ON THE NUMBER OF MAXIMAL ELEMENTS IN A PARTIALLY ORDERED SET

BY
JOHN GINSBURG

Abstract

Let P be a partially ordered set. For an element $x \in P$, a subset C of P is called a cutset for x in P if every element of C is noncomparable to x and every maximal chain in P meets $\{x\} \cup C$. The following result is established: if every element of P has a cutset having n or fewer elements, then P has at most $2^{\prime \prime}$ maximal elements. It follows that, if some element of P covers k elements of P then there is an element $x \in P$ such that every cutset for x in P has at least $\log _{2} k$ elements.

Let (P, \leqslant) be a partially ordered set. For an element x of P, a subset S of P is called a cutset for x in P if
(i) every element of S is noncomparable to x, and
(ii) every maximal chain in P meets $\{x\} \cup S$.

Let n be a cardinal number. If every element of P has a cutset containing n or fewer elements we say that P has the n-cutset property.

Although our primary interest here is in finite partially ordered sets and the n-cutset property where n is a non-negative integer, our main result is valid for all partially ordered sets and for any cardinal number n, finite or infinite.

To illustrate the definition, we refer to the partially ordered sets shown in Figures 1 and 2 below. In Figure 1, the set $S=\{a, b\}$ is a cutset for x, and furthermore this partially ordered set has the 2-cutset property. In Figure 2, the set $S=\{a, b, c\}$ is a cutset for x and here P has the 3-cutset property.

For any partially ordered set P and for any $x \in P$, the set S consisting of all elements of P which are noncomparable to x obviously is a cutset for x in P. Two less trivial examples of cutsets in finite partially ordered sets (discussed in [3] and [4]) are the following. For $x \in P$, let $U(x)=\{p \in P: p$ is noncomparable to x and either p is a maximal element or there is an element $u \in P$ such that $x<u$ and u covers $p\}$. Then $U(x)$, as well as its dual, is a cutset for x in P. (Here the phrase " u covers p " means, as usual, that $p<u$ and there is no element $q \in P$ with $p<q<u$.) As a second example, let P be a finite partially ordered set in which all maximal chains have the same number of elements. Then, for any $x \in P$, the set of all elements having the same

[^0]Key words: Partially ordered set, cutset, maximal element.
AMS Subject Classification (1980): 06A10.
(C) Canadian Mathematical Society 1986.

Figure 1

Figure 2
"height" as x forms a cutset for x in P. The cutsets illustrated in Figures 1 and 2 are of these types.

This notion of cutset has been investigated by several authors and many interesting results have been obtained. For example, partially ordered sets in which every element has a cutset which is an antichain are characterized in [4] as those which contain no alternating cover cycles. In [6] it is shown that if P has the 2 -cutset property then every element of P is contained in a maximal antichain having 4 or fewer elements. In [2] and [7] it is shown that every partially ordered set with the 2-cutset property satisfies $w \leqslant \ell+2$, where ℓ and w denote the length and width of P respectively. Cutsets in $P(n)$, the set of all subsets of an n-element set ordered by inclusion, are investigated in [3], where it is shown that, except for a few small exceptions, for $x \in P(n)$ the smallest size of a cutset for x is either that of $U(x)$ or its dual.

In this paper we are interested in the number of maximal elements in a partially ordered set, and in particular how this number is related to the sizes of cutsets. We show that if P has the n-cutset property than P can contain no more than 2^{n} maximal elements. This has an immediate corollary concerning the number of elements of P covered by an element of P.

Before we proceed to the proof, we note that this result is best possible. For, let P be a binary tree of height n. Then P has 2^{n} maximal elements and it is easy to see that
P has the n-cutset property. (Figure 2 shows a binary tree of height 3).
We will find the following terminology useful as in [6]. If C is a chain in P and if p is an element of P such that $\{p\} \cup C$ is a chain, we say that p extends C. Note that condition (ii) in the above definition of cutset is equivalent to the following: for every chain C in P, either x extends C or some element p of S extends C.

