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Abstract. We introduce the notion of valuation of a dense near polygon. The
valuations of a dense near polygon F describe the possible relations between a point of
a dense near polygon S and any geodetically closed sub near polygon of S isomorphic
to F . Several nice properties of valuations are given and several classes of these objects
are defined. Valuations are an important tool for classifying dense near polygons.
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1. Introduction. A simple undirected connected graph � without loops is called
a near 2d-gon ([9]) if it has diameter d and if for every vertex x and every maximal
clique M, there exists a unique vertex x′ in M nearest to x. If � is a near polygon,
then the point-line incidence structure S with points the vertices of �, with lines the
maximal cliques of � and with natural incidence is a partial linear space; that is, every
two points of S are incident with at most one line. The partial linear space S is also
called a near polygon. The graph � can easily be retrieved from S: it is the point graph
or collinearity graph of S. In the sequel we shall always adopt the geometrical point
of view and interpret distances d(·, ·) in S as if they were measured in �. From the
geometrical point of view a near 0-gon is a point and a near 2-gon is a line.

If X1 and X2 are two sets of points, then d(X1, X2) denotes the minimal distance
between a point of X1 and a point of X2. If X1 = {x}, then we also write d(x, X2)
instead of d({x}, X2). For every i ∈ �, �i(X1) denotes the set of all points y for which
d(y, X1) = i. If X1 = {x}, we also write �i(x) instead of �i({x}).

A near 2d-gon, d ≥ 2, is called a generalized 2d-gon ([11]) if |�i−1(x) ∩ �1(y)| = 1
for every i ∈ {1, . . . , d − 1} and every two points x and y at distance i from each other.
A generalized 2d-gon is called degenerate if it does not contain ordinary 2d-gons as
subgeometries, or equivalently, if it contains a point which has distance at most d − 1
from any other point. The near quadrangles are precisely the generalized quadrangles
(GQ’s, [7]). A degenerate generalized quadrangle consists of a number of lines through
a point.

A nonempty set X of points in S is called a subspace if every line meeting X in at
least two points is completely contained in X . A subspace X is called geodetically closed
if every point on a shortest path between two points of X is also contained in X . Given
a subspace X , we can define a subgeometry SX of S by considering only those points
and lines of S that are completely contained in X . If X is geodetically closed, then SX

clearly is a sub near polygon ofS. IfSX is a nondegenerate generalized quadrangle, then
X and often also SX will be called a quad. If X1, . . . , Xk are nonempty sets of points,
then C(X1, . . . , Xk) denotes the minimal geodetically closed sub near polygon through

https://doi.org/10.1017/S0017089505002582 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002582


348 BART DE BRUYN AND PIETER VANDECASTEELE

X1 ∪ · · · ∪ Xk; that is the intersection of all geodetically closed sub near polygons
through X1 ∪ · · · ∪ Xk. If x and y are two different points of S, then C({x, y}) is also
denoted by C(x, y).

A near polygon is said to have order (s, t) if every line is incident with exactly s + 1
points and if every point is incident with exactly t + 1 lines. A near 2d-gon, d ≥ 2, is
called regular if it has an order (s, t) and if there exist constants ti, i ∈ {0, . . . , d}, such
that for any two points x and y at distance i there are precisely ti + 1 neighbours of y
at distance i − 1 from x. Then t0 = −1, t1 = 0 and td = t.

A near polygon is called dense if every line is incident with at least three points
and if every two points at distance 2 have at least two common neighbours. Dense
near polygons satisfy several nice properties; see [2] for an overview. We mention some
properties that are needed later.

PROPOSITION 1.1. (i) (Lemma 19 of [2]). Every point of a dense near polygon S is
incident with the same number of lines.

(ii) (Theorem 4 of [2]). If x and y are two points of a dense near polygon, then C(x, y)
is the unique geodetically closed sub near [2 · d(x, y)]-gon through x and y. Hence, if x
and y are two points at distance 2 in a dense near polygon, then these points are contained
in a unique quad.

(iii) ([2]) Let S be a dense near 2d-gon, d ≥ 1, let F be a geodetically closed sub near
2i-gon, i ∈ {0, . . . , d − 1}, of S.

• If L is a line which intersects F in a point, then C(F, L) is a geodetically closed sub
near 2(i + 1)-gon.

• If x is a point at distance 1 from F, then x is collinear with a unique point x′ of F
and d(x, y) = 1 + d(x′, y) for every point y of F.

(iv) (Corollary, [2, p. 156]) If x is a point of a dense near 2d-gon, then the subgraph
of � induced by �d(x) is connected.

Let S1 = (P1,L1, I1) and S2 = (P2,L2, I2) be two near polygons. A new near
polygon S = (P,L, I) can be derived from S1 and S2:

(1) P = P1 × P2;
(2) L = (P1 × L2) ∪ (L1 × P2);
(3) the point (x, y) of S1 × S2 is incident with the line (z, L) ∈ P1 × L2 if and only

if x = z and y I2 L, the point (x, y) of S1 × S2 is incident with the line (M, u) ∈ L1 × P2

if and only if x I1 M and y = u.
The near polygon S is called the direct product of S1 and S2, and is denoted by

S1 × S2. If Si, i ∈ {1, 2}, is a near 2ni-gon, then the direct product S = S1 × S2 is
a near 2(n1 + n2)-gon. Since S1 × S2

∼= S2 × S1 and (S1 × S2) × S3
∼= S1 × (S2 × S3),

also the direct product of k ≥ 3 near polygons S1, . . . ,Sk is well defined.

PROPOSITION 1.2. (Theorem 1 of [2]) Suppose S is a near polygon with the property
that every two points at distance 2 have at least two common neighbours. If k ≥ 2 different
line sizes occur in S, then S is isomorphic to a direct product of k near polygons, each of
which has constant line size.

