# ON GL 2 OF A LOCAL RING IN WHICH 2 IS NOT A UNIT 

BY<br>A. W. MASON


#### Abstract

Let $A$ be a local ring with maximal ideal $m$, let $N(m)$ be the order of the residue field $A / m$ and let $N$ be a subgroup of $\mathrm{GL}_{n}(A)$ which is normalized by $\mathrm{SL}_{n}(A)$. It follows from results of Klingenberg that $N$ is normal in $\mathrm{GL}_{n}(A)$ when $n \geqslant 3$ or $\left(\frac{1}{2} \in A\right.$ and $\left.N(m)>3\right)$. Results of Lacroix show that this is also true when $n=2$ and $N(m)=3$, provided that $N \cap \mathrm{SL}_{2}(A) \neq \mathrm{SL}_{2}(A)^{\prime}$.

The principal aim of this paper is to provide examples of non-normal subgroups of $\mathrm{GL}_{2}(A)$ which are normalized by $\mathrm{SL}_{2}(A)$. In the process we extend results of Lacroix and Levesque on $\mathrm{SL}_{2}(A)$-normalized subgroups of $\mathrm{GL}_{2}(A)$, where $2 \in m$ and $N(m)>2$.


Introduction. Let $A$ be a (commutative) local ring with maximal ideal $m$ and let $N(m)$ be the order of the residue field $A / m$. After Klingenberg [1] we define the order of a subgroup $S$ of $\mathrm{GL}_{n}(A)$ to be the smallest ideal $q$ such that $S \leqslant H_{n}(q)$, where $H_{n}(q)$ is the set of all matrices in $\mathrm{GL}_{n}(A)$ which are scalar $(\bmod q)$.

Let $N$ be a subgroup of $\mathrm{GL}_{n}(A)$ of order $q$ which is normalized by $\mathrm{SL}_{n}(A)$. Klingenberg [1] Satz 3 has proved that, if $n \geqslant 3$ or $\left(\frac{1}{2} \in A\right.$ and $\left.N(m)>3\right)$, then $\mathrm{SL}_{n}(q) \leqslant N$, where $\mathrm{SL}_{n}(q)=\operatorname{Ker}\left(\mathrm{SL}_{n}(A) \rightarrow \mathrm{SL}_{n}(A / q)\right)$. Lacroix [2] Theorem 2.1.6 has shown that this is also true when $n=2$ and $N(m)=3$, provided that $N \cap \mathrm{SL}_{2}(A) \neq \mathrm{SL}_{2}(A)^{\prime}$.

Since the commutator subgroup $\left[\mathrm{GL}_{n}(A), H_{n}(\boldsymbol{q})\right]$ is contained in $\mathrm{SL}_{n}(\boldsymbol{q})$ it follows that, if $n \geqslant 3$ or $2 \notin m$, then every subgroup $N$ of $\mathrm{GL}_{n}(A)$ which is normalized by $\mathrm{SL}_{n}(A)$ is normal in $\mathrm{GL}_{n}(A)$, with the (possible) exception of the case $n=2, N(m)$ $=3$ and $N \cap \mathrm{SL}_{2}(A)=\mathrm{SL}_{2}(A)^{\prime}$. The obvious question arises as to whether or not there exist non-normal subgroups of $\mathrm{GL}_{2}(A)$ which are normalized by $\mathrm{SL}_{2}(A)$, when $2 \in m$ or $N(m)=3$. The principal aim of this paper is to provide examples of such subgroups. We call subgroups of this type almost-normal.

Throughout the first half of the paper we assume that $2 \in m$ and that $N(m)>2$. We prove first that under these hypotheses a subgroup of $\mathrm{GL}_{2}(A)$ of order $q$, which is normalized by $\mathrm{SL}_{2}(A)$, contains $\mathrm{SL}_{2}\left(q^{*}\right)$, where $q^{*}$ is the ideal in $A$ generated by $2 q$, $q^{2}(q \in q)$. This extends an earlier result of Lacroix and Levesque [3] Théorème 5.1. (See also [3] Lemme 3.5). We also obtain a lower bound for the normalizer in $\mathrm{GL}_{2}(A)$ of such a subgroup. Applying these results to the case where $m$ is principal we obtain

[^0]many examples of almost-normal subgroups of $\mathrm{GL}_{2}(A)$, some of which have "minimal" normalizer in $\mathrm{GL}_{2}(A)$.