Theorem. Let n be a cardinal number. If P is a partially ordered set having the n-cutset property then P has at most 2^{n} maximal elements.

Proof. Case 1. n is finite (i.e. n is a non-negative integer).
We will actually establish a slightly stronger statement by induction on n, namely the the following: $\left({ }^{*}\right)$ Let k be a positive integer and let $a_{1}, a_{2}, \ldots, a_{k}$ be distinct maximal elements in a partially ordered set P. Suppose that for each $i \leqslant k$ there is a subset S_{i} of P with the following properties:
(i) every element of S_{i} is noncomparable to a_{i},
(ii) $\left|S_{i}\right| \leqslant n$, and
(iii) for all $i \leqslant k$ and $j \leqslant k$ with $i \neq j$, every chain in P containing a_{i} is extended by some element of S_{j}. Then $k \leqslant 2^{n}$.

In the case $n=0,\left(^{*}\right)$ obviously is true, since in this case, we have $S_{i}=\phi$ for all $i=1,2, \ldots, k$, and so (ii) implies $k=1$.

Now suppose (${ }^{*}$) is true for all integers $<n$ and we prove it for n. So, let $a_{1}, a_{2}, \ldots, a_{k}$ and $S_{1}, S_{2}, \ldots, S_{k}$ satisfy the conditions in (*). We wish to prove that $k \leqslant 2^{n}$. Now, by (iii), there are elements $b_{i} \in S_{i}$ for $i=2,3, \ldots, k$, such that $\left\{a_{1}\right\} \cup\left\{b_{2}, b_{3}, \ldots, b_{k}\right\}$ is a chain. Since a_{1} is maximal, we may assume (relabeling if necessary) that

$$
a_{1} \geqslant b_{2} \geqslant b_{3} \geqslant \ldots \geqslant b_{k} .
$$

Now for each $i=3,4, \ldots, k$, let

$$
A_{i}=\left\{a_{j}: 2 \leqslant j \leqslant k \text { and } a_{j} \geqslant b_{i} \text { and } a_{j} \ngtr b_{i-1}\right\} .
$$

Also, let

$$
B=\left\{a_{j}: 2 \leqslant j \leqslant k \text { and } a_{j} \ngtr b_{k}\right\} .
$$

We note that

$$
\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}=\left\{a_{1}\right\} \leqq\left(\bigcup_{i=3}^{k} A_{i}\right) \cup B
$$

For, let $j \geqslant 2$. Then either a_{j} is comparable to none of the elements $b_{2}, b_{3}, \ldots, b_{k}$ (in which case $a_{j} \in B$) or there is a smallest $i \in\{2,3, \ldots, k\}$ such that a_{j} is comparable to b_{i}. In this latter case, we must have $a_{j} \geqslant b_{i}$ because a_{j} is maximal. And since $b_{2} \geqslant b_{j}$ we cannot have $i=2$, as a_{j} is not comparable to b_{j}. (By condition (i), since $b_{j} \in S_{j}$). Therefore $i \geqslant 3$ and we have $a_{j} \in A_{i}$ in this case.

Now, some of the sets A_{i} may be empty. Let $\left\{i_{1}, i_{2}, \ldots, i_{T}\right\}$ enumerate the elements

Figure 3
of the set $\left\{i: 3 \leqslant i \leqslant k\right.$ and $\left.A_{i} \neq \phi\right\}$ where we assume that $i_{1}<i_{2}<\ldots<i_{T}$. Then by the above remarks, we have that

$$
\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}=\left\{a_{1}\right\} \cup\left(\bigcup_{r=1}^{T} A_{i_{r}}\right) \cup B .
$$

We also note that $B \neq \phi$. In fact, $a_{k} \in B$ because $b_{k} \in S_{k}$.
Next we estimate the size of T and of the sets $A_{i_{r}}$ and B. The situation is represented in Figure 3.

