VALUATIONS OF NEAR POLYGONS

BART DE BRUYN and PIETER VANDECASTEELE
Department of Pure Mathematics and Computer Algebra, Ghent University, Galglaan 2, B-9000 Gent, Belgium
e-mail: $\{b d b, p v d e c a s t\} @ c a g e . u g e n t . b e ~$

(Received 20 September, 2004; accepted 11 April, 2005)

Abstract

We introduce the notion of valuation of a dense near polygon. The valuations of a dense near polygon F describe the possible relations between a point of a dense near polygon \mathcal{S} and any geodetically closed sub near polygon of \mathcal{S} isomorphic to F. Several nice properties of valuations are given and several classes of these objects are defined. Valuations are an important tool for classifying dense near polygons.

2000 Mathematics Subject Classification. 05B25, 51E12.

1. Introduction. A simple undirected connected graph Γ without loops is called a near $2 d$-gon ([9]) if it has diameter d and if for every vertex x and every maximal clique M, there exists a unique vertex x^{\prime} in M nearest to x. If Γ is a near polygon, then the point-line incidence structure \mathcal{S} with points the vertices of Γ, with lines the maximal cliques of Γ and with natural incidence is a partial linear space; that is, every two points of \mathcal{S} are incident with at most one line. The partial linear space \mathcal{S} is also called a near polygon. The graph Γ can easily be retrieved from \mathcal{S} : it is the point graph or collinearity graph of \mathcal{S}. In the sequel we shall always adopt the geometrical point of view and interpret distances $\mathrm{d}(\cdot, \cdot)$ in \mathcal{S} as if they were measured in Γ. From the geometrical point of view a near 0 -gon is a point and a near 2-gon is a line.

If X_{1} and X_{2} are two sets of points, then $\mathrm{d}\left(X_{1}, X_{2}\right)$ denotes the minimal distance between a point of X_{1} and a point of X_{2}. If $X_{1}=\{x\}$, then we also write $\mathrm{d}\left(x, X_{2}\right)$ instead of $\mathrm{d}\left(\{x\}, X_{2}\right)$. For every $i \in \mathbb{N}, \Gamma_{i}\left(X_{1}\right)$ denotes the set of all points y for which $\mathrm{d}\left(y, X_{1}\right)=i$. If $X_{1}=\{x\}$, we also write $\Gamma_{i}(x)$ instead of $\Gamma_{i}(\{x\})$.

A near $2 d$-gon, $d \geq 2$, is called a generalized $2 d$-gon $([11])$ if $\left|\Gamma_{i-1}(x) \cap \Gamma_{1}(y)\right|=1$ for every $i \in\{1, \ldots, d-1\}$ and every two points x and y at distance i from each other. A generalized $2 d$-gon is called degenerate if it does not contain ordinary $2 d$-gons as subgeometries, or equivalently, if it contains a point which has distance at most $d-1$ from any other point. The near quadrangles are precisely the generalized quadrangles (GQ's, [7]). A degenerate generalized quadrangle consists of a number of lines through a point.

A nonempty set X of points in \mathcal{S} is called a subspace if every line meeting X in at least two points is completely contained in X. A subspace X is called geodetically closed if every point on a shortest path between two points of X is also contained in X. Given a subspace X, we can define a subgeometry \mathcal{S}_{X} of \mathcal{S} by considering only those points and lines of \mathcal{S} that are completely contained in X. If X is geodetically closed, then \mathcal{S}_{X} clearly is a sub near polygon of \mathcal{S}. If \mathcal{S}_{X} is a nondegenerate generalized quadrangle, then X and often also \mathcal{S}_{X} will be called a quad. If X_{1}, \ldots, X_{k} are nonempty sets of points, then $\mathcal{C}\left(X_{1}, \ldots, X_{k}\right)$ denotes the minimal geodetically closed sub near polygon through
$X_{1} \cup \cdots \cup X_{k}$; that is the intersection of all geodetically closed sub near polygons through $X_{1} \cup \cdots \cup X_{k}$. If x and y are two different points of \mathcal{S}, then $\mathcal{C}(\{x, y\})$ is also denoted by $\mathcal{C}(x, y)$.

A near polygon is said to have $\operatorname{order}(s, t)$ if every line is incident with exactly $s+1$ points and if every point is incident with exactly $t+1$ lines. A near $2 d$-gon, $d \geq 2$, is called regular if it has an order (s, t) and if there exist constants $t_{i}, i \in\{0, \ldots, d\}$, such that for any two points x and y at distance i there are precisely $t_{i}+1$ neighbours of y at distance $i-1$ from x. Then $t_{0}=-1, t_{1}=0$ and $t_{d}=t$.

A near polygon is called dense if every line is incident with at least three points and if every two points at distance 2 have at least two common neighbours. Dense near polygons satisfy several nice properties; see [2] for an overview. We mention some properties that are needed later.

Proposition 1.1. (i) (Lemma 19 of [2]). Every point of a dense near polygon \mathcal{S} is incident with the same number of lines.
(ii) (Theorem 4 of [2]). If x and y are two points of a dense near polygon, then $\mathcal{C}(x, y)$ is the unique geodetically closed sub near $[2 \cdot d(x, y)]$-gon through x and y. Hence, if x and y are two points at distance 2 in a dense near polygon, then these points are contained in a unique quad.
(iii) ([2]) Let \mathcal{S} be a dense near $2 d$-gon, $d \geq 1$, let F be a geodetically closed sub near 2i-gon, $i \in\{0, \ldots, d-1\}$, of \mathcal{S}.

- If L is a line which intersects F in a point, then $\mathcal{C}(F, L)$ is a geodetically closed sub near $2(i+1)$-gon.
- If x is a point at distance 1 from F, then x is collinear with a unique point x^{\prime} of F and $d(x, y)=1+d\left(x^{\prime}, y\right)$ for every point y of F.
(iv) (Corollary, [2, p. 156]) If x is a point of a dense near $2 d$-gon, then the subgraph of Γ induced by $\Gamma_{d}(x)$ is connected.

Let $\mathcal{S}_{1}=\left(\mathcal{P}_{1}, \mathcal{L}_{1}, \mathrm{I}_{1}\right)$ and $\mathcal{S}_{2}=\left(\mathcal{P}_{2}, \mathcal{L}_{2}, \mathrm{I}_{2}\right)$ be two near polygons. A new near polygon $\mathcal{S}=\left(\mathcal{P}, \mathcal{L}\right.$, I) can be derived from \mathcal{S}_{1} and \mathcal{S}_{2} :
(1) $\mathcal{P}=\mathcal{P}_{1} \times \mathcal{P}_{2}$;
(2) $\mathcal{L}=\left(\mathcal{P}_{1} \times \mathcal{L}_{2}\right) \cup\left(\mathcal{L}_{1} \times \mathcal{P}_{2}\right)$;
(3) the point (x, y) of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is incident with the line $(z, L) \in \mathcal{P}_{1} \times \mathcal{L}_{2}$ if and only if $x=z$ and $y \mathrm{I}_{2} L$, the point (x, y) of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is incident with the line $(M, u) \in \mathcal{L}_{1} \times \mathcal{P}_{2}$ if and only if $x \mathrm{I}_{1} M$ and $y=u$.

The near polygon \mathcal{S} is called the direct product of \mathcal{S}_{1} and \mathcal{S}_{2}, and is denoted by $\mathcal{S}_{1} \times \mathcal{S}_{2}$. If $\mathcal{S}_{i}, i \in\{1,2\}$, is a near $2 n_{i}$-gon, then the direct product $\mathcal{S}=\mathcal{S}_{1} \times \mathcal{S}_{2}$ is a near $2\left(n_{1}+n_{2}\right)$-gon. Since $\mathcal{S}_{1} \times \mathcal{S}_{2} \cong \mathcal{S}_{2} \times \mathcal{S}_{1}$ and $\left(\mathcal{S}_{1} \times \mathcal{S}_{2}\right) \times \mathcal{S}_{3} \cong \mathcal{S}_{1} \times\left(\mathcal{S}_{2} \times \mathcal{S}_{3}\right)$, also the direct product of $k \geq 3$ near polygons $\mathcal{S}_{1}, \ldots, \mathcal{S}_{k}$ is well defined.

Proposition 1.2. (Theorem 1 of [2]) Suppose \mathcal{S} is a near polygon with the property that every two points at distance 2 have at least two common neighbours. If $k \geq 2$ different line sizes occur in \mathcal{S}, then \mathcal{S} is isomorphic to a direct product of k near polygons, each of which has constant line size.

