipses denote terms suppressed by powers of 1/c. Note that the heavy
quark kinetic energy is now leading order in 1/c. The replacement g → g/c was
necessary to have a sensible c → ∞ limit.

Among the terms suppressed by a single power of 1/c is the gauge completion
of the kinetic energy:

Lint = ig

2m Qc
AC [ψ†T C∇ψ − (∇ψ)†T Cψ]. (4.94)

There is also a 1/c term involving the color magnetic field BC = ∇ × AC .
It is convenient to work in Coulomb gauge, ∇ · AC = 0. Then the part of the

action that involves the gluon field strength tensor and is quadratic in the gauge
fields simplifies to

−1

4

∫
d3xGC

μνGCμν → 1

2

∫
d3xGC

0i G
C
0i − 1

4

∫
d3xGC

i j G
C
i j

= 1

2

∫
d3x

(
∂i AC

0

)2 + (
∂0 AC

i

)2 − (
∂i AC

j

)2 + non-Abelian terms.

(4.95)

The non-Abelian terms are suppressed by factors of 1/c. [The above derivation
implicitly assumes that m Qv2 � �QCD.]

In Eq. (4.95), the zero component of the gauge field has no time derivatives.
Therefore, it does not represent a propagating degree of freedom. Neglecting
terms suppressed by factors of 1/c, the Lagrangian only contains terms quadratic
and linear in the field AC

0 . Hence the functional integral over AC
0 can be performed

exactly by completing the square. The effects of AC
0 exchange are then repro-

duced by an instantaneous potential V (x, y) that is proportional to the Fourier
transform of the momentum–space propagator,

V (x, y) = g2
∫

d3k

(2π )3
eik · (x−y) 1

k2
= g2

4π |x − y| . (4.96)

The transverse gluons AC do not couple to the quarks at leading order in the 1/c
expansion. Neglecting terms suppressed by 1/c, we find the effective Lagrangian
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for the interaction of nonrelativistic quarks is

LNRQCD =
∫

d3x ψ†
(

i
∂

∂t
+ ∇2

2m Q

)
ψ

−
∫

d3x1

∫
d3x2ψ

†(x1, t)T Aψ(x1, t)V (x1, x2)ψ†(x2, t)T Aψ(x2, t).

(4.97)

The Hamiltonian

H =
∫

d3xψ†i
∂

∂t
ψ − L (4.98)

has the familiar form used in nonrelativistic many-body theory. When restricting
one’s attention to the two heavy quark sector, the effective theory reduces to
ordinary nonrelativistic quantum mechanics.

4.9 Problems

1. For any doublet of heavy hadrons H (Q)
± with spins j± = s� ± 1/2, show that

m H (Q)
±

= m Q + �̄H − λH,1

2m Q
± n∓

λH,2

2m Q
,

where n± = 2 j± + 1 and λH,1 and λH,2 are defined in Eqs. (4.23). We have inserted an extra
subscript H because the values of the matrix elements depend on the particular doublet.

2. For the ground-state doublet of mesons, let {�̄H , λH,1, λH,2} = {�̄, λ1, λ2} and for the excited
s� = 3/2 mesons let {�̄H , λH,1, λH,2} = {�̄∗, λ∗

1, λ
∗
2}. Show that

�̄∗ − �̄ = mb(m̄∗
B − m̄ B) − mc(m̄∗

D − m̄ D)

mb − mc
,

λ∗
1 − λ1 = 2mcmb

(m̄∗
B − m̄ B) − (m̄∗

D − m̄ D)

mb − mc
,

where

m̄ H = n−m H− + n+m H+
n+ + n−

.

3. In Problems 6–9 of Chapter 2, the leading m Q → ∞ predictions for the B̄ → D1eν̄e and
B̄ → D∗

2 eν̄e form factors were derived. In this problem, the 1/m Q corrections are included.