Now, for each $r=1,2, \ldots, T$ choose an element $a_{j_{r}} \in A_{i_{r}}$. For each $r=1,2, \ldots, T$ there is an element $c_{r} \in S_{1}$ such that c_{r} extends the chain $\left\{b_{i_{r}}, a_{j_{r}}\right\}$. Since c_{r} is noncomparable to a_{1} we must have $c_{r} \geqslant b_{i_{r}}$, and since $a_{j_{r}}$ is maximal, we have $c_{r} \leqslant a_{j_{r}}$. Thus $b_{i_{r}} \leqslant c_{r} \leqslant a_{j_{r}}$ for $r=1,2, \ldots, T$. From this we see that $r<s \rightarrow$ $c_{r} \neq c_{s}$. For $c_{r}=c_{s}$ would imply that $b_{i_{r}} \leqslant c_{r}=c_{s} \leqslant a_{j_{s}}$. But $a_{j_{s}} \in A_{i_{s}}$ and so i_{s} is the smallest i for which $a_{j_{s}} \geqslant b_{i}$. In particular, $b_{i_{r}} \neq a_{j_{s}}$, a contradiction. This proves our claim that $r<s \rightarrow c_{r} \neq c_{s}$. So the elements $c_{1}, c_{2}, \ldots, c_{T}$ are distinct. Also, there is some element $c \in S_{1}$ such that c extends the chain $\left\{a_{k}\right\}$. Hence $c \leqslant a_{k}$. For all $r=1,2, \ldots, T$
we have $c \neq c_{r}$, because $c=c_{r}$ would imply that $b_{k} \leqslant b_{i_{r}} \leqslant c_{r}=c \leqslant a_{k}$ contrary to the fact that a_{k} is not comparable to b_{k}. Therefore the elements $c, c_{1}, c_{2}, \ldots, c_{T}$ account for $T+1$ distinct elements from the set S_{1}. Since $\left|S_{1}\right| \leqslant n$ this implies $T \leqslant n-1$.

Now consider the set $A_{i_{r}}$. Let a_{j} be any element of $A_{i_{r}}$. Since a_{j} is not comparable to b_{j} (because $b_{j} \in S_{j}$), whereas $a_{j} \geqslant b_{i_{r}}$, we must have $j<i_{r}$. Hence for any element $a_{\ell} \in A_{i_{r}}$ we see that a_{ℓ} is not comparable to b_{j}, because i_{r} is the smallest i for which $a_{\ell} \geqslant b_{i}$.

Next, for each $s=r+1, r+2, \ldots, T$ choose an element $x_{s} \in S_{j}$ such that x_{s} extends the chain $\left\{b_{i_{s}}, a_{j_{s}}\right\}$. Arguments similar to the one above for a_{1} show that $b_{i_{s}} \leqslant x_{s} \leqslant a_{j_{s}}$ and that $s_{1} \neq s_{2} \rightarrow x_{s_{1}} \neq x_{s_{2}}$. Also, let x be an element of S_{j} which extends the chain $\left\{a_{k}\right\}$. Then $x \leqslant a_{k}$, and $x \neq x_{s}$ for all $s=r+1, \ldots T$. Therefore all of the elements $x, x_{r+1}, x_{r+2}, \ldots, x_{T}$ are distinct. Furthermore, none of these elements are $\geqslant b_{i_{r}}$. For example $x_{s} \geqslant b_{i_{r}}$ would imply that $a_{j_{s}} \geqslant b_{i_{r}}$ contrary to the definition of the set $A_{i_{s}}$.

Now, consider the partially ordered set $P^{\prime}=\left\{p \in P: p \geqslant b_{i_{r}}\right\}$, with the induced ordering from P, of course. The set

$$
S_{j}^{\prime}=\left[S_{j}-\left\{b_{j}, x, x_{r+1}, x_{r+2}, \ldots, x_{T}\right\}\right] \cap P^{\prime}
$$