Corollary 1.3. If a dense near polygon \mathcal{S} has lines of size $s+1$, then \mathcal{S} has a partition in isomorphic geodetically closed sub near polygons of order (s, t^{\prime}) for some $t^{\prime} \geq 0$.

2. Valuations.

2.1. Motivation. Let F_{1} and F_{2} denote two geodetically closed sub near polygons of a dense near polygon \mathcal{S} and put $d_{i}:=\operatorname{diam}\left(F_{i}\right), i \in\{1,2\}$. Depending on how the distances $\mathrm{d}\left(x_{1}, x_{2}\right)$ behave when x_{1} and x_{2} range over all elements of F_{1} and F_{2}, respectively, we shall be able to say that F_{1} has a "certain position" with respect to F_{2}. For instance, in the case $\left(d_{1}, d_{2}\right)=(1,1)$, we can distinguish two possible lineline relations; see Proposition 2.1; in the case $\left(d_{1}, d_{2}\right)=(0,2)$, we can distinguish two possible point-quad relations; see Proposition 2.2; in the case $\left(d_{1}, d_{2}\right)=(1,2)$ we can distinguish five possible line-quad relations; see Proposition 2.3.

Definitions. Let Q be a generalized quadrangle. An ovoid of Q is a set of points of Q meeting each line of Q in exactly one point. More generally, an ovoid of a partial linear space is a set of points meeting each line in a unique point. A fan of ovoids of Q is a set of ovoids of Q partitioning the point set of Q. A rosette of ovoids of Q is a set of ovoids of Q through a common point x which partitions the set of points at distance 2 from x.

Proposition 2.1. (The line-line relations, Lemma 1 of [2]) Let K and L denote two lines of a near polygon \mathcal{S}. Then precisely one of the following cases occurs.
(i) There exist unique points $k_{0} \in K$ and $l_{0} \in L$ such that $d(k, l)=d\left(k, k_{0}\right)+$ $d\left(k_{0}, l_{0}\right)+d\left(l_{0}, l\right)$, for all points $k \in K$ and $l \in L$.
(ii) For every point $k \in K$ there exists a unique point $l \in L$ such that $d(k, l)=d(K, L)$. In this case K and L are called parallel.

Proposition 2.2. (The point-quad relations, Proposition 2.6 of [9])
Let x be a point and Q a quad of a dense near polygon \mathcal{S}. Then precisely one of the following cases occurs.
(i) Q contains a unique point $\pi_{Q}(x)$ nearest to x and for every point y of $Q, d(x, y)=$ $d\left(x, \pi_{Q}(x)\right)+d\left(\pi_{Q}(x), y\right)$. In this case, x is called classical with respect to Q.
(ii) The set of points in Q nearest to x forms an ovoid O_{x} of Q. In this case, x is called ovoidal with respect to Q.

For every quad Q of a dense near polygon and every $i \in \mathbb{N}$, let $X_{i}(Q)$ denote the set of points x at distance i from $Q, X_{i, C}(Q)$ the set of points of $X_{i}(Q)$ that are classical with respect to Q and $X_{i, O}(Q)$ the set of points $X_{i}(Q)$ that are ovoidal with respect to Q. If no confusion is possible, we also write $X_{i}, X_{i, C}$ and $X_{i, O}$ instead of $X_{i}(Q), X_{i, C}(Q)$ and $X_{i, O}(Q)$.

Proposition 2.3. (The line-quad relations, Lemma (3)-(10) of [2])
Let (L, Q) be a line-quad pair of a dense near polygon \mathcal{S} and put $i:=d(L, Q)$. Then one of the following cases occurs.
(i) $L \subseteq X_{i, C}$. In this case, $\pi_{Q}(L):=\left\{\pi_{Q}(x) \mid x \in L\right\}$ is a line of Q parallel with L.
(ii) $L \subseteq X_{i, O}$. In this case, the ovoids $O_{x}, x \in L$, define a fan of ovoids of Q.
(iii) L contains a unique point of $X_{i, C}$ and the remaining points of L belong to $X_{i+1, C}$. In this case, all points $\pi_{Q}(x), x \in L$, are equal.
(iv) L contains a unique point u of $X_{i, C}$ and the remaining points of L belong to $X_{i+1, O}$. In this case, the ovoids $O_{x}, x \in L \backslash\{u\}$, define a rosette of ovoids through the point $\pi_{Q}(u)$.
(v) L contains a unique point of $X_{i, O}$ and the remaining points of L belong to $X_{i+1, O}$. In this case, all ovoids $O_{x}, x \in L$, are equal.

The possible point-quad and line-quad relations were a very important tool in the classification of certain dense near polygons, see e.g. [1] and [4]. In this paper we shall study the possible relations between a point x and a geodetically closed sub near 2δ-gon $F, \delta \geq 3$. The possible relations are described by the valuations of F. Also valuations are an important tool in the classification of near polygons. These objects will be used in [6] to classify all dense near octagons with three points per line.

2.2. Definition and elementary properties.

Definition. Let $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ be a dense near $2 n$-gon. A function f from \mathcal{P} to \mathbb{N} is called a valuation if it satisfies the following properties (we call $f(x)$ the value of x):
$\left(V_{1}\right)$ there exists at least one point with value 0 ;
$\left(V_{2}\right)$ every line L of \mathcal{S} contains a unique point x_{L} with smallest value and $f(x)=$ $f\left(x_{L}\right)+1$ for every point x of L different from x_{L};
$\left(V_{3}\right)$ every point x of \mathcal{S} is contained in a geodetically closed sub near polygon F_{x} that satisfies the following properties:

- $f(y) \leq f(x)$ for every point y of F_{x},
- every point z of \mathcal{S} that is collinear with a point y of F_{x} and which satisfies $f(z)=f(y)-1$ also belongs to F_{x}.

Proposition 2.4. Let f be a valuation of a dense near $2 n$-gon \mathcal{S}. Then the following statements hold:
(i) for every two points x and y of $\mathcal{S},|f(x)-f(y)| \leq d(x, y)$;
(ii) for every point x of $\mathcal{S}, f(x) \in\{0, \ldots, n\}$;
(iii) if x is a point with value 0 and if y is collinear with x, then $f(y)=1$.

Proof. (i) This follows from property $\left(V_{2}\right)$.
(ii) This follows from (i) and property (V_{1}).
(iii) If y were equal to 0 , then the line $x y$ cannot contain a unique point with smallest value.

Proposition 2.5. Let f be a valuation of a dense near polygon \mathcal{S}. Then through every point x of \mathcal{S}, there exists exactly one geodetically closed sub near polygon F_{x} satisfying property $\left(V_{3}\right)$.

Proof. By [2], a geodetically closed sub near polygon F through x is completely determined by the set of lines through x contained in F. Now, by properties $\left(V_{2}\right)$ and $\left(V_{3}\right)$, a line through x belongs to F_{x} if and only if it contains a point with value $f(x)-1$. This proves that there exists exactly one geodetically closed sub near polygon F_{x} satisfying property $\left(V_{3}\right)$.

The following proposition says that the valuations of a dense near polygon F describe the possible relations between a point of a near polygon \mathcal{S} and any geodetically closed sub near polygon of \mathcal{S} isomorphic to F. The valuations of F give information on how F can be embedded in a larger dense near polygon. That is the reason why these objects are important for classifying near polygons.

Proposition 2.6. Let $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ be a dense near $2 n$-gon and let $F=\left(\mathcal{P}^{\prime}, \mathcal{L}^{\prime}, \mathrm{I}^{\prime}\right)$ be a geodetically closed sub near 2δ-gon of \mathcal{S}. For every point x of \mathcal{S} and for every point y of F, we define $f_{x}(y):=d(x, y)-d\left(x, \mathcal{P}^{\prime}\right)$. Then $f_{x}: \mathcal{P}^{\prime} \rightarrow \mathbb{N}$ is a valuation of F, for every point x of \mathcal{S}.

Proof. Let y be a point of F such that $\mathrm{d}(x, y)=\mathrm{d}\left(x, \mathcal{P}^{\prime}\right)$. Then $f_{x}(y)=0$. Because every line of F contains a unique point nearest to x, also $\left(V_{2}\right)$ is satisfied. For every $y \in F$, we define $F_{y}:=\mathcal{C}(x, y) \cap F$. If $z \in F_{y}$, then $f_{x}(z)=\mathrm{d}(x, z)-\mathrm{d}\left(x, \mathcal{P}^{\prime}\right) \leq \mathrm{d}(x, y)-$ $\mathrm{d}\left(x, \mathcal{P}^{\prime}\right)=f_{x}(y)$. If u is a point of F_{y} and if u^{\prime} is a neighbour of u in F with value $f_{x}(u)-1$, then $\mathrm{d}\left(x, u^{\prime}\right)=\mathrm{d}(x, u)-1$, implying that $u^{\prime} \in \mathcal{C}(x, u) \cap F \subseteq \mathcal{C}(x, y) \cap F=F_{y}$. This shows that also $\left(V_{3}\right)$ is satisfied.