COROLLARY 1.3. If a dense near polygon S has lines of size s + 1, then S has a
partition in isomorphic geodetically closed sub near polygons of order (s, t′) for some
t′ ≥ 0.
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2. Valuations.

2.1. Motivation. Let F1 and F2 denote two geodetically closed sub near polygons
of a dense near polygon S and put di := diam(Fi), i ∈ {1, 2}. Depending on how the
distances d(x1, x2) behave when x1 and x2 range over all elements of F1 and F2,
respectively, we shall be able to say that F1 has a “certain position” with respect to
F2. For instance, in the case (d1, d2) = (1, 1), we can distinguish two possible line-
line relations; see Proposition 2.1; in the case (d1, d2) = (0, 2), we can distinguish two
possible point-quad relations; see Proposition 2.2; in the case (d1, d2) = (1, 2) we can
distinguish five possible line-quad relations; see Proposition 2.3.

DEFINITIONS. Let Q be a generalized quadrangle. An ovoid of Q is a set of points
of Q meeting each line of Q in exactly one point. More generally, an ovoid of a partial
linear space is a set of points meeting each line in a unique point. A fan of ovoids of Q
is a set of ovoids of Q partitioning the point set of Q. A rosette of ovoids of Q is a set of
ovoids of Q through a common point x which partitions the set of points at distance 2
from x.

PROPOSITION 2.1. (The line-line relations, Lemma 1 of [2]) Let K and L denote two
lines of a near polygon S. Then precisely one of the following cases occurs.

(i) There exist unique points k0 ∈ K and l0 ∈ L such that d(k, l) = d(k, k0) +
d(k0, l0) + d(l0, l), for all points k ∈ K and l ∈ L.

(ii) For every point k ∈ K there exists a unique point l ∈ L such that d(k, l) = d(K, L).
In this case K and L are called parallel.

PROPOSITION 2.2. (The point-quad relations, Proposition 2.6 of [9])
Let x be a point and Q a quad of a dense near polygon S. Then precisely one of the
following cases occurs.

(i) Q contains a unique point πQ(x) nearest to x and for every point y of Q, d(x, y) =
d(x, πQ(x)) + d(πQ(x), y). In this case, x is called classical with respect to Q.

(ii) The set of points in Q nearest to x forms an ovoid Ox of Q. In this case, x is called
ovoidal with respect to Q.

For every quad Q of a dense near polygon and every i ∈ �, let Xi(Q) denote the
set of points x at distance i from Q, Xi,C(Q) the set of points of Xi(Q) that are classical
with respect to Q and Xi,O(Q) the set of points Xi(Q) that are ovoidal with respect to
Q. If no confusion is possible, we also write Xi, Xi,C and Xi,O instead of Xi(Q), Xi,C(Q)
and Xi,O(Q).

PROPOSITION 2.3. (The line-quad relations, Lemma (3)–(10) of [2])
Let (L, Q) be a line-quad pair of a dense near polygon S and put i := d(L, Q). Then one
of the following cases occurs.

(i) L ⊆ Xi,C. In this case, πQ(L) := {πQ(x) | x ∈ L} is a line of Q parallel with L.
(ii) L ⊆ Xi,O. In this case, the ovoids Ox, x ∈ L, define a fan of ovoids of Q.

(iii) L contains a unique point of Xi,C and the remaining points of L belong to Xi+1,C.
In this case, all points πQ(x), x ∈ L, are equal.

(iv) L contains a unique point u of Xi,C and the remaining points of L belong to
Xi+1,O. In this case, the ovoids Ox, x ∈ L \ {u}, define a rosette of ovoids through the
point πQ(u).

(v) L contains a unique point of Xi,O and the remaining points of L belong to Xi+1,O.
In this case, all ovoids Ox, x ∈ L, are equal.
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The possible point-quad and line-quad relations were a very important tool in the
classification of certain dense near polygons, see e.g. [1] and [4]. In this paper we shall
study the possible relations between a point x and a geodetically closed sub near 2δ-gon
F , δ ≥ 3. The possible relations are described by the valuations of F . Also valuations
are an important tool in the classification of near polygons. These objects will be used
in [6] to classify all dense near octagons with three points per line.

2.2. Definition and elementary properties.
DEFINITION. Let S = (P,L, I) be a dense near 2n-gon. A function f from P to �

is called a valuation if it satisfies the following properties (we call f (x) the value of x):
(V1) there exists at least one point with value 0;
(V2) every line L of S contains a unique point xL with smallest value and f (x) =

f (xL) + 1 for every point x of L different from xL;
(V3) every point x of S is contained in a geodetically closed sub near polygon Fx

that satisfies the following properties:
• f (y) ≤ f (x) for every point y of Fx,
• every point z of S that is collinear with a point y of Fx and which satisfies

f (z) = f (y) − 1 also belongs to Fx.

PROPOSITION 2.4. Let f be a valuation of a dense near 2n-gon S. Then the following
statements hold:

(i) for every two points x and y of S, |f (x) − f (y)| ≤ d(x, y);
(ii) for every point x of S, f (x) ∈ {0, . . . , n};

(iii) if x is a point with value 0 and if y is collinear with x, then f (y) = 1.

Proof. (i) This follows from property (V2).
(ii) This follows from (i) and property (V1).
(iii) If y were equal to 0, then the line xy cannot contain a unique point with

smallest value. �
PROPOSITION 2.5. Let f be a valuation of a dense near polygon S. Then through every

point x of S, there exists exactly one geodetically closed sub near polygon Fx satisfying
property (V3).