has at most $n-(2+(T-r))=n-T+r-2$ elements. We note that, if a_{ℓ} is any other element of $A_{i_{r}}$, then every chain C in P^{\prime} containing a_{ℓ} is extended by an element of S_{j}^{\prime} : for $C \cup\left\{b_{i_{r}}\right\}$ is a chain in P, and so some element $y \in S_{j}$ extends $C \cup\left\{b_{i_{r}}\right\}$. Therefore $y \geqslant b_{i_{r}}$ because y is not comparable to a_{j}. And y cannot be any of the elements $\left\{x, x_{r+1}, \ldots, x_{T}\right\}$ since, as shown above, none of these latter elements are $\geqslant b_{i_{r}}$. Furthermore $y \neq b_{j}$, because a_{ℓ} is not comparable to b_{j} by definition of $A_{i_{r}}$. Therefore y $\in S_{j}^{\prime}$, as desired. Since $A_{i_{r}}$ is a set of maximal elements of P^{\prime}, our inductive hypothesis implies that $\left|A_{i_{r}}\right| \leqslant 2^{n-T+r-2}$.

Also note that, for any two elements a_{j}, a_{ℓ} in B with $j \neq \ell$ we have a_{ℓ} is noncomparable to b_{j} by definition of B. It follows that any chain in P containing a_{ℓ} is extended by some element of $S_{j}-\left\{b_{j}\right\}$. Therefore, our inductive hypothesis implies that $|B| \leqslant 2^{n-1}$.

Finally, since

$$
\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}=\left\{a_{1}\right\} \cup\left(\bigcup_{r=1}^{T} A_{i_{r}}\right) \cup B
$$

we have that

$$
\begin{aligned}
k \leqslant 1+\sum_{r=1}^{T} 2^{n-T+r-2}+2^{n-1}= & 1+\left(2^{n-T-1}+2^{n-T}+\ldots+2^{n-2}\right) \\
& +2^{n-1} \leqslant 1+\left(\sum_{m=0}^{n-2} 2^{m}\right)+2^{n-1}=2^{n}
\end{aligned}
$$

completing the proof of Case 1.
Case 2. n is infinite.
In this case we will use the partition relation $\left(2^{n}\right)^{+} \rightarrow\left(n^{+}\right)_{n}^{2}$, for which we refer to
[1].* For the sake of contradiction, suppose P has the n-cutset property and has more than 2^{n} maximal elements. Then there exists a set of distinct maximal elements $\left\{a_{i}: i<m\right\}$, where $m=\left(2^{n}\right)^{+}$, the first cardinal larger than 2^{n}. For each $i<m$, let S_{i} be a cutset for a_{i} in P with $\left|S_{i}\right| \leqslant n$. For each i, list the elements of S_{i} as $S_{i}=$ $\left\{b_{\alpha}^{i}: \alpha<n\right\}$. For each $i<m$, let C_{i} be a maximal chain in P with $a_{i} \in C_{i}$. Now, for any $i, j<m$ with $i \neq j, C_{j}$ meets S_{i} and hence there is some $\alpha<n$ such that $b_{\alpha}^{i} \in C_{j}$. Thus we have a partition of the set of all pairs $\{i, j\}$, where $i, j<m$ and $i \neq j$, into blocks $B_{\alpha \beta}$, for $\alpha, \beta<n$, where, for any pair $\{i, j\}$ with $i<j$, we set $\{i, j\} \in B_{\alpha \beta} \leftrightarrow$ $b_{\alpha}^{i} \in C_{j}$ and $b_{\beta}^{j} \in C_{i}$. Since there are $n \cdot n=n$ such blocks, the partition relation stated above implies that there exists an $\alpha<n$ and a $\beta<n$, and elements i, j, k with $i<j<k<m$ such that all three of the pairs $\{i, j\},\{i, k\},\{j, k\}$ belong to $B_{\alpha \beta}$. This means that $b_{\alpha}^{i} \in C_{j} \cap C_{k}, b_{\alpha}^{j} \in C_{k}$, and that $b_{\beta}^{j} \in C_{i}$ and $b_{\beta}^{k} \in C_{i} \cap C_{j}$. Now, since b_{α}^{i} and a_{j} are both in the chain C_{j}, and since a_{j} is maximal, we have $b_{\alpha}^{i} \leqslant a_{j}$. Similarly we have $b_{\alpha}^{i} \leqslant a_{k}$. Furthermore, b_{β}^{k} is in the chain C_{j} along with a_{j} and b_{α}^{i}. We cannot have $b_{\beta}^{k} \leqslant b_{\alpha}^{i}$ because this would imply $b_{\beta}^{k} \leqslant a_{k}$, contrary to the fact that b_{β}^{k} belongs to the cutset S_{k} for a_{k}, and so is noncomparable to a_{k}. So we must have (again using the maximality of a_{j}) $b_{\alpha}^{i} \leqslant b_{\beta}^{k} \leqslant a_{j}$. Since both a_{j} and b_{α}^{i} are noncomparable to a_{i}, these latter relations imply that b_{β}^{k} is noncomparable to a_{i}. But this contradicts the fact that b_{β}^{k} is in the chain C_{i} along with a_{i}. This completes the proof of Case 2.