We shall now generalize Proposition 2.6, but first we need the following lemma.
Lemma 2.7. Let \mathcal{S} be a dense near polygon and let F be a sub near polygon of \mathcal{S} satisfying the following conditions:

- F is a subspace of \mathcal{S},
- $d_{F}(x, y)=d_{\mathcal{S}}(x, y)$, for all points x and y of F.

Then, for every geodetically closed subspace G of \mathcal{S}, either $G \cap F=\emptyset$ or $G \cap F$ is a geodetically closed sub near polygon of F.

Proof. Suppose that $G \cap F \neq \emptyset$. As intersection of two subspaces, $G \cap F$ is again a subspace. Let $a, b \in G \cap F$ and let c be a point of F collinear with b such that $\mathrm{d}_{F}(a, c)=\mathrm{d}_{F}(a, b)-1$. Then $\mathrm{d}_{\mathcal{S}}(a, c)=\mathrm{d}_{\mathcal{S}}(a, b)-1$ and so $c \in \mathcal{C}(a, b) \subseteq G$. Hence, $c \in G \cap F$. This proves that $G \cap F$ is geodetically closed.

Proposition 2.8. Let $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ be a dense near $2 n$-gon and let $F=\left(\mathcal{P}^{\prime}, \mathcal{L}^{\prime}, \mathrm{I}^{\prime}\right)$ be a sub near 2δ-gon of \mathcal{S} that has the following properties:

- F is a dense near polygon,
- F is a subspace of \mathcal{S},
- if x and y are two points of F, then $d_{F}(x, y)=d_{\mathcal{S}}(x, y)$.

For every point x of \mathcal{S} and every point y of F, we define $f_{x}(y):=d_{\mathcal{S}}(x, y)-d_{\mathcal{S}}\left(x, \mathcal{P}^{\prime}\right)$. Then $f_{x}: \mathcal{P}^{\prime} \rightarrow \mathbb{N}$ is a valuation of F, for every point x of \mathcal{S}.

Proof. By Lemma 2.7, $\mathcal{C}(x, y) \cap F$ is a geodetically closed subspace of F for every point x of \mathcal{S} and every point y of F. The proof is now completely similar to the proof of Proposition 2.6.

Valuations of dense near 0-gons and dense near 2-gons are trivial objects. There is a unique point with value 0 and all other points in the case of near 2 -gons have value 1 . In the following paragraph we shall show that there are two possible types of valuations in dense generalized quadrangles, corresponding with the two possible point-quad relations given in Proposition 2.2.

2.3. Classical and ovoidal valuations.

Proposition 2.9. Let $\mathcal{S}=(\mathcal{P}, \mathcal{L}$, I) be a dense near $2 n$-gon.
(i) If y is a point of \mathcal{S}, then $f_{y}: \mathcal{P} \rightarrow \mathbb{N}$; $x \mapsto d(x, y)$ is a valuation of \mathcal{S}.
(ii) If \mathcal{O} is an ovoid of \mathcal{S}, then $f_{\mathcal{O}}: \mathcal{P} \rightarrow \mathbb{N}$; $x \mapsto d(x, \mathcal{O})$ is a valuation of \mathcal{S}.

Proof. In both cases, $\left(V_{1}\right)$ and (V_{2}) are satisfied. In case (i), we put $F_{x}:=\mathcal{C}(x, y)$. In case (ii), we put $F_{x}:=\{x\}$ if $x \in \mathcal{O}$ and $F_{x}:=\mathcal{S}$ otherwise. For these choices of F_{x}, also $\left(V_{3}\right)$ holds.

Definition. A valuation of \mathcal{S} is classical if it is obtained as in (i) of Proposition 2.9; it is ovoidal if it is obtained as in (ii). Classical and ovoidal valuations can be characterized as follows.

Proposition 2.10. Let f be a valuation of a dense near $2 n$-gon $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ with $n \geq 1$. Then
(i) $\max \{f(u) \mid u \in \mathcal{P}\} \leq n$ with equality if and only iff is classical;
(ii) $\max \{f(u) \mid u \in \mathcal{P}\} \geq 1$ with equality if and only iff is ovoidal.

Proof. Obviously, the inequalities above hold. If f is a classical valuation, then obviously $\max \{f(u) \mid u \in \mathcal{P}\}=n$. If f is ovoidal, then $\max \{f(u) \mid u \in \mathcal{P}\}=1$.
(i) Suppose that $\max \{f(u) \mid u \in \mathcal{P}\}=n$. Let x be a point of \mathcal{S} with value 0 and let y be a point with value n. By Proposition $2.4, \mathrm{~d}(x, y)=n$. Let y^{\prime} be an arbitrary point of $\Gamma_{n}(x) \cap \Gamma_{1}(y)$ and let $y^{\prime \prime}$ denote the unique point of the line $y y^{\prime}$ at distance $n-1$ from x. By Proposition 2.4, it follows that $f\left(y^{\prime \prime}\right)=f\left(y^{\prime \prime}\right)-f(x) \leq n-1$ and that $f\left(y^{\prime \prime}\right)=f(y)+f\left(y^{\prime \prime}\right)-f(y) \geq n-1$. Hence, $f\left(y^{\prime \prime}\right)=n-1$ and by property $\left(V_{2}\right)$, it then follows that $f\left(y^{\prime}\right)=n$, so that every point of $\Gamma_{n}(x) \cap \Gamma_{1}(y)$ has value n. By the connectedness of $\Gamma_{n}(x)$, see Proposition 1.1 (iv), it then follows that every point of $\Gamma_{n}(x)$ has value n. Now, let z be an arbitrary point of \mathcal{S}. Then, by [2], there exists a path of length $n-\mathrm{d}(x, z)$ between z and a point z^{\prime} of $\Gamma_{n}(x)$. From $\mathrm{d}(x, z) \geq|f(z)-f(x)|=f(z)$ and $n-f(z)=\left|f\left(z^{\prime}\right)-f(z)\right| \leq \mathrm{d}\left(z, z^{\prime}\right)=n-\mathrm{d}(x, z)$, it follows that $f(z)=\mathrm{d}(x, z)$. This proves that f is classical.
(ii) Suppose now that $\max \{f(x) \mid x \in \mathcal{P}\}=1$. By property $\left(V_{2}\right)$, every line of \mathcal{S} contains a unique point with value 0 . Hence the points with value 0 determine an ovoid of \mathcal{S} and f is ovoidal.

Corollary 2.11. Every valuation of a dense generalized quadrangle is either classical or ovoidal.

Any valuation of a dense near polygon \mathcal{S} induces a valuation in every geodetically closed sub near polygon of \mathcal{S}.

Proposition 2.12. Let \mathcal{S} be a dense near polygon and let $F=\left(\mathcal{P}^{\prime}, \mathcal{L}^{\prime}, \mathrm{I}^{\prime}\right)$ be a sub near polygon of \mathcal{S} that has the following properties:

- F is a dense near polygon,
- F is a subspace of \mathcal{S},
- if x and y are two points of F in \mathcal{S}, then $d_{F}(x, y)=d_{\mathcal{S}}(x, y)$.

Let f denote a valuation of \mathcal{S} and put $m:=\min \left\{f(x) \mid x \in \mathcal{P}^{\prime}\right\}$. Then the map $f_{F}: \mathcal{P}^{\prime} \rightarrow$ $\mathbb{N} ; x \mapsto f(x)-m$ is a valuation of F.

Proof. For every point x of \mathcal{S}, let F_{x} denote the unique geodetically closed sub near polygon of \mathcal{S} for which $\left(V_{3}\right)$ holds with respect to the valuation f. By Lemma 2.7, $F_{x} \cap F$ is a geodetically closed sub near polygon of F for every point of x of F. Clearly, f_{F} satisfies properties $\left(V_{1}\right)$ and $\left(V_{2}\right)$. The map f_{F} also satisfies $\left(V_{3}\right)$ if for every point x of F one takes $F_{x}^{\prime}:=F_{x} \cap F$ as a geodetically closed sub near polygon through x.