In order to demonstrate the necessity of the hypothesis $N(m)>2$ in the above results we next consider the case where $A=\mathbb{Z}_{2}$, the localization of the ring of rational integers $\mathbb{Z}$ at 2 . (The case $N(m)=2$ is in general very complicated [2].) We prove that in this case there are $\mathrm{SL}_{2}(A)$-normalized subgroups of $\mathrm{GL}(A)$ of order $q$ which do not contain $\mathrm{SL}_{2}\left(q^{*}\right)$ and that nearly every $\mathrm{SL}_{2}(A)$-normalized subgroup of $\mathrm{GL}_{2}(A)$ is normal in $\mathrm{GL}_{2}(A)$. Finally we provide examples of almost-normal subgroups of $\mathrm{GL}_{2}(A)$, where $N(m)=3$.

For a given ring $R$ the existence of almost-normal subgroups of $\mathrm{GL}_{n}(R)$ (ie. nonnormal subgroups normalized by $\mathrm{SL}_{n}(R)$ ) depends upon $n$. (See [7].) For example it is known [5] Corollary 3.3, [6] that almost-normal subgroups of $\mathrm{GL}_{n}(\mathbb{Z})$ exist if and only if $n=2$. In addition it is known [5] Corollary 5.6 that, when $n \geqslant 3$, almost-normal subgroups of $\mathrm{GL}_{n}(\mathbb{Z}[i])$ exist if and only if $n$ is even, where $i^{2}=-1$.

Throughout we put $G=\mathrm{GL}_{2}(A), \Gamma=\mathrm{SL}_{2}(A), \Gamma(q)=\mathrm{SL}_{2}(q)$ and $H(q)=H_{2}(q)$. (By definition $\Gamma=\Gamma(A)$ and $G=H(A)$.) We denote the set of units in $A$ by $U(A)$. For each $a \in A$ and $u, v \in U(A)$ we put

$$
\mathrm{T}(a)=\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right] \text { and } D(u, v)=\left[\begin{array}{ll}
u & 0 \\
0 & v
\end{array}\right] \text {. }
$$

Finally, if $H, K$ are subgroups of $G$ then $[H, K]$ is the subgroup generated by all the commutators $[h, k]=h^{-1} k^{-1} h k$, where $h \in H$ and $k \in K$.

1. The case of $\mathbf{2} \in \boldsymbol{m}, \boldsymbol{N}(\boldsymbol{m})>\mathbf{2}$. Throughout this section (and the next) we assume that $2 \in m$ and that $N(m)>2$. The latter hypothesis ensures the existence of units $u, v$ in $A$ such that $u^{2}+v=1$.

Let $S$ be a subgroup of $G$ and let $a \in A$. We write

$$
a \sim S
$$

if $\Gamma(q) \leqslant S$, where $q=(a)$, or, equivalent, if $T(t a) \in S$, for all $t \in A$. (See [2] Lemma 1.3.4) It is obvious that if $a, b \sim S$ then $a x+b y \sim S$, for all $x, y \in A$.

The proof of our first lemma is a simplified version of an earlier proof of Klingenberg [1] p. 148. This proof (unlike the other proofs in this section) does not require the hypothesis $N(m)>2$.

Lemma 1.1. Let $N$ be a subgroup of $G$ which is normalized by $\Gamma$ and let $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in N$. Then, for all $u \in U(A)$ such that $u^{2} \equiv 1(\bmod c)$, we have

$$
u^{4}-1 \sim N
$$

Proof. Let

$$
X=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \delta=a d-b c(\in U(A)) \quad \text { and } \quad Y=\left[\begin{array}{cc}
u & t \\
0 & u^{-1}
\end{array}\right]
$$

where $u \in U(A), u^{2} \equiv 1(\bmod c)$ and $t \in A$. Then

$$
[Y, X]=\delta^{-1}\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right] \in N
$$

where $\alpha=\left(u^{-1} d+c t\right)(u a+t c)-u^{-1} c\left(b u^{-1}+a t\right), \gamma=a c-u^{2} a c-u t c^{2}, \delta=$ $a d-u^{2} b c-u t c d$.