Proof. By [2], a geodetically closed sub near polygon F through x is completely
determined by the set of lines through x contained in F . Now, by properties (V2)
and (V3), a line through x belongs to Fx if and only if it contains a point with value
f (x) − 1. This proves that there exists exactly one geodetically closed sub near polygon
Fx satisfying property (V3). �

The following proposition says that the valuations of a dense near polygon F
describe the possible relations between a point of a near polygonS and any geodetically
closed sub near polygon of S isomorphic to F . The valuations of F give information
on how F can be embedded in a larger dense near polygon. That is the reason why
these objects are important for classifying near polygons.

PROPOSITION 2.6. Let S = (P,L, I) be a dense near 2n-gon and let F = (P ′,L′, I′)
be a geodetically closed sub near 2δ-gon of S. For every point x of S and for every point
y of F, we define fx(y) := d(x, y) − d(x,P ′). Then fx : P ′ → � is a valuation of F, for
every point x of S.
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Proof. Let y be a point of F such that d(x, y) = d(x,P ′). Then fx(y) = 0. Because
every line of F contains a unique point nearest to x, also (V2) is satisfied. For every
y ∈ F , we define Fy := C(x, y) ∩ F . If z ∈ Fy, then fx(z) = d(x, z) − d(x,P ′) ≤ d(x, y) −
d(x,P ′) = fx(y). If u is a point of Fy and if u′ is a neighbour of u in F with value fx(u) − 1,
then d(x, u′) = d(x, u) − 1, implying that u′ ∈ C(x, u) ∩ F ⊆ C(x, y) ∩ F = Fy. This
shows that also (V3) is satisfied. �

We shall now generalize Proposition 2.6, but first we need the following lemma.

LEMMA 2.7. Let S be a dense near polygon and let F be a sub near polygon of S
satisfying the following conditions:

� F is a subspace of S,
� dF (x, y) = dS (x, y), for all points x and y of F.

Then, for every geodetically closed subspace G of S, either G ∩ F = ∅ or G ∩ F is a
geodetically closed sub near polygon of F.

Proof. Suppose that G ∩ F �= ∅. As intersection of two subspaces, G ∩ F is again
a subspace. Let a, b ∈ G ∩ F and let c be a point of F collinear with b such that
dF (a, c) = dF (a, b) − 1. Then dS (a, c) = dS (a, b) − 1 and so c ∈ C(a, b) ⊆ G. Hence,
c ∈ G ∩ F . This proves that G ∩ F is geodetically closed. �

PROPOSITION 2.8. Let S = (P,L, I) be a dense near 2n-gon and let F = (P ′,L′, I′)
be a sub near 2δ-gon of S that has the following properties:

� F is a dense near polygon,
� F is a subspace of S,
� if x and y are two points of F, then dF (x, y) = dS (x, y).

For every point x of S and every point y of F, we define fx(y) := dS (x, y) − dS (x,P ′).
Then fx : P ′ → � is a valuation of F, for every point x of S.

Proof. By Lemma 2.7, C(x, y) ∩ F is a geodetically closed subspace of F for every
point x of S and every point y of F . The proof is now completely similar to the proof
of Proposition 2.6. �

Valuations of dense near 0-gons and dense near 2-gons are trivial objects. There
is a unique point with value 0 and all other points in the case of near 2-gons have
value 1. In the following paragraph we shall show that there are two possible types
of valuations in dense generalized quadrangles, corresponding with the two possible
point-quad relations given in Proposition 2.2.

2.3. Classical and ovoidal valuations.

PROPOSITION 2.9. Let S = (P,L, I) be a dense near 2n-gon.
(i) If y is a point of S, then fy : P → �; x 
→ d(x, y) is a valuation of S.
(ii) If O is an ovoid of S, then fO : P → �; x 
→ d(x,O) is a valuation of S.

Proof. In both cases, (V1) and (V2) are satisfied. In case (i), we put Fx := C(x, y).
In case (ii), we put Fx := {x} if x ∈ O and Fx := S otherwise. For these choices of Fx,
also (V3) holds. �

DEFINITION. A valuation of S is classical if it is obtained as in (i) of Proposition 2.9;
it is ovoidal if it is obtained as in (ii). Classical and ovoidal valuations can be
characterized as follows.
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PROPOSITION 2.10. Let f be a valuation of a dense near 2n-gon S = (P,L, I) with
n ≥ 1. Then

(i) max{f (u)|u ∈ P} ≤ n with equality if and only if f is classical;
(ii) max{f (u)|u ∈ P} ≥ 1 with equality if and only if f is ovoidal.

Proof. Obviously, the inequalities above hold. If f is a classical valuation, then
obviously max{f (u)|u ∈ P} = n. If f is ovoidal, then max{f (u)|u ∈ P} = 1.

(i) Suppose that max{f (u)|u ∈ P} = n. Let x be a point of S with value 0 and
let y be a point with value n. By Proposition 2.4, d(x, y) = n. Let y′ be an arbitrary
point of �n(x) ∩ �1(y) and let y′′ denote the unique point of the line yy′ at distance
n − 1 from x. By Proposition 2.4, it follows that f (y′′) = f (y′′) − f (x) ≤ n − 1 and
that f (y′′) = f (y) + f (y′′) − f (y) ≥ n − 1. Hence, f (y′′) = n − 1 and by property (V2),
it then follows that f (y′) = n, so that every point of �n(x) ∩ �1(y) has value n. By the
connectedness of �n(x), see Proposition 1.1 (iv), it then follows that every point of �n(x)
has value n. Now, let z be an arbitrary point of S. Then, by [2], there exists a path of
length n − d(x, z) between z and a point z′ of �n(x). From d(x, z) ≥ |f (z) − f (x)| = f (z)
and n − f (z) = |f (z′) − f (z)| ≤ d(z, z′) = n − d(x, z), it follows that f (z) = d(x, z). This
proves that f is classical.