Definition. We call f_{F} an induced valuation.
Proposition 2.13. Let f be a valuation of a dense near polygon \mathcal{S}.
(i) If every induced quad valuation is classical, then the valuation f itself is classical.
(ii) If every induced quad valuation is ovoidal, then the valuation f itself is ovoidal.

Proof. (i) Suppose that f is a nonclassical valuation of \mathcal{S}. Let x denote an arbitrary point with value 0 and let i be the smallest nonnegative integer for which there exists a point y satisfying $i=\mathrm{d}(x, y) \neq f(y)$. Obviously, $i \geq 2$. Choose points $y^{\prime} \in \Gamma_{1}(y) \cap \Gamma_{i-1}(x)$ and $y^{\prime \prime} \in \Gamma_{1}\left(y^{\prime}\right) \cap \Gamma_{i-2}(x)$. Then $f\left(y^{\prime \prime}\right)=i-2, f\left(y^{\prime}\right)=i-1$ and $f(y) \in\{i-1, i-2\}$. Every point of Q collinear with $y^{\prime \prime}$ has distance $i-1$ from x
and hence has value $i-1$. Since the valuation induced in $\mathcal{C}\left(y, y^{\prime \prime}\right)$ is classical, $y^{\prime \prime}$ is the unique point of $\mathcal{C}\left(y, y^{\prime \prime}\right)$ with smallest value and $f(y)=f\left(y^{\prime \prime}\right)+\mathrm{d}\left(y^{\prime \prime}, y\right)=i-2+2=i$, a contradiction.
(ii) Suppose that f is a nonovoidal valuation of \mathcal{S}. Let x denote an arbitrary point with value 0 and let i be the smallest nonnegative integer for which there exists a point y satisfying $i=\mathrm{d}(x, y)$ and $f(y) \geq 2$. Obviously, $i \geq 2$. Choose points $y^{\prime} \in \Gamma_{1}(y) \cap \Gamma_{i-1}(x)$ and $y^{\prime \prime} \in \Gamma_{1}\left(y^{\prime}\right) \cap \Gamma_{i-2}(x)$. Clearly every point of the line through y^{\prime} and $y^{\prime \prime}$ has value 0 or 1 . But then the valuation induced in the quad $\mathcal{C}\left(y, y^{\prime \prime}\right)$ cannot be ovoidal, a contradiction.

Proposition 2.14. Let f be a valuation of a dense near polygon \mathcal{S}, let O_{f} denote the set of points of \mathcal{S} with value 0 and let x be a point of \mathcal{S}. If $d\left(x, O_{f}\right) \leq 2$, then $f(x)=d\left(x, O_{f}\right)$.

Proof. Obviously, this holds if $\mathrm{d}\left(x, O_{f}\right) \leq 1$. Now, suppose that $\mathrm{d}\left(x, O_{f}\right)=2$ and let x^{\prime} denote a point of O_{f} at distance 2 from x. If the valuation induced in the quad $\mathcal{C}\left(x, x^{\prime}\right)$ is ovoidal, then x would be collinear with a point of $O_{f} \cap \mathcal{C}\left(x, x^{\prime}\right)$, a contradiction. Hence, the valuation induced in $\mathcal{C}\left(x, x^{\prime}\right)$ is classical and $f(x)=f\left(x^{\prime}\right)+$ $\mathrm{d}\left(x, x^{\prime}\right)=2$.
2.4. The partial linear space G_{f}. For a valuation f of \mathcal{S}, put $O_{f}=\{x \in \mathcal{S} \mid f(x)=0\}$. If $x, y \in O_{f}$, then by (iii) of Proposition 2.4, $d(x, y) \geq 2$. A quad Q of \mathcal{S} is called special if it contains at least two points of O_{f}. Let G_{f} be the partial linear space with points the points of O_{f}, with lines the special quads of \mathcal{S} and with natural incidence. If x and y are two collinear points of G_{f}, then the line of G_{f} through x and y corresponds with an ovoid in the special quad of \mathcal{S} through x and y. As a corollary, every line of G_{f} contains at least 3 points.
2.5. A property of valuations. Let \mathcal{S} be a dense near $2 n$-gon and let f be a valuation of \mathcal{S}. For every $i \in \mathbb{N}$, we define m_{i} as the number of points of \mathcal{S} with value i. Obviously, $m_{i}=0$ if $i \geq n+1$.

Proposition 2.15. If \mathcal{S} contains lines of size $s+1$, then $\sum_{i=0}^{\infty} \frac{m_{i}}{(-s)^{i}}=0$.
Proof. (a) Suppose first that \mathcal{S} has order (s, t). For every line L of $\mathcal{S}, \sum_{x \in L} \frac{1}{(-s)^{(x)}}=$ $\frac{1}{(-s)^{\left(\left(x L L^{\prime}\right)\right.}}+s \frac{1}{(-s)^{\left(\left(x_{L}\right)+1\right.}}=0$. Hence,

$$
\begin{aligned}
0 & =\sum_{L \in \mathcal{L}} \sum_{x \in L} \frac{1}{(-s)^{f(x)}} \\
& =\sum_{x \in \mathcal{P}} \sum_{L \mathrm{~L} x} \frac{1}{(-s)^{f(x)}} \\
& =(t+1) \sum_{x \in \mathcal{P}} \frac{1}{(-s)^{f(x)}} \\
& =(t+1) \sum_{i=0}^{\infty} \frac{m_{i}}{(-s)^{i}} .
\end{aligned}
$$

This shows that the proposition holds if \mathcal{S} has an order.
(b) Suppose next that not every line of \mathcal{S} is incident with the same number of points. Then, by Corollary $1.3, \mathcal{S}$ has a partition in isomorphic geodetically closed sub near polygons of order $\left(s, t^{\prime}\right)$ for some $t^{\prime} \geq 0$. By (a), the proposition holds for each valuation induced in one of the sub near polygons of the partition. If we add all equations obtained, after multiplying with a suitable power of $-s$, then the required equation is obtained.

Corollary 2.16. Let f be a valuation of a dense near polygon $\mathcal{S}=(\mathcal{P}, \mathcal{L}$, I). If k different line sizes $s_{1}+1, \ldots, s_{k}+1$ occur in \mathcal{S}, then $\max \{f(x) \mid x \in \mathcal{P}\} \geq k$.

Proof. Put $M:=\max \{f(x) \mid x \in \mathcal{P}\}$. By Proposition 2.15, the polynomial $p(s):=$ $\sum_{i=0}^{M} m_{i}(-s)^{M-i}=0$ has at least k different roots. Hence, $k \leq \operatorname{deg}(f(s))=M$.
3. Some classes of valuations. In Section 2.3, classical and ovoidal valuations were discussed. We shall now define several other types of valuations.
3.1. Hybrid valuations. Let $\mathcal{S}=(\mathcal{P}, \mathcal{L}$, I) be a dense near $2 n$-gon, $n \geq 2$, let $\delta \in$ $\{2, \ldots, n\}$ and let x be a point of \mathcal{S}. Let $\mathcal{A}_{x, \delta}$ be the incidence structure with points the points of \mathcal{S} at distance at least δ from x, with lines the lines of \mathcal{S} at distance at least $\delta-1$ from x and with natural incidence. By Proposition 1.1 (iv), $\mathcal{A}_{x, \delta}$ is connected. Suppose now that $\mathcal{A}_{x, \delta}$ has an ovoid O. Then the following function $f_{x, O}: \mathcal{P} \rightarrow \mathbb{N}$ can be defined: if y is a point of \mathcal{S} at distance at most $\delta-1$ from x, then we define $f_{x, O}(y):=\mathrm{d}(x, y)$; if y is a point of \mathcal{S} at distance at least δ from x, then we define $f_{x, O}(y)=\delta-2$ if $y \in O$ and $f_{x, O}(y)=\delta-1$ otherwise.

Proposition 3.1. The map $f_{x, O}$ is a valuation of \mathcal{S}.
Proof. Since $f(x)=0$, property $\left(V_{1}\right)$ holds. Now, let L be an arbitrary line of \mathcal{S}. If $\mathrm{d}(x, L) \leq \delta-2$, then the unique point on L nearest to x is also the unique point on L with smallest value. If $\mathrm{d}(x, L) \geq \delta-1$, then the unique point of O on L is the unique point of L with smallest value. This proves property $\left(V_{2}\right)$. Now, property ($P 3$) also holds if we make the following choices for $F_{y}, y \in \mathcal{P}: F_{y}:=\mathcal{C}(x, y)$ if $\mathrm{d}(x, y) \leq \delta-2$, $F_{y}:=\{y\}$ if $y \in O$ and $F_{y}:=\mathcal{S}$ otherwise.

