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ON THE NUMBER OF MAXIMAL ELEMENTS IN 
A PARTIALLY ORDERED SET 

BY 

JOHN GINSBURG 

ABSTRACT. Let P be a partially ordered set. For an element x E P, a 
subset C of P is called a cutset for x in P if every element of C is 
noncomparable to x and every maximal chain in P meets {x} U C. The 
following result is established: if every element of P has a cutset having n 
or fewer elements, then P has at most 2" maximal elements. It follows that, 
if some element of P covers k elements of P then there is an element 
x E P such that every cutset for x in P has at least log2/c elements. 

Let (P, ^ ) be a partially ordered set. For an element x of P, a subset 5 of P is called 
a cutset for x in P if 

(i) every element of S is noncomparable to x, and 
(ii) every maximal chain in P meets {x} U 5. 
Let « be a cardinal number. If every element of P has a cutset containing n or fewer 

elements we say that P has the n-cutset property. 
Although our primary interest here is in finite partially ordered sets and the «-cutset 

property where n is a non-negative integer, our main result is valid for all partially 
ordered sets and for any cardinal number n, finite or infinite. 

To illustrate the definition, we refer to the partially ordered sets shown in Figures 1 
and 2 below. In Figure 1, the set S = {a,b} is a cutset for x, and furthermore this 
partially ordered set has the 2-cutset property. In Figure 2, the set S = {a, b, c} is a 
cutset for x and here P has the 3-cutset property. 

For any partially ordered set P and for any x E P, the set S consisting of all elements 
of P which are noncomparable to x obviously is a cutset for x in P. Two less trivial 
examples of cutsets in finite partially ordered sets (discussed in [3] and [4]) are the 
following. For x E P, let U(x) = {p E P: p is noncomparable to x and either p is a 
maximal element or there is an element u E P such that x < u and u covers p). Then 
U(x), as well as its dual, is a cutset for x in P. (Here the phrase "w covers p" means, 
as usual, that p < u and there is no element q E P with p < q < u.) As a. second 
example, let P be a finite partially ordered set in which all maximal chains have the 
same number of elements. Then, for any x E P, the set of all elements having the same 
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FIGURE 1 

FIGURE 2 

"height" as x forms a cutset for x in P. The cutsets illustrated in Figures 1 and 2 are 
of these types. 

This notion of cutset has been investigated by several authors and many interesting 
results have been obtained. For example, partially ordered sets in which every element 
has a cutset which is an antichain are characterized in [4] as those which contain no 
alternating cover cycles. In [6] it is shown that if P has the 2-cutset property then every 
element of P is contained in a maximal antichain having 4 or fewer elements. In [2] and 
[7] it is shown that every partially ordered set with the 2-cutset property satisfies 
w ^ € + 2, where € and w denote the length and width of P respectively. Cutsets in 
P(n), the set of all subsets of an «-element set ordered by inclusion, are investigated 
in [3], where it is shown that, except for a few small exceptions, for x E P(n) the 
smallest size of a cutset for x is either that of U(x) or its dual. 

In this paper we are interested in the number of maximal elements in a partially 
ordered set, and in particular how this number is related to the sizes of cutsets. We show 
that if P has the «-cutset property than P can contain no more than 2" maximal elements. 
This has an immediate corollary concerning the number of elements of P covered by 
an element of P. 

Before we proceed to the proof, we note that this result is best possible. For, let P 
be a binary tree of height n. Then P has 2" maximal elements and it is easy to see that 
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P has the «-cutset property. (Figure 2 shows a binary tree of height 3). 
We will find the following terminology useful as in [6]. If C is a chain in P and if 

p is an element of P such that {/?} U C is a chain, we say that p extends C. Note that 
condition (ii) in the above definition of cutset is equivalent to the following: for every 
chain C in P, either x extends C or some element p of S extends C. 

THEOREM. Let n be a cardinal number. If P is a partially ordered set having the 
n-cutset property then P has at most 2" maximal elements. 

PROOF. CASE 1. n is finite (i.e. n is a non-negative integer). 

We will actually establish a slightly stronger statement by induction on n, namely the 
the following: (*) Let k be a positive integer and let ax, a2,... ,ak be distinct maximal 
elements in a partially ordered set P. Suppose that for each / ^ k there is a subset 
Sj of P with the following properties: 

(i) every element of Sj is noncomparable to a,, 
(ii) |5,-| ^ n, and 
(iii) for all / ^ k and y ^ k with / =f= j , every chain in P containing a{ is extended by 

some element of Sj. Then k ^ 2". 
In the case n = 0, (*) obviously is true, since in this case, we have St = $ for all 

/ = 1,2,. . . , k, and so (ii) implies k = 1. 
Now suppose (*) is true for all integers <n and we prove it for n. So, let 

ai,a2,. . . ,ak and S\,S2,. . . ,Sk satisfy the conditions in (*). We wish to prove that 
k ^ 2". Now, by (iii), there are elements b{ E S{ for / = 2 , 3 , . . . ,k, such that 
{a\} U {b2,b3,. . . , bk) is a chain. Since ax is maximal, we may assume (relabeling if 
necessary) that 

a, s* b2 ^ b3 ^ . . . ^ bk. 