(ii) Suppose now that max{f (x)|x ∈ P} = 1. By property (V2), every line of S
contains a unique point with value 0. Hence the points with value 0 determine an
ovoid of S and f is ovoidal. �

COROLLARY 2.11. Every valuation of a dense generalized quadrangle is either classical
or ovoidal.

Any valuation of a dense near polygon S induces a valuation in every geodetically
closed sub near polygon of S.

PROPOSITION 2.12. Let S be a dense near polygon and let F = (P ′,L′, I′) be a sub
near polygon of S that has the following properties:

� F is a dense near polygon,
� F is a subspace of S,
� if x and y are two points of F in S, then dF (x, y) = dS (x, y).

Let f denote a valuation of S and put m := min{f (x)|x ∈ P ′}. Then the map fF : P ′ →
�; x 
→ f (x) − m is a valuation of F.

Proof. For every point x of S, let Fx denote the unique geodetically closed sub
near polygon of S for which (V3) holds with respect to the valuation f . By Lemma 2.7,
Fx ∩ F is a geodetically closed sub near polygon of F for every point of x of F . Clearly,
fF satisfies properties (V1) and (V2). The map fF also satisfies (V3) if for every point x
of F one takes F ′

x := Fx ∩ F as a geodetically closed sub near polygon through x. �
DEFINITION. We call fF an induced valuation.

PROPOSITION 2.13. Let f be a valuation of a dense near polygon S.
(i) If every induced quad valuation is classical, then the valuation f itself is classical.

(ii) If every induced quad valuation is ovoidal, then the valuation f itself is ovoidal.

Proof. (i) Suppose that f is a nonclassical valuation of S. Let x denote an
arbitrary point with value 0 and let i be the smallest nonnegative integer for which
there exists a point y satisfying i = d(x, y) �= f (y). Obviously, i ≥ 2. Choose points
y′ ∈ �1(y) ∩ �i−1(x) and y′′ ∈ �1(y′) ∩ �i−2(x). Then f (y′′) = i − 2, f (y′) = i − 1 and
f (y) ∈ {i − 1, i − 2}. Every point of Q collinear with y′′ has distance i − 1 from x
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and hence has value i − 1. Since the valuation induced in C(y, y′′) is classical, y′′ is the
unique point ofC(y, y′′) with smallest value and f (y) = f (y′′) + d(y′′, y) = i − 2 + 2 = i,
a contradiction.

(ii) Suppose that f is a nonovoidal valuation of S. Let x denote an arbitrary point
with value 0 and let i be the smallest nonnegative integer for which there exists a point y
satisfying i = d(x, y) and f (y) ≥ 2. Obviously, i ≥ 2. Choose points y′ ∈ �1(y) ∩ �i−1(x)
and y′′ ∈ �1(y′) ∩ �i−2(x). Clearly every point of the line through y′ and y′′ has value
0 or 1. But then the valuation induced in the quad C(y, y′′) cannot be ovoidal, a
contradiction. �

PROPOSITION 2.14. Let f be a valuation of a dense near polygon S, let Of denote
the set of points of S with value 0 and let x be a point of S. If d(x, Of ) ≤ 2, then
f (x) = d(x, Of ).

Proof. Obviously, this holds if d(x, Of ) ≤ 1. Now, suppose that d(x, Of ) = 2
and let x′ denote a point of Of at distance 2 from x. If the valuation induced in the
quad C(x, x′) is ovoidal, then x would be collinear with a point of Of ∩ C(x, x′), a
contradiction. Hence, the valuation induced in C(x, x′) is classical and f (x) = f (x′) +
d(x, x′) = 2. �

2.4. The partial linear space Gf . For a valuation f ofS, put Of = {x ∈ S| f (x) = 0}.
If x, y ∈ Of , then by (iii) of Proposition 2.4, d(x, y) ≥ 2. A quad Q of S is called special
if it contains at least two points of Of . Let Gf be the partial linear space with points
the points of Of , with lines the special quads of S and with natural incidence. If x and
y are two collinear points of Gf , then the line of Gf through x and y corresponds with
an ovoid in the special quad of S through x and y. As a corollary, every line of Gf

contains at least 3 points.

2.5. A property of valuations. LetS be a dense near 2n-gon and let f be a valuation
of S. For every i ∈ �, we define mi as the number of points of S with value i. Obviously,
mi = 0 if i ≥ n + 1.

PROPOSITION 2.15. If S contains lines of size s + 1, then
∑∞

i=0
mi

(−s)i = 0.

Proof. (a) Suppose first that S has order (s, t). For every line L of S,
∑

x∈L
1

(−s)f (x) =
1

(−s)f (xL ) + s 1
(−s)f (xL )+1 = 0. Hence,

0 =
∑

L∈L

∑

x∈L

1
(−s)f (x)

=
∑

x∈P

∑

LIx

1
(−s)f (x)

= (t + 1)
∑

x∈P

1
(−s)f (x)

= (t + 1)
∞∑

i=0

mi

(−s)i
.

This shows that the proposition holds if S has an order.
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(b) Suppose next that not every line of S is incident with the same number of
points. Then, by Corollary 1.3, S has a partition in isomorphic geodetically closed
sub near polygons of order (s, t′) for some t′ ≥ 0. By (a), the proposition holds for
each valuation induced in one of the sub near polygons of the partition. If we add all
equations obtained, after multiplying with a suitable power of −s, then the required
equation is obtained. �

COROLLARY 2.16. Let f be a valuation of a dense near polygon S = (P,L, I). If k
different line sizes s1 + 1, . . . , sk + 1 occur in S, then max{f (x) | x ∈ P} ≥ k.