Definition. A valuation that is obtained as above is called a hybrid valuation of type δ. A hybrid valuation of type 2 is just an ovoidal valuation. A hybrid valuation of type n is also called a semi-classical valuation. Although not included in the definition, we could regard the classical valuations as hybrid valuations of type $n+1$.

Proposition 3.2. Iff is a valuation of a dense near $2 n$-gon and if x is a point of \mathcal{S} such that $f(y)=d(x, y)$ for every point y at distance at most $n-1$ from y, then f is either classical or semi-classical.

Proof. Suppose that f is not classical and consider a point $z \in \Gamma_{n}(x)$. Every point of $\Gamma_{1}(z) \cap \Gamma_{n-1}(x)$ has value $n-1$. Hence by property $\left(V_{2}\right)$ and Proposition 2.10, $f(z) \in\{n-2, n-1\}$. By property $\left(V_{2}\right)$, it now follows that the points of $\Gamma_{n}(x)$ with value $n-2$ form an ovoid in $\mathcal{A}_{x, n}$. This proves that f is semi-classical.

Proposition 3.3. Let \mathcal{S} be a dense near $2 n$-gon, $n \geq 2$, of order $(2, t)$ and let x be a point of \mathcal{S}. Then there exists a semi-classical valuation f with $f(x)=0$ if and only if $\Gamma_{n}(x)$ is bipartite. In this case, there are precisely two semi-classical ovoids with $f(x)=0$.

Proof. Every line of $\mathcal{A}_{x, n}$ contains two points. Hence, $\mathcal{A}_{x, n}$ has ovoids if and only if the graph induced by $\Gamma_{n}(x)$ is bipartite.

3.2. Product valuations.

Proposition 3.4. Let $\mathcal{S}_{1}=\left(\mathcal{P}_{1}, \mathcal{L}_{1}, \mathrm{I}_{1}\right)$ and $\mathcal{S}_{2}=\left(\mathcal{P}_{2}, \mathcal{L}_{2}, \mathrm{I}_{2}\right)$ be two dense near polygons. If $f_{i}, i \in\{1,2\}$, is a valuation of \mathcal{S}_{i}, then the map $f: \mathcal{P}_{1} \times \mathcal{P}_{2} \mapsto \mathbb{N}$, $\left(x_{1}, x_{2}\right) \mapsto f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)$ is a valuation of $\mathcal{S}_{1} \times \mathcal{S}_{2}$.

Proof. If $x_{i}, i \in\{1,2\}$, is a point of \mathcal{S}_{i} for which $f_{i}\left(x_{i}\right)=0$, then $f\left[\left(x_{1}, x_{2}\right)\right]=0$. This proves property $\left(V_{1}\right)$. If L is a line of $\mathcal{S}_{1} \times \mathcal{S}_{2}$, then without loss of generality, we may suppose that L is of the form $K \times\{y\}$, with K a line of \mathcal{S}_{1} and y a point of \mathcal{S}_{2}. Now, $f[(k, y)]=f_{1}(k)+f_{2}(y)$ for every point k of K. Property $\left(V_{2}\right)$ now immediately follows: the unique point of L with smallest f-value is the point $\left(x_{K}, y\right)$, where x_{K} denotes the unique point of K with smallest f_{1}-value. It remains to check property $\left(V_{3}\right)$. For every point $x_{i}, i \in\{1,2\}$, of \mathcal{S}_{i}, let $F_{x_{i}}, i \in\{1,2\}$, denote the sub near polygon of \mathcal{S}_{i} satisfying $\left(V_{3}\right)$. For every point $\left(x_{1}, x_{2}\right)$ of $\mathcal{S}_{1} \times \mathcal{S}_{2}$, we define $F_{\left(x_{1}, x_{2}\right)}:=\left\{\left(a_{1}, a_{2}\right) \mid a_{1} \in\right.$ $F_{x_{1}}$ and $\left.a_{2} \in F_{x_{2}}\right\}$. If $\left(a_{1}, a_{2}\right)$ is a point of $F_{\left(x_{1}, x_{2}\right)}$, then $f\left[\left(a_{1}, a_{2}\right)\right]=f_{1}\left(a_{1}\right)+f_{2}\left(a_{2}\right) \leq$ $f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)=f\left[\left(x_{1}, x_{2}\right)\right]$. If $\left(a_{1}, a_{2}\right)$ is a point of $F_{\left(x_{1}, x_{2}\right)}$ and if $\left(b_{1}, b_{2}\right)$ is a point of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ collinear with (a_{1}, a_{2}) and satisfying $f\left[\left(b_{1}, b_{2}\right)\right]=f\left(a_{1}, a_{2}\right)-1$, then without loss of generality, we may suppose that $a_{2}=b_{2}$ and $a_{1} \sim b_{1}$ (in \mathcal{S}_{1}). Then $f_{1}\left(b_{1}\right)=$ $f\left[\left(b_{1}, b_{2}\right)\right]-f_{2}\left(b_{2}\right)=f\left[\left(a_{1}, a_{2}\right)\right]-1-f_{2}\left(a_{2}\right)=f_{1}\left(a_{1}\right)-1$. Since $a_{1} \in F_{x_{1}}$, the point b_{1} also belongs to $F_{x_{1}}$. Hence, the point $\left(b_{1}, b_{2}\right)$ belongs to $F_{\left(x_{1}, x_{2}\right)}$. This proves property $\left(V_{3}\right)$.

Definition. A valuation that is obtained as in Proposition 3.4 is called a product valuation.

3.3. Extended valuations.

Definition. A geodetically closed sub near polygon F of a dense near polygon \mathcal{S} is called classical if, for every point x of \mathcal{S}, there exists a (necessarily unique) point $\pi_{F}(x)$ in F such that $\mathrm{d}(x, y)=\mathrm{d}\left(x, \pi_{F}(x)\right)+\mathrm{d}\left(\pi_{F}(x), y\right)$, for every point y of F.

Lemma 3.5. If x_{1} and x_{2} are collinear points of \mathcal{S} such that $d\left(x_{1}, F\right)=d\left(x_{2}, F\right)-1$, then $\pi_{F}\left(x_{1}\right)=\pi_{F}\left(x_{2}\right)$.

Proof. The point $\pi_{F}\left(x_{1}\right)$ has distance at most $\mathrm{d}\left(x_{1}, \pi_{F}\left(x_{1}\right)\right)+\mathrm{d}\left(x_{1}, x_{2}\right)=$ $\mathrm{d}\left(x_{1}, F\right)+1=\mathrm{d}\left(x_{2}, F\right)$ from x_{2} and hence coincides with $\pi_{F}\left(x_{2}\right)$.

Lemma 3.6. Let \mathcal{S} be a dense near polygon, let K be a line of \mathcal{S} and let F denote a geodetically closed sub near polygon of \mathcal{S} that is classical in \mathcal{S}. Then one of the following holds.

- Every point of K has the same distance from F. In this case we define $\pi_{F}(K):=\left\{\pi_{F}(x) \mid x \in K\right\}$. Then $\pi_{F}(K)$ is a line of F parallel with K.
- There exists a unique point on K nearest to F. In this case all points $\pi_{F}(x), x \in K$, are equal.

Proof. Suppose that all points $\pi_{F}(x), x \in K$, are equal, to u say. Then there exists a unique point on K nearest to F; namely the unique point of K nearest to u. Suppose therefore that there exist points $x_{1}, x_{2} \in K$ such that $\pi_{F}\left(x_{1}\right) \neq \pi_{F}\left(x_{2}\right)$. By Lemma 3.5,
$\mathrm{d}\left(x_{1}, F\right)=\mathrm{d}\left(x_{2}, F\right)$. Put $i:=\mathrm{d}\left(x_{1}, F\right)$. Since

$$
\begin{aligned}
\mathrm{d}\left(\pi_{F}\left(x_{1}\right), \pi_{F}\left(x_{2}\right)\right) & =\mathrm{d}\left(x_{1}, \pi_{F}\left(x_{2}\right)\right)-\mathrm{d}\left(x_{1}, \pi_{F}\left(x_{1}\right)\right) \\
& \leq \mathrm{d}\left(x_{1}, x_{2}\right)+\mathrm{d}\left(x_{2}, \pi_{F}\left(x_{2}\right)\right)-\mathrm{d}\left(x_{1}, \pi_{F}\left(x_{1}\right)\right) \\
& =1
\end{aligned}
$$

$\pi_{F}\left(x_{1}\right)$ and $\pi_{F}\left(x_{2}\right)$ are contained in a line K^{\prime}. If u is a point of K different from x_{1} and x_{2}, then u has distance at most $i+1$ from the points $\pi_{F}\left(x_{1}\right)$ and $\pi_{F}\left(x_{2}\right)$ of K^{\prime}. Hence there exists a point u^{\prime} on K^{\prime} at distance at most i from u. By Lemma 3.5, it follows that $\mathrm{d}(u, F)=i$ and $\pi_{F}(u)=u^{\prime}$. This proves that $\pi_{F}(K) \subseteq K^{\prime}$ and that every point of K has the same distance i from F. Suppose now that there exists a point u^{\prime} in $K^{\prime} \backslash \pi_{F}(K)$. Then u^{\prime} has distance at most $i+1$ from at least two points of K and hence distance at most i from a point u of K, showing that $u^{\prime}=\pi_{F}(u)$, a contradiction.