(a) For B̄ → D1 and B̄ → D∗
2 matrix elements, argue that

c̄v′ i
←
Dλ� bv = Tr

{
S(c)

σλ F̄σ
v′�H (b)

v

}
,

c̄v′ �i Dλ bv = Tr
{

S(b)
σλ F̄σ

v′�H (b)
v

}
,

where
S(Q)

σλ = vσ

[
τ

(Q)
1 vλ + τ

(Q)
2 v′

λ + τ
(Q)
3 γλ

] + τ
(Q)
4 gσλ,

and the functions τ
(Q)
i depend on w. (They are not all independent.)
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(b) Show that the heavy quark equation of motion implies

wτ
(c)
1 + τ

(c)
2 − τ

(c)
3 = 0,

τ
(b)
1 + wτ

(b)
2 − τ

(b)
3 + τ

(b)
4 = 0.

(c) Further relations between the τ ’s follow from

i∂ν(c̄v′ � bv) = (�̄vν − �̄∗v′
ν)c̄v′ � bv.

Show that this equation implies the relations

τ
(c)
1 + τ

(b)
1 = �̄τ,

τ
(c)
2 + τ

(b)
2 = −�̄∗τ,

τ
(c)
3 + τ

(b)
3 = 0,

τ
(c)
4 + τ

(b)
4 = 0,

where τ was defined in Problem 9 of Chapter 2. The relations in parts (b) and (c) imply
that all the τ

(Q)
j ’s can be expressed in terms of τ

(c)
1 and τ

(c)
2 .

(d) Using the results from parts (a)–(c), show that the corrections to the currents give the
following corrections to the form factors:√

6 δ f A = −εb(w − 1)[(�̄∗ + �̄)τ − (2w + 1)τ1 − τ2]

− εc[4(w�̄∗ − �̄)τ − 3(w − 1)(τ1 − τ2)],
√

6 δ fV1 = −εb(w2 − 1)[(�̄∗ + �̄)τ − (2w + 1)τ1 − τ2]

− εc[4(w + 1)(w�̄∗ − �̄)τ − 3(w2 − 1)(τ1 − τ2)],
√

6 δ fV2 = −3εb[(�̄∗ + �̄)τ − (2w + 1)τ1 − τ2] − εc[(4w − 1)τ1 + 5τ2)],
√

6 δ fV3 = εb(w + 2)[(�̄∗ + �̄)τ − (2w + 1)τ1 − τ2]

+ εc[4(w�̄∗ − �̄)τ + (2 + w)τ1 + (2 + 3w)τ2],

for B̄ → D1eν̄e. For B̄ → D∗
2 eν̄e show that the corrections to the form factors are

δkV = −εb[(�̄∗ + �̄)τ − (2w + 1)τ1 − τ2] − εc[τ1 − τ2],

δkA1 = −εb(w − 1)[(�̄∗ + �̄)τ − (2w + 1)τ1 − τ2] − εc(w − 1)[τ1 − τ2],

δkA2 = −2εcτ1,

δkA3 = εb[(�̄∗ + �̄)τ − (2w + 1)τ1 − τ2] − εc[τ1 + τ2].

Here εc = 1/(2mc), εb = 1/(2mb) and τ1 = τ
(c)
1 , τ2 = τ

(c)
2 .

(e) The zero-recoil matrix elements of the weak current are determined by fV1 (1). The 1/m Q

corrections to the current imply that√
6 fV1 (1) = −8εc(�̄∗ − �̄)τ (1).

Show that the 1/m Q corrections to the states do not alter this relation.

4. Explain why the χ1’s from the charm and bottom quark kinetic energies are the same.

5. Show that the B̄∗ → D∗ matrix element implies that χ1(1) − 2χ3(1) = 0 for the 1/m Q correc-
tions to the B̄ → D(∗) form factors that arise from the chromomagnetic term in the Lagrangian.

6. Verify Eq. (4.77) for the relation between the MS mass and the pole mass.

7. Calculate the order �QCD/mc,b corrections to the form factor ratios R1 and R2 defined in
Chapter 2. Express the result in terms of �̄, ξ3 and χ1−3.
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