Proof. Put M := max{f (x) | x ∈ P}. By Proposition 2.15, the polynomial p(s) :=∑M
i=0 mi(−s)M−i = 0 has at least k different roots. Hence, k ≤ deg(f (s)) = M. �

3. Some classes of valuations. In Section 2.3, classical and ovoidal valuations
were discussed. We shall now define several other types of valuations.

3.1. Hybrid valuations. Let S = (P,L, I) be a dense near 2n-gon, n ≥ 2, let δ ∈
{2, . . . , n} and let x be a point of S. Let Ax,δ be the incidence structure with points the
points of S at distance at least δ from x, with lines the lines of S at distance at least
δ − 1 from x and with natural incidence. By Proposition 1.1 (iv), Ax,δ is connected.
Suppose now that Ax,δ has an ovoid O. Then the following function fx,O : P → �

can be defined: if y is a point of S at distance at most δ − 1 from x, then we define
fx,O(y) := d(x, y); if y is a point of S at distance at least δ from x, then we define
fx,O(y) = δ − 2 if y ∈ O and fx,O(y) = δ − 1 otherwise.

PROPOSITION 3.1. The map fx,O is a valuation of S.

Proof. Since f (x) = 0, property (V1) holds. Now, let L be an arbitrary line of S. If
d(x, L) ≤ δ − 2, then the unique point on L nearest to x is also the unique point on L
with smallest value. If d(x, L) ≥ δ − 1, then the unique point of O on L is the unique
point of L with smallest value. This proves property (V2). Now, property (P3) also
holds if we make the following choices for Fy, y ∈ P : Fy := C(x, y) if d(x, y) ≤ δ − 2,
Fy := {y} if y ∈ O and Fy := S otherwise. �

DEFINITION. A valuation that is obtained as above is called a hybrid valuation of
type δ. A hybrid valuation of type 2 is just an ovoidal valuation. A hybrid valuation of
type n is also called a semi-classical valuation. Although not included in the definition,
we could regard the classical valuations as hybrid valuations of type n + 1.

PROPOSITION 3.2. If f is a valuation of a dense near 2n-gon and if x is a point of S
such that f (y) = d(x, y) for every point y at distance at most n − 1 from y, then f is either
classical or semi-classical.

Proof. Suppose that f is not classical and consider a point z ∈ �n(x). Every point
of �1(z) ∩ �n−1(x) has value n − 1. Hence by property (V2) and Proposition 2.10,
f (z) ∈ {n − 2, n − 1}. By property (V2), it now follows that the points of �n(x) with
value n − 2 form an ovoid in Ax,n. This proves that f is semi-classical. �

PROPOSITION 3.3. Let S be a dense near 2n-gon, n ≥ 2, of order (2, t) and let x be
a point of S. Then there exists a semi-classical valuation f with f (x) = 0 if and only if
�n(x) is bipartite. In this case, there are precisely two semi-classical ovoids with f (x) = 0.
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Proof. Every line of Ax,n contains two points. Hence, Ax,n has ovoids if and only
if the graph induced by �n(x) is bipartite. �

3.2. Product valuations.

PROPOSITION 3.4. Let S1 = (P1,L1, I1) and S2 = (P2,L2, I2) be two dense near
polygons. If fi, i ∈ {1, 2}, is a valuation of Si, then the map f : P1 × P2 
→ �,

(x1, x2) 
→ f1(x1) + f2(x2) is a valuation of S1 × S2.

Proof. If xi, i ∈ {1, 2}, is a point of Si for which fi(xi) = 0, then f [(x1, x2)] = 0. This
proves property (V1). If L is a line of S1 × S2, then without loss of generality, we may
suppose that L is of the form K × {y}, with K a line of S1 and y a point of S2. Now,
f [(k, y)] = f1(k) + f2(y) for every point k of K . Property (V2) now immediately follows:
the unique point of L with smallest f -value is the point (xK , y), where xK denotes
the unique point of K with smallest f1-value. It remains to check property (V3). For
every point xi, i ∈ {1, 2}, of Si, let Fxi , i ∈ {1, 2}, denote the sub near polygon of Si

satisfying (V3). For every point (x1, x2) of S1 × S2, we define F(x1,x2) := {(a1, a2) | a1 ∈
Fx1 and a2 ∈ Fx2}. If (a1, a2) is a point of F(x1,x2), then f [(a1, a2)] = f1(a1) + f2(a2) ≤
f1(x1) + f2(x2) = f [(x1, x2)]. If (a1, a2) is a point of F(x1,x2) and if (b1, b2) is a point of
S1 × S2 collinear with (a1, a2) and satisfying f [(b1, b2)] = f (a1, a2) − 1, then without
loss of generality, we may suppose that a2 = b2 and a1 ∼ b1 (in S1). Then f1(b1) =
f [(b1, b2)] − f2(b2) = f [(a1, a2)] − 1 − f2(a2) = f1(a1) − 1. Since a1 ∈ Fx1 , the point b1

also belongs to Fx1 . Hence, the point (b1, b2) belongs to F(x1,x2). This proves property
(V3). �

DEFINITION. A valuation that is obtained as in Proposition 3.4 is called a product
valuation.

3.3. Extended valuations.
DEFINITION. A geodetically closed sub near polygon F of a dense near polygon

S is called classical if, for every point x of S, there exists a (necessarily unique) point
πF (x) in F such that d(x, y) = d(x, πF (x)) + d(πF (x), y), for every point y of F .

LEMMA 3.5. If x1 and x2 are collinear points of S such that d(x1, F) = d(x2, F) − 1,
then πF (x1) = πF (x2).

Proof. The point πF (x1) has distance at most d(x1, πF (x1)) + d(x1, x2) =
d(x1, F) + 1 = d(x2, F) from x2 and hence coincides with πF (x2). �

LEMMA 3.6. Let S be a dense near polygon, let K be a line of S and let F denote a
geodetically closed sub near polygon of S that is classical in S. Then one of the following
holds.