Proposition 3.7. Let $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ be a dense near $2 n$-gon, let $F=\left(\mathcal{P}^{\prime}, \mathcal{L}^{\prime}, \mathrm{I}^{\prime}\right)$ be a classical geodetically closed sub near polygon of \mathcal{S} and let f^{\prime} denote a valuation of F. Then the map $f: \mathcal{P} \mapsto \mathbb{N}, x \rightarrow f(x):=d\left(x, \pi_{F}(x)\right)+f^{\prime}\left(\pi_{F}(x)\right)$ is a valuation of \mathcal{S}. If f^{\prime} is a classical valuation, then also f is classical.

Proof. Obviously, property $\left(V_{1}\right)$ is satisfied. By Lemma 3.6, it easily follows that also property $\left(V_{2}\right)$ is satisfied. For every point x of \mathcal{S}, we define $F_{x}:=\mathcal{C}\left(x, G_{x}\right)$, where G_{x} denotes the unique geodetically closed sub near polygon of F through $\pi_{F}(x)$ satisfying property $\left(V_{3}\right)$ with respect to the valuation f^{\prime} of F. Then F_{x} has the following properties.

- $F_{x} \cap F=G_{x}$. Obviously, $G_{x} \subseteq F_{x} \cap F$. If y is a point of G_{x} at distance diam $\left(G_{x}\right)$ from $\pi_{F}(x)$ then, since $\pi_{F}(x)$ is contained in a shortest path between x and $y, G_{x}=$ $\mathcal{C}\left(\pi_{F}(x), y\right)$ is contained in $\mathcal{C}(x, y)$. Hence, F_{x} is equal to $\mathcal{C}(x, y)$ and has diameter $\mathrm{d}(x, y)=\mathrm{d}\left(x, \pi_{F}(x)\right)+\operatorname{diam}\left(G_{x}\right)$. Suppose that there exists a point z in $F_{x} \cap F$ not contained in G_{x}. Then $\mathcal{C}\left(z, G_{x}\right)$ has diameter at least $\operatorname{diam}\left(G_{x}\right)+1$. As before we have that $\mathcal{C}\left(x, \mathcal{C}\left(z, G_{x}\right)\right)$ has diameter

$$
\begin{aligned}
\mathrm{d}\left(x, \pi_{F}(x)\right)+\operatorname{diam}\left(\mathcal{C}\left(G_{x}, z\right)\right) & \geq \mathrm{d}\left(x, \pi_{F}(x)\right)+\operatorname{diam}\left(G_{x}\right)+1 \\
& =\operatorname{diam}\left(F_{x}\right)+1,
\end{aligned}
$$

a contradiction, since $F_{x}=\mathcal{C}\left(x, \mathcal{C}\left(z, G_{x}\right)\right)$. As a consequence, $F_{x} \cap F=G_{x}$.

- For every $y \in F_{x}, \pi_{F}(y) \in G_{x}$. Clearly every shortest path between y and a point $z \in G_{x}$ is contained in F_{x}. Since the point $\pi_{F}(y)$ is contained in a shortest path between y and z, the point $\pi_{F}(y)$ belongs to $F_{x} \cap F=G_{x}$.
- For every point y of $F_{x}, \mathrm{~d}\left(y, \pi_{F}(y)\right) \leq \mathrm{d}\left(x, \pi_{F}(x)\right)$. As before, $\mathcal{C}\left(y, G_{x}\right)$ has diameter $\mathrm{d}\left(y, \pi_{F}(y)\right)+\operatorname{diam}\left(G_{x}\right)$. Since $\mathcal{C}\left(y, G_{x}\right) \subseteq \mathcal{C}\left(x, G_{x}\right)$, it follows that $\mathrm{d}\left(y, \pi_{F}(y)\right)+\operatorname{diam}\left(G_{x}\right) \leq \mathrm{d}\left(x, \pi_{F}(x)\right)+\operatorname{diam}\left(G_{x}\right)$, from which the statement follows.

Let u be a point of F_{x}. Since $\pi_{F}(u) \in G_{x}, f^{\prime}\left(\pi_{F}(u)\right) \leq f^{\prime}\left(\pi_{F}(x)\right)$. Hence, $f(u)=$ $\mathrm{d}\left(u, \pi_{F}(u)\right)+f^{\prime}\left(\pi_{F}(u)\right) \leq \mathrm{d}\left(x, \pi_{F}(x)\right)+f^{\prime}\left(\pi_{F}(x)\right)=f(x)$. Let v be a neighbour of u with value $f(u)-1$. In order to prove property $\left(V_{3}\right)$, we distinguish two possibilities.
$-\mathrm{d}\left(v, \pi_{F}(v)\right) \neq \mathrm{d}\left(u, \pi_{F}(u)\right)$. Then $\pi_{F}(u)=\pi_{F}(v)$ by Lemma 3.5. In this case, $\mathrm{d}\left(v, \pi_{F}(v)\right)=\mathrm{d}\left(u, \pi_{F}(u)\right)-1$. Hence, v is on a shortest path between u and $\pi_{F}(u)=$ $\pi_{F}(v)$. Since $u, \pi_{F}(u) \in F_{x}$, also v belongs to F_{x}.
$-\mathrm{d}\left(v, \pi_{F}(v)\right)=\mathrm{d}\left(u, \pi_{F}(u)\right)$. In this case, $f^{\prime}\left(\pi_{F}(v)\right)=f^{\prime}\left(\pi_{F}(u)\right)-1$. By Lemma 3.6, $\mathrm{d}\left(\pi_{F}(u), \pi_{F}(v)\right)=1$. From $\pi_{F}(u) \in G_{x}$, it then follows that also $\pi_{F}(v) \in G_{x}$. Now, v lies on a shortest path between $\pi_{F}(v)$ and u. Since $\pi_{F}(v) \in F_{x}$ and $u \in F_{x}, v$ also belongs to F_{x}.

If f^{\prime} is classical valuation of F, then

$$
f(x)=\mathrm{d}\left(x, \pi_{F}(x)\right)+f^{\prime}\left(\pi_{F}(x)\right)=\mathrm{d}\left(x, \pi_{F}(x)\right)+\mathrm{d}\left(\pi_{F}(x), x^{*}\right)=\mathrm{d}\left(x, x^{*}\right),
$$

where x^{*} denotes the unique point of F for which $f^{\prime}\left(x^{*}\right)=0$. Hence f is classical if f^{\prime} is classical.

Definition. The valuation f is called an extension of f^{\prime}.

3.4. Diagonal valuations.

Proposition 3.8. Let F be a dense near polygon and let $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ be the direct product $F \times F$. Define $X:=\{(x, x) \mid x \in F\}$. Then the function $f: \mathcal{P} \rightarrow \mathbb{N} ; p \mapsto d(p, X)$ is a valuation of \mathcal{S}.