Now for each / = 3 , 4 , . . . , / : , let 

Ai = {a,:2 ^ j ^ k and a} ^ b, and a, >̂ b-t-i}. 

Also, let 

£ = {tf7 :2 s$ 7 ^ /: and a, >̂ 6J. 

We note that 

{ f l „ f l2 , . . . , f l j t } = { û , } ^ ( Û A ) U 5 . 

For, let 7 ^ 2. Then either ay is comparable to none of the elements b2, b3,..., bk 

(in which case a, E Z?) or there is a smallest / E {2, 3 , . . . , k} such that a} is comparable 
to bj. In this latter case, we must have a, ^ fr, because a, is maximal. And since 
b2 ^ fr, we cannot have / = 2, as a} is not comparable to br (By condition (i), since 
b} E Sy). Therefore / ^ 3 and we have a} E A,- in this case. 

Now, some of the sets A, may be empty. Let \i\, i2,..., «V} enumerate the elements 
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FIGURE 3 

of the set {/:3 ^ i ^ k and A, =|= 4>l where we assume that i\ < i2 

by the above remarks, we have that 

{al9a2,...,ak} = {al}U ( Û Ai) U B . 

< . . . < iT. Then 

We also note that B =(= <\>- In fact, ak E B because bk E Sk. 
Next we estimate the size of T and of the sets Ah and 5 . The situation is represented 

in Figure 3. 
Now, for each r — 1,2,. . . , T choose an element ajr E Air. For each r— 1, 2 , . . . , T 

there is an element cr E S\ such that cr extends the chain {bir,air}. Since cr is 
noncomparable to «i we must have cr ^ bir, and since ajr is maximal, we have 
cr ^ a7-r. Thus bir ^ cr ^ ajr for r = 1,2,. . . , T. From this we see that r < s —> 
cr =(= c5. For cr — cs would imply that bir ^ cr = cs ^ a7v. But ajs E A/v and so is is the 
smallest / for which ajs ^ &,. In particular, bir ^ a,y, a contradiction. This proves our 
claim that r < s —» cr =(= c5. So the elements Ci, c2 , . . . , cT are distinct. Also, there is some 
element c E S\ such that c extends the chain {ak}. Hence c ^ ak. For all r = 1 ,2 , . . . , T 
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we have c =j= cr, because c — cr would imply that bk ^ bir ^ cr — c ^ ak contrary to 
the fact that ak is not comparable to bk. Therefore the elements c, C\, c2,.. • , cT account 
for T + 1 distinct elements from the set S\. Since | 5 j ^ n this implies T ^ n - 1. 

Now consider the set A/f. Let a; be any element of Air. Since «, is not comparable to 
bj (because b} E Sj), whereas a, ^ bir, we must have j < ir. Hence for any element 
de E Air we see that ^ is not comparable to bj, because ir is the smallest / for which 

Next, for each s = r + 1, r + 2 , . . . , 7choose an element^ E Sj such that JC, extends 
the chain {bis, ajs}. Arguments similar to the one above for al show that bis ^ xs ^ a/v 

and that S\ ^ s2-> JC*, =|= *v2- Also, let x be an element of ..Sj which extends the chain 
{ak}. Then JC ̂  ak, and JC 41 xs for all 5 = r + 1 , . . . T. Therefore all of the elements 
x,xr+ i,xr + 2,... ,xT are distinct. Furthermore, none of these elements are ^ &,r. For 
example xs ^ &,r would imply that ah ^ Z?/r contrary to the definition of the set Ais. 

Now, consider the partially ordered set P' = {p E P:p ^ bir}, with the induced 
ordering from P, of course. The set 

Sj = [Sj - {bj,x,xr+l,xr + 2,. • . ,xT}] fl P' 

has at most n — (2 + (T— r)) = n — T+r — 2 elements. We note that, if at is any 
other element of Air, then every chain C in P' containing at is extended by an element 
of S)\ for C U {bir} is a chain in P, and so some element y E 5,- extends C U {fc,-r}. 
Therefore y ^ fr,r because y is not comparable to a7. And y cannot be any of the elements 
{JC,xr+ i , . . . ,x T } since, as shown above, none of these latter elements are ^bir. Fur
thermore y =f= bj, because at is not comparable to bj by definition of Air. Therefore y 
E Sj, as desired. Since Air is a set of maximal elements of P', our inductive hypothesis 
implies that \Air\ ^ 2"~T+r~2. 