• Every point of K has the same distance from F. In this case we define
πF (K) := {πF (x) | x ∈ K}. Then πF (K) is a line of F parallel with K.

• There exists a unique point on K nearest to F. In this case all points πF (x), x ∈ K,
are equal.

Proof. Suppose that all points πF (x), x ∈ K , are equal, to u say. Then there exists
a unique point on K nearest to F ; namely the unique point of K nearest to u. Suppose
therefore that there exist points x1, x2 ∈ K such that πF (x1) �= πF (x2). By Lemma 3.5,
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d(x1, F) = d(x2, F). Put i := d(x1, F). Since

d(πF (x1), πF (x2)) = d(x1, πF (x2)) − d(x1, πF (x1))

≤ d(x1, x2) + d(x2, πF (x2)) − d(x1, πF (x1))

= 1,

πF (x1) and πF (x2) are contained in a line K ′. If u is a point of K different from x1 and
x2, then u has distance at most i + 1 from the points πF (x1) and πF (x2) of K ′. Hence
there exists a point u′ on K ′ at distance at most i from u. By Lemma 3.5, it follows that
d(u, F) = i and πF (u) = u′. This proves that πF (K) ⊆ K ′ and that every point of K has
the same distance i from F . Suppose now that there exists a point u′ in K ′ \ πF (K).
Then u′ has distance at most i + 1 from at least two points of K and hence distance at
most i from a point u of K , showing that u′ = πF (u), a contradiction. �

PROPOSITION 3.7. Let S = (P,L, I) be a dense near 2n-gon, let F = (P ′,L′, I′) be
a classical geodetically closed sub near polygon of S and let f ′ denote a valuation of F.
Then the map f : P 
→ �, x → f (x) := d(x, πF (x)) + f ′(πF (x)) is a valuation of S. If f ′

is a classical valuation, then also f is classical.

Proof. Obviously, property (V1) is satisfied. By Lemma 3.6, it easily follows that
also property (V2) is satisfied. For every point x ofS, we define Fx := C(x, Gx), where Gx

denotes the unique geodetically closed sub near polygon of F through πF (x) satisfying
property (V3) with respect to the valuation f ′ of F . Then Fx has the following properties.

• Fx ∩ F = Gx. Obviously, Gx ⊆ Fx ∩ F . If y is a point of Gx at distance diam(Gx)
from πF (x) then, since πF (x) is contained in a shortest path between x and y, Gx =
C(πF (x), y) is contained in C(x, y). Hence, Fx is equal to C(x, y) and has diameter
d(x, y) = d(x, πF (x)) + diam(Gx). Suppose that there exists a point z in Fx ∩ F not
contained in Gx. Then C(z, Gx) has diameter at least diam(Gx) + 1. As before we have
that C(x, C(z, Gx)) has diameter

d(x, πF (x)) + diam(C(Gx, z)) ≥ d(x, πF (x)) + diam(Gx) + 1

= diam(Fx) + 1,

a contradiction, since Fx = C(x, C(z, Gx)). As a consequence, Fx ∩ F = Gx.
• For every y ∈ Fx, πF (y) ∈ Gx. Clearly every shortest path between y and a point

z ∈ Gx is contained in Fx. Since the point πF (y) is contained in a shortest path between
y and z, the point πF (y) belongs to Fx ∩ F = Gx.

• For every point y of Fx, d(y, πF (y)) ≤ d(x, πF (x)). As before, C(y, Gx)
has diameter d(y, πF (y)) + diam(Gx). Since C(y, Gx) ⊆ C(x, Gx), it follows that
d(y, πF (y)) + diam(Gx) ≤ d(x, πF (x)) + diam(Gx), from which the statement follows.

Let u be a point of Fx. Since πF (u) ∈ Gx, f ′(πF (u)) ≤ f ′(πF (x)). Hence, f (u) =
d(u, πF (u)) + f ′(πF (u)) ≤ d(x, πF (x)) + f ′(πF (x)) = f (x). Let v be a neighbour of u
with value f (u) − 1. In order to prove property (V3), we distinguish two possibilities.

– d(v, πF (v)) �= d(u, πF (u)). Then πF (u) = πF (v) by Lemma 3.5. In this case,
d(v, πF (v)) = d(u, πF (u)) − 1. Hence, v is on a shortest path between u and πF (u) =
πF (v). Since u, πF (u) ∈ Fx, also v belongs to Fx.

– d(v, πF (v)) = d(u, πF (u)). In this case, f ′(πF (v)) = f ′(πF (u)) − 1. By Lemma 3.6,
d(πF (u), πF (v)) = 1. From πF (u) ∈ Gx, it then follows that also πF (v) ∈ Gx. Now, v lies
on a shortest path between πF (v) and u. Since πF (v) ∈ Fx and u ∈ Fx, v also belongs
to Fx.
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If f ′ is classical valuation of F , then

f (x) = d(x, πF (x)) + f ′(πF (x)) = d(x, πF (x)) + d(πF (x), x∗) = d(x, x∗),

where x∗ denotes the unique point of F for which f ′(x∗) = 0. Hence f is classical if f ′

is classical. �
DEFINITION. The valuation f is called an extension of f ′.

3.4. Diagonal valuations.

PROPOSITION 3.8. Let F be a dense near polygon and let S = (P,L, I) be the direct
product F × F. Define X := {(x, x) | x ∈ F}. Then the function f : P → �; p 
→ d(p, X)
is a valuation of S.