Now choose $t \in A$ such that $a-u^{2} a-u t c=0$. Then, for this choice of $t, \gamma=0$ and $(\alpha-\delta)=\left(u^{4}-1\right)$. The result follows from [3] Lemme 3.3 (ii)

Lemma 1.2. Let $N$ be a subgroup of $G$ which is normalized by $\Gamma$ and let $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in N$, where $c \in m$. Then $2 c^{2}, c^{4} \sim N$ implies $2 c, c^{2} \sim N$.

Proof. Suppose that $\Gamma(q) \leqslant N$, where $q=\left(2 c^{2}\right)+\left(c^{4}\right)$. Let

$$
X=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { and } \delta=a d-b c
$$

Then

$$
Z=\left[X^{-1}, T(1)\right]=\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right] \in N \cap \Gamma,
$$

where $e=1+a c \delta^{-1}$ and $g=c^{2} \delta^{-1}$. We note that $2 g, g^{2} \in q$.
Now let

$$
R=\left[Z^{-1}, T(t)\right],
$$

where $t \in A$. Then

$$
R \equiv D(r, r) T\left(r^{-1} s\right)(\bmod q)
$$

where $r=1+t e g$ and $s=t\left(1-e^{2}\right)+t^{2} e g$. We put

$$
S=\left[\begin{array}{ll}
r(1+q) & q \\
-q & r
\end{array}\right],
$$

where $q=1-r^{2} \in q$. Then $S \in \Gamma \cap H(q)$ and $S R \equiv T(s)(\bmod q)$. It follows that $T(s) \in N \cdot H(q)$.

We now conjugate $Z$ by $D\left(u, u^{-1}\right)$ and repeat the argument. We conclude that

$$
T\left(t\left(1-e^{2}\right)\right) T\left(t^{2} u^{2} e g\right) \in N \cdot H(q)
$$

for all $u \in U(A)$ and $t \in A$.
Now there exists $v \in U(A)$ such that $v-1 \in U(A)$. Consider the above with $t, e, g$ fixed and $u=v, v-1$. Using the fact that $2 g \in q$ it follows that $e^{2}-1 \sim N \cdot H(q)$.

Now $a \in U(A)$ since $c \in m$ and so $2 c+a c^{2} \delta^{-1} \sim N \cdot H(q)$. Conjugate $X$ by $D\left(w, w^{-1}\right)$, where $w, w^{2}-1 \in U(A)$ and repeat the argument. Then $2 c+a c^{2} w^{2} \delta^{-1}$ $\sim N \cdot H(q)$. It follows that $2 c, c^{2} \sim N \cdot H(q)$.
Thus $\Gamma\left(q_{0}\right) \leqslant N \cdot H(q)$, where $\boldsymbol{q}_{0}=(2 c)+\left(c^{2}\right)$. Now by [2] Proposition 1.3.6 we have $\left[\Gamma, \Gamma\left(\boldsymbol{q}_{0}\right)\right]=\Gamma\left(\boldsymbol{q}_{0}\right)$ and $\Gamma(\boldsymbol{q})=[\Gamma, H(\boldsymbol{q})]$. Hence

$$
\Gamma\left(q_{0}\right) \leqslant[\Gamma, H(q)][\Gamma, N] \leqslant N
$$

Lacroix [2] Theorem 2.1.1 has proved that if $N$ is a subgroup of $G$ of order $A$ which is normalized by $\Gamma$ then $\Gamma \leqslant N$. We now come to the principal theorem of this section which extends this result.

Theorem 1.3. Let $N$ be a subgroup of $G$ of order $q$ which is normalized by $\Gamma$ and let $q^{*}$ be the ideal in A generated by $2 q, q^{2}$, where $q \in q$. Then

$$
\Gamma\left(q^{*}\right) \leqslant N .
$$

Proof. Let $X=\left[\begin{array}{ll}a & 6 \\ c & d\end{array}\right] \in N$. By considering conjugates of $X$ by $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ it is sufficient to prove that $2 c, c^{2} \sim N$.