We note that the proof of our theorem above actually establishes a somewhat stronger statement, namely that, if every maximal element of P has a cutset containing n or fewer elements then P has at most 2^{n} maximal elements. This can be applied, for finite partially ordered sets, to the cutsets $U(x)$ and their duals discussed above, and so we have the following corollary.

Corollary 1. Let P be a finite partially ordered set and suppose that P has k maximal elements. Then for some maximal element x in P, the set $L(x)=\{p \in P: p$ is noncomparable to x and either p is minimal in P or there is an element $u \in P$ such that $u<x$ and p covers $u\}$ contains at least $\log _{2} k$ elements.

A second corollary concerns the number of elements of P covered by an element of P.

Corollary 2. Let P be a partially ordered set, and suppose that some element of P covers k elements of P. Then there is an element x in P such that every cutset for x in P contains at least $\log _{2} k$ elements.

Proof. This follows directly from the theorem using the following two observations: for any element $p \in P$, the (sub) partially ordered set $P^{\prime}=\{x \in P: x<p\}$ has the

[^1]n-cutset property if P does, and the maximal elements of P^{\prime} are just the elements in P covered by p.

The author has learned that, while investigating the relationship between length, width and cutset size, N . Sauer [5] has obtained the bound ($(n+1)$!) on the number of maximal elements in a partially ordered set with the n-cutset property.

Acknowledgement. The author gratefully acknowledges a grant from NSERC in support of this work.

References

1. P. Erdos and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), pp. 427-489.
2. J. Ginsburg and B. Sands, A length-width inequality for partially ordered sets with two-element cutsets, to appear.
3. R. Nowakowski, Cutsets of Boolean lattices, Discrete Math. 63 2, 3 (1987), pp. 231-240.
4. I. Rival and N. Zaguia, Antichain cutsets, Order Vol. 1, No. 2 (1985), pp. 235-247.
5. N. Sauer, to appear.
6. N. Sauer and R. Woodrow, Finite cutsets and finite antichains, Order Vol. 1, No. 1 (1984), pp. 35-46.
7. N. Sauer and M. El Zahar, The length, the width and the cutset number of finite ordered sets, Order Vol. 2 No. 3 (1985), pp. 243-248.

The University of Winnipeg
Winnipeg, Manitoba
Canada R3B 2E9

[^0]: Received by the editors January 23, 1986, and, in revised form, July 30, 1986.

[^1]: *Here we are using the standard notation k^{+}to denote the first cardinal number larger than k. The partition relation $\left(2^{\prime \prime}\right)^{+} \rightarrow\left(n^{+}\right)_{n}^{2}$ has the following meaning (see [1]): Let X be a set of cardinality $\left(2^{\prime \prime}\right)^{+}$. We let $[X]^{2}$ denote the set of all pairs $\{x, y\}$ of elements of X. Suppose $\left\{B_{i}: i<n\right\}$ is a family of sets such that $[X]^{2}=\cup_{i<n} B_{i}$. Then there is a subset Y of X having cardinality n^{+}, and an element $i<n$ such that $[Y]^{2} \subset B_{i}$.