Proof. For every point (u, v) of S, f [(u, v)] = d(u, v). Hence, every point of S has
value at most diam(F). Obviously, there exists a point with value 0. Let L denote a line
of S. Without loss of generality, we may suppose that L = {u} × M. If u′ denotes the
unique point of M nearest to u, then (u, u′) is the unique point of L with smallest value.
Now, for every point (u, v) of S, we put F(u,v) = C(u, v) × C(u, v). If (u1, v1) ∈ F(u,v),
then f [(u1, v1)] = d(u1, v1) ≤ d(u, v) = f [(u, v)]. Let (u1, v1) ∈ F(u,v) and let (u2, v2) be
a point of S collinear with (u1, v1) such that f [(u2, v2)] = f [(u1, v1)] − 1. Without loss
of generality, we may suppose that u1 = u2. Then v2 ∼ v1 and d(u1, v2) = d(u1, v1) − 1,
so that, v2 ∈ C(u1, v1) ⊆ C(u, v). As a consequence, (u2, v2) ∈ C(u, v) × C(u, v) = F(u,v).
This proves that f is a valuation of S. �

DEFINITION. A valuation that is obtained as in Proposition 3.8 is called a diagonal
valuation.

REMARK. With every set Y of points in F × F , we can associate a matrix MY whose
rows and columns are indexed by the points of F . If (u, v) ∈ Y , then the (u, v)-th entry
of MY is equal to 1; otherwise it is equal to 0. The matrix MX corresponding with
the above-mentioned set X gives rise to a matrix with all ones on the diagonal. This
explains the name we have given to these valuations.

3.5. Distance-j-ovoidal valuations. We generalize the notion of distance-j-ovoids
in generalized 2n-gons ([11]) to arbitrary near polygons.

DEFINITION. Let S be a near 2n-gon, n ≥ 2. A distance-j-ovoid, j ∈ {2 . . . , n}, of S
is a set X of points satisfying

(1) d(x, y) ≥ j for all points x, y ∈ X ;
(2) for every point a of S, there exists a point x ∈ X such that d(a, x) ≤ j

2 ;
(3) for every line L of S, there exists a point x ∈ X such that d(L, x) ≤ j−1

2 .
A distance-2-ovoid is just an ovoid. From (1), (2) and (3), we immediately have the
following statements.

• If j is odd, then for every point a of S, there exists a unique point x ∈ X such
that d(a, x) ≤ j−1

2 .
• If j is even, then for every line L of S, there exists a unique point x ∈ X such that

d(L, x) ≤ j−2
2 .

PROPOSITION 3.9. If X is a distance-j-ovoid of a dense near 2n-gon S = (P,L, I) with
2 ≤ j ≤ n and j even, then the map f : P → �, x 
→ d(x, X) is a valuation of S.
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Proof. Since f (x) = 0 for every point x ∈ X , property (V1) holds.
Let L be a line of S. Then there exists a unique point x∗ ∈ X such that d(x∗, L) ≤

j−2
2 = j

2 − 1. Hence, d(a, x∗) ≤ j
2 for every point a of L. By property (1), we then have

that d(a, X) = d(a, x∗) for every point a of L. It is now easily seen that property (V2)
holds: the point xL is the unique point of L nearest to x∗.

Let x denote an arbitrary point of S. If d(x, X) = j
2 , then we define Fx := S.

If d(x, X) <
j
2 , then by property (1), there exists a unique point x′ ∈ X at distance

d(x, X) from x and we define Fx := C(x, x′). Clearly, property (V3) holds for any
point x for which d(x, X) = j

2 . Suppose therefore that d(x, X) <
j
2 and let x′ denote

the unique point of X at distance d(x, X) from x. Then for every point y of Fx,
d(y, x′) ≤ d(x, x′) <

j
2 , so that f (y) = d(y, X) = d(y, x′) ≤ f (x). Now, let y be a point

of Fx and let z be a point of S collinear with y such that f (z) = f (y) − 1. Then there
exists a point x′′ ∈ X such that d(z, x′′) = d(y, x′) − 1. Since y has distance at most
d(y, x′) from x′′, x′ coincides with x′′. Hence, d(z, x′) = d(y, x′) − 1 and z ∈ Fx. This
proves that also (V3) holds. �

DEFINITION. A valuation f that is obtained as in Proposition 3.9 is called a distance-
j-ovoidal valuation. A distance-2-ovoidal valuation is the same as an ovoidal valuation.

3.6. SDPS-valuations. A near polygon is called classical if it satisfies the following
properties:

� every two points at distance 2 are contained in a unique quad,
� every point-quad relation is classical.

Every near 0-gon, near 2-gon and nondegenerate generalized quadrangle is classical.
Every direct product of classical near polygons is again classical. By [3], the classical
near polygons of diameter at least 2 are precisely the dual polar spaces of rank at least 2.
With every polar space P of rank n ≥ 2 there is associated a dual polar space PD which
is a near 2n-gon. The points and lines of PD are the maximal and next-to-maximal
totally isotropic subspaces of P. By the classification of polar spaces ([10]), every finite
dense dual polar space of rank n ≥ 2 that is not a product near polygon is isomorphic
to one of the examples given in the following table.

polar space dual polar space quads (s, t2)

Q(2n, q) QD(2n, q) W (q) (q, q)
Q−(2n + 1, q) [Q−(2n + 1, q)]D H(3, q2) (q2, q)
H(2n − 1, q2) HD(2n − 1, q2) Q(5, q) (q, q2)

H(2n, q2) HD(2n, q2) HD(4, q2) (q3, q2)
W (2n − 1, q) W D(2n − 1, q) Q(4, q) (q, q)

Every near 2n-gon in this table is a regular near polygon with parameters s, t and ti

(0 ≤ i ≤ n), where ti = ti
2−t2

t2−1 and t = tn. In the table, we have made use of the following
well-known isomorphisms: QD(4, q) ∼= W (q) and [Q−(5, q)]D = QD(5, q) ∼= H(3, q2).
See, for example, [7].