Also note that, for any two elements ajf at in B with y =|= € we have at is non-
comparable to bj by definition of 5. It follows that any chain in P containing at is 
extended by some element of 5, - {bj}. Therefore, our inductive hypothesis implies that 
\B\ ^ 2" _ l . 

Finally, since 

{al9a2,...,ak} = {as} U ( Û A J U B, 

we have that 
T 

k ^ 1 + £ 2"-r + r - 2 + 2"-1 = 1 + (2"-7"1 + 2" - r + . . . + 2"~2) 
r = 1 

+ 2""1 ^ 1 + ( X 2'") + 2""1 = 2n, 
/H = 0 

completing the proof of Case 1. 

CASE 2. n is infinite. 

In this case we will use the partition relation (2")+ —» (AZ+)„, for which we refer to 
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[1].* For the sake of contradiction, suppose P has the «-cutset property and has more 
than 2" maximal elements. Then there exists a set of distinct maximal elements 
{cii'.i < ra}, where m — (2")+, the first cardinal larger than 2". For each / < m, 
let Si be a cutset for a{ in P with |5,-| ^ n. For each /, list the elements of S, as S{ = 
{b'a:a < n}. For each / < ra, let C, be a maximal chain in P with a, E C,. Now, for 
any i,j < m with / =|= j , Q meets 5,- and hence there is some a < n such that b'a E Cr 

Thus we have a partition of the set of all pairs {i,j}, where i,j < m and / ^ 7, into 
blocks Bap, for a, p < n, where, for any pair {i,j} with / <j, we set {ij} E Ba^ <H> 
fcj, E C, and Z?p E C/. Since there are n-n = n such blocks, the partition relation stated 
above implies that there exists an a < n and a p < n, and elements i,j,k with 
i < j < k < m such that all three of the pairs {i,j}, {/, £}, {7, &} belong to #aP. This 
means that Z?̂  E C, H C*, b7

a E Cfc, and that èy
p E C, and Z?p E C, Pi C r Now, since 

b'a and a7 are both in the chain Ch and since a, is maximal, we have bl
a ^ a,. Similarly 

we have b'a ^ «A. Furthermore, b^ is in the chain C; along with a7 and bl
a. We cannot 

have bp ^ b'a because this would imply ftp ^ « ,̂ contrary to the fact that b^ belongs 
to the cutset Sk for ak, and so is noncomparable to ak. So we must have (again using 
the maximality of a,) b'a^ Z?p ̂  ar Since both a} and Z^ are noncomparable to an these 
latter relations imply that b\ is noncomparable to at. But this contradicts the fact that 
Z?p is in the chain C, along with a,. This completes the proof of Case 2. • 

We note that the proof of our theorem above actually establishes a somewhat stronger 
statement, namely that, if every maximal element of P has a cutset containing n or 
fewer elements then P has at most 2n maximal elements. This can be applied, for finite 
partially ordered sets, to the cutsets U(x) and their duals discussed above, and so we 
have the following corollary. 

COROLLARY 1. Let P be a finite partially ordered set and suppose that P has k 
maximal elements. Then for some maximal element x in P, the set L(x) = {p E P:p 
is noncomparable to x and either p is minimal in P or there is an element u E P such 
that u < x and p covers u} contains at least \og2k elements. 

A second corollary concerns the number of elements of P covered by an element 
of P. 

COROLLARY 2. Let P be a partially ordered set, and suppose that some element of 
P covers k elements of P. Then there is an element x in P such that every cutset for x 
in P contains at least \og2k elements. 

PROOF. This follows directly from the theorem using the following two observations: 
for any element p E P, the (sub) partially ordered set Pf = {x E P:x < p} has the 

*Here we are using the standard notation k+ to denote the first cardinal number larger than k. The 
partition relation (2")+ —> (n+)~ has the following meaning (see [1]): Let X be a set of cardinality (2")+. We 
let [X]2 denote the set of all pairs {x,y} of elements of X. Suppose {B,:i < n} is a family of sets such that 
[X]2 = U / < n B/. Then there is a subset Y of X having cardinality n+, and an element i < n such that 
[Y]2 C Bh 
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«-cutset property if P does, and the maximal elements of P' are just the elements in P 
covered by p. • 

The author has learned that, while investigating the relationship between length, 
width and cutset size, N. Sauer [5] has obtained the bound ((n + 1)!) on the number 
of maximal elements in a partially ordered set with the «-cutset property. 
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