Proof. For every point (u, v) of $\mathcal{S}, f[(u, v)]=\mathrm{d}(u, v)$. Hence, every point of \mathcal{S} has value at most $\operatorname{diam}(F)$. Obviously, there exists a point with value 0 . Let L denote a line of \mathcal{S}. Without loss of generality, we may suppose that $L=\{u\} \times M$. If u^{\prime} denotes the unique point of M nearest to u, then $\left(u, u^{\prime}\right)$ is the unique point of L with smallest value. Now, for every point (u, v) of \mathcal{S}, we put $F_{(u, v)}=\mathcal{C}(u, v) \times \mathcal{C}(u, v)$. If $\left(u_{1}, v_{1}\right) \in F_{(u, v)}$, then $f\left[\left(u_{1}, v_{1}\right)\right]=\mathrm{d}\left(u_{1}, v_{1}\right) \leq \mathrm{d}(u, v)=f[(u, v)]$. Let $\left(u_{1}, v_{1}\right) \in F_{(u, v)}$ and let $\left(u_{2}, v_{2}\right)$ be a point of \mathcal{S} collinear with $\left(u_{1}, v_{1}\right)$ such that $f\left[\left(u_{2}, v_{2}\right)\right]=f\left[\left(u_{1}, v_{1}\right)\right]-1$. Without loss of generality, we may suppose that $u_{1}=u_{2}$. Then $v_{2} \sim v_{1}$ and $\mathrm{d}\left(u_{1}, v_{2}\right)=\mathrm{d}\left(u_{1}, v_{1}\right)-1$, so that, $v_{2} \in \mathcal{C}\left(u_{1}, v_{1}\right) \subseteq \mathcal{C}(u, v)$. As a consequence, $\left(u_{2}, v_{2}\right) \in \mathcal{C}(u, v) \times \mathcal{C}(u, v)=F_{(u, v)}$. This proves that f is a valuation of \mathcal{S}.

Definition. A valuation that is obtained as in Proposition 3.8 is called a diagonal valuation.

Remark. With every set Y of points in $F \times F$, we can associate a matrix M_{Y} whose rows and columns are indexed by the points of F. If $(u, v) \in Y$, then the (u, v)-th entry of M_{Y} is equal to 1 ; otherwise it is equal to 0 . The matrix M_{X} corresponding with the above-mentioned set X gives rise to a matrix with all ones on the diagonal. This explains the name we have given to these valuations.
3.5. Distance- j-ovoidal valuations. We generalize the notion of distance- j-ovoids in generalized $2 n$-gons ([11]) to arbitrary near polygons.

Definition. Let \mathcal{S} be a near $2 n$-gon, $n \geq 2$. A distance- j-ovoid, $j \in\{2 \ldots, n\}$, of \mathcal{S} is a set X of points satisfying
(1) $\mathrm{d}(x, y) \geq j$ for all points $x, y \in X$;
(2) for every point a of \mathcal{S}, there exists a point $x \in X$ such that $\mathrm{d}(a, x) \leq \frac{j}{2}$;
(3) for every line L of \mathcal{S}, there exists a point $x \in X$ such that $\mathrm{d}(L, x) \leq \frac{j-1}{2}$.

A distance-2-ovoid is just an ovoid. From (1), (2) and (3), we immediately have the following statements.

- If j is odd, then for every point a of \mathcal{S}, there exists a unique point $x \in X$ such that $\mathrm{d}(a, x) \leq \frac{j-1}{2}$.
- If j is even, then for every line L of \mathcal{S}, there exists a unique point $x \in X$ such that $\mathrm{d}(L, x) \leq \frac{j-2}{2}$.

Proposition 3.9. If X is a distance- j-ovoid of a dense near $2 n$-gon $\mathcal{S}=(\mathcal{P}, \mathcal{L}$, I) with $2 \leq j \leq n$ and j even, then the $\operatorname{map} f: \mathcal{P} \rightarrow \mathbb{N}, x \mapsto d(x, X)$ is a valuation of \mathcal{S}.

Proof. Since $f(x)=0$ for every point $x \in X$, property $\left(V_{1}\right)$ holds.
Let L be a line of \mathcal{S}. Then there exists a unique point $x^{*} \in X$ such that $\mathrm{d}\left(x^{*}, L\right) \leq$ $\frac{j-2}{2}=\frac{j}{2}-1$. Hence, $\mathrm{d}\left(a, x^{*}\right) \leq \frac{j}{2}$ for every point a of L. By property (1), we then have that $\mathrm{d}(a, X)=\mathrm{d}\left(a, x^{*}\right)$ for every point a of L. It is now easily seen that property $\left(V_{2}\right)$ holds: the point x_{L} is the unique point of L nearest to x^{*}.

Let x denote an arbitrary point of \mathcal{S}. If $\mathrm{d}(x, X)=\frac{j}{2}$, then we define $F_{x}:=\mathcal{S}$. If $\mathrm{d}(x, X)<\frac{j}{2}$, then by property (1), there exists a unique point $x^{\prime} \in X$ at distance $\mathrm{d}(x, X)$ from x and we define $F_{x}:=\mathcal{C}\left(x, x^{\prime}\right)$. Clearly, property $\left(V_{3}\right)$ holds for any point x for which $\mathrm{d}(x, X)=\frac{j}{2}$. Suppose therefore that $\mathrm{d}(x, X)<\frac{j}{2}$ and let x^{\prime} denote the unique point of X at distance $\mathrm{d}(x, X)$ from x. Then for every point y of F_{x}, $\mathrm{d}\left(y, x^{\prime}\right) \leq \mathrm{d}\left(x, x^{\prime}\right)<\frac{j}{2}$, so that $f(y)=\mathrm{d}(y, X)=\mathrm{d}\left(y, x^{\prime}\right) \leq f(x)$. Now, let y be a point of F_{x} and let z be a point of \mathcal{S} collinear with y such that $f(z)=f(y)-1$. Then there exists a point $x^{\prime \prime} \in X$ such that $\mathrm{d}\left(z, x^{\prime \prime}\right)=\mathrm{d}\left(y, x^{\prime}\right)-1$. Since y has distance at most $\mathrm{d}\left(y, x^{\prime}\right)$ from $x^{\prime \prime}, x^{\prime}$ coincides with $x^{\prime \prime}$. Hence, $\mathrm{d}\left(z, x^{\prime}\right)=\mathrm{d}\left(y, x^{\prime}\right)-1$ and $z \in F_{x}$. This proves that also $\left(V_{3}\right)$ holds.

Definition. A valuation f that is obtained as in Proposition 3.9 is called a distance-j-ovoidal valuation. A distance-2-ovoidal valuation is the same as an ovoidal valuation.
3.6. SDPS-valuations. A near polygon is called classical if it satisfies the following properties:

- every two points at distance 2 are contained in a unique quad,
- every point-quad relation is classical.

Every near 0-gon, near 2-gon and nondegenerate generalized quadrangle is classical. Every direct product of classical near polygons is again classical. By [3], the classical near polygons of diameter at least 2 are precisely the dual polar spaces of rank at least 2 . With every polar space P of rank $n \geq 2$ there is associated a dual polar space P^{D} which is a near $2 n$-gon. The points and lines of P^{D} are the maximal and next-to-maximal totally isotropic subspaces of P. By the classification of polar spaces ([10]), every finite dense dual polar space of rank $n \geq 2$ that is not a product near polygon is isomorphic to one of the examples given in the following table.

polar space	dual polar space	quads	$\left(s, t_{2}\right)$
$Q(2 n, q)$	$Q^{D}(2 n, q)$	$W(q)$	(q, q)
$Q^{-}(2 n+1, q)$	$\left[Q^{-}(2 n+1, q)\right]^{D}$	$H\left(3, q^{2}\right)$	$\left(q^{2}, q\right)$
$H\left(2 n-1, q^{2}\right)$	$H^{D}\left(2 n-1, q^{2}\right)$	$Q(5, q)$	$\left(q, q^{2}\right)$
$H\left(2 n, q^{2}\right)$	$H^{D}\left(2 n, q^{2}\right)$	$H^{D}\left(4, q^{2}\right)$	$\left(q^{3}, q^{2}\right)$
$W(2 n-1, q)$	$W^{D}(2 n-1, q)$	$Q(4, q)$	(q, q)

Every near $2 n$-gon in this table is a regular near polygon with parameters s, t and t_{i} $(0 \leq i \leq n)$, where $t_{i}=\frac{t_{i}^{i}-t_{2}}{t_{2}-1}$ and $t=t_{n}$. In the table, we have made use of the following well-known isomorphisms: $Q^{D}(4, q) \cong W(q)$ and $\left[Q^{-}(5, q)\right]^{D}=Q^{D}(5, q) \cong H\left(3, q^{2}\right)$. See, for example, [7].

In [5], valuations of dual polar spaces are examined in detail. For completeness, a class of valuations that arises in [5] is given here.

Definition. Let $\mathcal{A}=(P, L, \mathrm{I})$ be one of the following classical near $4 n$-gons:
(a) a point $(n=0)$;
(b) a dense generalized quadrangle ($n=1$);
(c) $W^{D}(4 n-1, q)$ with $n \geq 2$;
(d) $\left[Q^{-}(4 n+1, q)\right]^{D}$ with $n \geq 2$.