In [5], valuations of dual polar spaces are examined in detail. For completeness, a
class of valuations that arises in [5] is given here.

DEFINITION. Let A = (P, L, I) be one of the following classical near 4n-gons:
(a) a point (n = 0);
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(b) a dense generalized quadrangle (n = 1);
(c) W D(4n − 1, q) with n ≥ 2;
(d) [Q−(4n + 1, q)]D with n ≥ 2.
A subset X of P is called an SDPS-set of A if it satisfies the following properties.
(1) No two points of X are collinear in A.
(2) If x, y ∈ X such that d(x, y) = 2, then X ∩ C(x, y) is an ovoid of the quad

C(x, y).
(3) The point-line incidence structure A with points the elements of X , with lines

the quads of A containing at least two points of X and with natural incidence is
isomorphic to one of the following near 2n-gons:

• case (a): a point;
• case (b): a line of size at least 2;
• case (c): W D(2n − 1, q2);
• case (d): HD(2n, q2).

(4) For all x, y ∈ X , d(x, y) = 2 · δ(x, y), where δ(x, y) denotes the distance between
x and y in the geometry Ã.

REMARK. The terminology SDPS-set refers to the fact that there is a sub dual
polar space associated with each such set. An SDPS-set of the near 0-gon consists of
the unique point of the near 0-gon. An SDPS-set of a generalized quadrangle is just an
ovoid of that generalized quadrangle. For the cases (c) and (d), examples of SDPS-sets
are known. See [5].

PROPOSITION 3.10. ([5]) If X is an SDPS-set of the near 4n-gon A = (P,L, I), then
the map f : P 
→ d(x, X) is a valuation of A.

DEFINITION. Any valuation f which can be obtained in the above-mentioned way
is called an SDPS valuation.

4. Valuations of dense near hexagons. Let S = (P,L, I) be a dense near hexagon
and let f be a valuation of S. There are three possibilities.

� max{f (x)|x ∈ P} = 3. In this case f is a classical valuation.
� max{f (x)|x ∈ P} = 1. In this case f is an ovoidal valuation.
� max{f (x)|x ∈ P} = 2.

PROPOSITION 4.1. If |Of | = 1, then f is a classical or a semi-classical valuation.

Proof. This follows directly from Propositions 2.14 and 3.2. �

PROPOSITION 4.2. Suppose that |Of | ≥ 2 and f is not ovoidal. Then every two points
of Of lie at distance 2 from each other. As a consequence, Gf is a linear space.

Proof. Let x and y denote two distinct points of Of . Then d(x, y) ∈ {2, 3}. Suppose
that d(x, y) = 3 and consider a shortest path x, x1, x2, y from x to y. By property (V2),
the points x1 and x2 have value 1, and there exists a point p on x1x2 with value 0. Let
Fx1 denote the sub near polygon through x1 satisfying property (V3). Now x and p are
points with value 0 collinear with x1 and so x, p ∈ Fx1 . Since x1 and p belong to Fx1 ,
the point x2 also belongs to Fx1 . As y is a point with value 0 collinear with x2, we also
have y ∈ Fx1 . Hence, x, y ∈ Fx1 and C(x, y) ⊆ Fx1 . Since d(x, y) = 3, S = C(x, y) = Fx1 ,
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a contradiction, since every point of Fx1 has value at most 1 and S contains points
with value 2. �

PROPOSITION 4.3. If not every line of a dense near hexagon S is incident with the
same number of points, then f is classical or an extended valuation arising from an ovoidal
valuation in a quad of S.

Proof. Suppose thatS has k ≥ 2 different line sizes s1 + 1, . . . , sk + 1. By Corollary
2.16, f is not ovoidal and k ≤ 3. If k = 3, then by Proposition 1.2, S is the direct
product of three lines of different sizes. Any quad of S is then a nonsymmetrical grid
and hence does not contain ovoids. Hence, every induced quad valuation is classical.
By Proposition 2.13, it then follows that the valuation f itself is classical, and so we
may suppose that k = 2. By Proposition 1.2, it follows that S is the direct product of
a line L and a generalized quadrangle Q. Without loss of generality, we may suppose
that L has size s1 + 1 and that Q has order (s2, t2) for a certain t2 ∈ � \ {0}. Since
f is not ovoidal, S contains points with value 2. If f contains points with value 3,
then f is classical by Proposition 2.10. Hence, we may suppose that there are only
points with value 0, 1 or 2. There are (t2 + 1)(s2t2 + 1) quads in S isomorphic to a
(s1 + 1) × (s2 + 1)-grid. The induced valuation in each such quad cannot be ovoidal
and hence is classical. As a consequence, each such quad contains a unique point
of Of . Since any point of S is contained in precisely t2 + 1 (s1 + 1) × (s2 + 1)-grids,
|Of | = (t2 + 1)(s2t2 + 1)

t2 + 1 = s2t2 + 1 ≥ 2. We can now apply Proposition 4.2 and we find that
any two points of Of lie at distance 2 from each other. Since f is not classical, there
exists a quad R such that the valuation induced in R is ovoidal. See Proposition 2.13.
Obviously, the quad R is isomorphic with Q. For any point x of S outside Q, there
always exists a point of the ovoid Of ∩ R at distance 3 from x by Proposition 1.1 (iii).
Hence, f (x) �= 0 and Of ⊂ R. By Proposition 1.1 (iii) and Proposition 2.14, it now
follows that f (x) = d(x, Of ) = d(x, πF (x)) + d(πF (x), Of ) for every point x of S, so
that f is the extension of an ovoidal valuation in R. �

If all lines of S are incident with s + 1 points, then by Proposition 2.15, m0 − m1
s +

m2
s2 = 0, where mi, i ∈ {0, 1, 2}, denotes the total number of points with value i.
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