A subset X of P is called an $S D P S$-set of \mathcal{A} if it satisfies the following properties.
(1) No two points of X are collinear in \mathcal{A}.
(2) If $x, y \in X$ such that $\mathrm{d}(x, y)=2$, then $X \cap \mathcal{C}(x, y)$ is an ovoid of the quad $\mathcal{C}(x, y)$.
(3) The point-line incidence structure \mathcal{A} with points the elements of X, with lines the quads of \mathcal{A} containing at least two points of X and with natural incidence is isomorphic to one of the following near $2 n$-gons:

- case (a): a point;
- case (b): a line of size at least 2 ;
- case (c): $W^{D}\left(2 n-1, q^{2}\right)$;
- case (d): $H^{D}\left(2 n, q^{2}\right)$.
(4) For all $x, y \in X, \mathrm{~d}(x, y)=2 \cdot \delta(x, y)$, where $\delta(x, y)$ denotes the distance between x and y in the geometry $\tilde{\mathcal{A}}$.

Remark. The terminology SDPS-set refers to the fact that there is a sub dual polar space associated with each such set. An SDPS-set of the near 0 -gon consists of the unique point of the near 0 -gon. An SDPS-set of a generalized quadrangle is just an ovoid of that generalized quadrangle. For the cases (c) and (d), examples of SDPS-sets are known. See [5].

Proposition 3.10. ([5]) If X is an SDPS-set of the near $4 n$-gon $\mathcal{A}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$, then the map $f: \mathcal{P} \mapsto d(x, X)$ is a valuation of \mathcal{A}.

Definition. Any valuation f which can be obtained in the above-mentioned way is called an SDPS valuation.
4. Valuations of dense near hexagons. Let $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ be a dense near hexagon and let f be a valuation of \mathcal{S}. There are three possibilities.

- $\max \{f(x) \mid x \in \mathcal{P}\}=3$. In this case f is a classical valuation.
- $\max \{f(x) \mid x \in \mathcal{P}\}=1$. In this case f is an ovoidal valuation.
- $\max \{f(x) \mid x \in \mathcal{P}\}=2$.

Proposition 4.1. If $\left|O_{f}\right|=1$, then f is a classical or a semi-classical valuation.
Proof. This follows directly from Propositions 2.14 and 3.2.
Proposition 4.2. Suppose that $\left|O_{f}\right| \geq 2$ and f is not ovoidal. Then every two points of O_{f} lie at distance 2 from each other. As a consequence, G_{f} is a linear space.

Proof. Let x and y denote two distinct points of O_{f}. Then $\mathrm{d}(x, y) \in\{2,3\}$. Suppose that $\mathrm{d}(x, y)=3$ and consider a shortest path x, x_{1}, x_{2}, y from x to y. By property $\left(V_{2}\right)$, the points x_{1} and x_{2} have value 1 , and there exists a point p on $x_{1} x_{2}$ with value 0 . Let $F_{x_{1}}$ denote the sub near polygon through x_{1} satisfying property $\left(V_{3}\right)$. Now x and p are points with value 0 collinear with x_{1} and so $x, p \in F_{x_{1}}$. Since x_{1} and p belong to $F_{x_{1}}$, the point x_{2} also belongs to $F_{x_{1}}$. As y is a point with value 0 collinear with x_{2}, we also have $y \in F_{x_{1}}$. Hence, $x, y \in F_{x_{1}}$ and $\mathcal{C}(x, y) \subseteq F_{x_{1}}$. Since $\mathrm{d}(x, y)=3, \mathcal{S}=\mathcal{C}(x, y)=F_{x_{1}}$,
a contradiction, since every point of $F_{x_{1}}$ has value at most 1 and \mathcal{S} contains points with value 2 .

Proposition 4.3. If not every line of a dense near hexagon \mathcal{S} is incident with the same number of points, thenf is classical or an extended valuation arising from an ovoidal valuation in a quad of \mathcal{S}.

Proof. Suppose that \mathcal{S} has $k \geq 2$ different line sizes $s_{1}+1, \ldots, s_{k}+1$. By Corollary 2.16, f is not ovoidal and $k \leq 3$. If $k=3$, then by Proposition $1.2, \mathcal{S}$ is the direct product of three lines of different sizes. Any quad of \mathcal{S} is then a nonsymmetrical grid and hence does not contain ovoids. Hence, every induced quad valuation is classical. By Proposition 2.13, it then follows that the valuation f itself is classical, and so we may suppose that $k=2$. By Proposition 1.2, it follows that \mathcal{S} is the direct product of a line L and a generalized quadrangle Q. Without loss of generality, we may suppose that L has size $s_{1}+1$ and that Q has order $\left(s_{2}, t_{2}\right)$ for a certain $t_{2} \in \mathbb{N} \backslash\{0\}$. Since f is not ovoidal, \mathcal{S} contains points with value 2 . If f contains points with value 3 , then f is classical by Proposition 2.10. Hence, we may suppose that there are only points with value 0,1 or 2 . There are $\left(t_{2}+1\right)\left(s_{2} t_{2}+1\right)$ quads in \mathcal{S} isomorphic to a $\left(s_{1}+1\right) \times\left(s_{2}+1\right)$-grid. The induced valuation in each such quad cannot be ovoidal and hence is classical. As a consequence, each such quad contains a unique point of O_{f}. Since any point of \mathcal{S} is contained in precisely $t_{2}+1\left(s_{1}+1\right) \times\left(s_{2}+1\right)$-grids, $\left|O_{f}\right|=\frac{\left(t_{2}+1\right)\left(s_{2} t_{2}+1\right)}{t_{2}+1}=s_{2} t_{2}+1 \geq 2$. We can now apply Proposition 4.2 and we find that any two points of O_{f} lie at distance 2 from each other. Since f is not classical, there exists a quad R such that the valuation induced in R is ovoidal. See Proposition 2.13. Obviously, the quad R is isomorphic with Q. For any point x of \mathcal{S} outside Q, there always exists a point of the ovoid $O_{f} \cap R$ at distance 3 from x by Proposition 1.1 (iii). Hence, $f(x) \neq 0$ and $O_{f} \subset R$. By Proposition 1.1 (iii) and Proposition 2.14, it now follows that $f(x)=\mathrm{d}\left(x, O_{f}\right)=\mathrm{d}\left(x, \pi_{F}(x)\right)+\mathrm{d}\left(\pi_{F}(x), O_{f}\right)$ for every point x of \mathcal{S}, so that f is the extension of an ovoidal valuation in R.

If all lines of \mathcal{S} are incident with $s+1$ points, then by Proposition 2.15, $m_{0}-\frac{m_{1}}{s}+$ $\frac{m_{2}}{s^{2}}=0$, where $m_{i}, i \in\{0,1,2\}$, denotes the total number of points with value i.

Acknowledgements. The first author is a postdoctoral researcher of the Research Foundation - Flanders. The second author's research is supported by the Flemish Institute for the Promotion of Scientific and Technological Research in Industry (IWT), Grant No. IWT/SB/001022/Vandecasteele.

REFERENCES

1. A. E. Brouwer, A. M. Cohen, J. I. Hall and H. A. Wilbrink, Near polygons and Fischer spaces, Geom. Dedicata 49 (1994), 349-368.
2. A. E. Brouwer and H. A. Wilbrink, The structure of near polygons with quads, Geom. Dedicata 14 (1983), 145-176.
3. P. J. Cameron, Dual polar spaces, Geom. Dedicata 12 (1982), 75-86.
4. B. De Bruyn, Near hexagons with four points on a line, Adv. Geom. 1 (2001), 211-228.
5. B. De Bruyn and P. Vandecasteele, Valuations and hyperplanes of dual polar spaces, J. Combin. Theory Ser. A, to appear.
6. B. De Bruyn and P. Vandecasteele, The classification of dense near octagons with three points on every line, Submitted to European J. Combin.
7. S. E. Payne and J. A. Thas, Finite generalized quadrangles, Volume 110 of Research Notes in Mathematics (Pitman, Boston, 1984).
8. S. Shad and E. E. Shult, The near n-gon geometries. preprint.
9. E. E. Shult and A. Yanushka, Near n-gons and line systems, Geom. Dedicata 9 (1980), 1-72.
10. J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics No. 386 (Springer Verlag, 1974).
11. H. Van Maldeghem, Generalized polygons, Volume 93 of Monographs in Mathematics (Birkhäuser, 1998).