If $c \notin m$ then $q=A$ and the result follows from [2] Theorem 2.1.1. We may assume therefore that $c \in m$. Now the $(2,1)$-entry of $\left[X^{-1}, T(1)\right] \in N$ is $c^{2} \delta^{-1}$, where $\delta=a d-b c \in U(A)$. By Lemma 1.2 therefore it is sufficient to prove that $2 c^{4}, c^{8} \sim N$.

By Lemma 1.1 it follows that, for all $x, y \in A$,

$$
\begin{aligned}
(1+x c)^{4}-(1+y c)^{4}= & (x-y) c[2+(\mathrm{x}+\mathrm{y}) c][2+2(x+y) c \\
& \left.+\left(x^{2}+y^{2}\right) c^{2}\right] \sim N .
\end{aligned}
$$

Conjugating $X$ by $D\left(w, w^{-1}\right)$ we can replace $c$ at any stage by $w^{2} c$, where $w \in U(A)$. Now put $x=u, y=v$, where $u, v \in U(A)$ and $u+v=1$. Then $u-v=1-$ $2 v \in U(A)$ and so

$$
c[2+c]\left[2+2 c+(1-2 u v) c^{2}\right] \sim N .
$$

But $c(2+c)\left(2+2 c+c^{2}\right) \sim N$ (put $x=1, y=0$ in the above) and so

$$
2 c^{3}(2+c) \sim N .
$$

Replacing $c$ by $u^{2} c$, where $u, u^{2}-1 \in U(A)$, we conclude that $2 c^{4} \sim N$.
Now by the above (with $x=1, y=0$ ) it follows that $c^{4}+4 c^{3}+6 c^{2}+4 c \sim N$. Hence $c^{8}+4 c^{7}+6 c^{6}+4 c^{5} \sim N$ and so $c^{8} \sim N$

Corollary 1.4. Let $N$ be a subgroup of $G$ of order $q$ which is normalized by $\Gamma$ and let $q$ be principal. Then

$$
\Gamma\left(2 q+q^{2}\right) \leqslant N
$$

Proof. Immediate from Theorem 1.3
Corollary 1.4 also follows from results of Lacroix [2] and Lemma 1.2.3 and Lacroix, Levesque [3], and Lemme 3.5, Théorème 5.1.

We show in the next section that Theorem 1.3 and Corollary 1.4 are best possible in the sense that there are subgroups of $N$ of $G$ of order $q$, normalized by $\Gamma$, which contain $\Gamma(r)$ if and only if $r \leqslant q^{*}$.

We now provide a lower bound for the normalizer in $G$ of a $\Gamma$-normalized subgroup of $G$ which we will show in the next section to be best possible.

Theorem 1.5. Let $N$ be a subgroup of $G$ of orger $q$ which is normalized by $\Gamma$ and let

$$
q_{0}=\left\{a \in A: a q \leqslant q^{*}\right\},
$$

where $q^{*}$ is defined as above. Let $M$ be the normalizer of $N$ in $G$. Then

$$
\Gamma \cdot U_{0} \leqslant M,
$$

where

$$
U_{0}=\left\{D(u, 1): u \equiv v^{2}\left(\bmod q_{0}\right), \text { for some } v \in U(A)\right\} .
$$

Proof. Clearly $\Gamma \leqslant M$ and $D\left(w^{2}, 1\right)=D(w, w) D\left(w, w^{-1}\right) \in M$, for all $w \in U(A)$.
Now let $X=\left[\begin{array}{ll}u & b \\ c & d\end{array}\right] \in N$ and let $u=v^{2}+q_{0}$, where $u, v \in U(A)$ and $q_{0} \in q_{0}$. Using the fact that $b q_{0}, c q_{0} \in q^{*}$ it is easily verified that

$$
D(u, 1) X D\left(u^{-1}, 1\right) \equiv D\left(v, v^{-1}\right) X D\left(v^{-1}, v\right)\left(\bmod q^{*}\right)
$$

By Theorem 1.3 we have $\Gamma\left(q^{*}\right) \leqslant N$ and so $D(u, 1) \in M$
The definition of an ideal similar to $q_{0}$ can be found in [3] p. 213.
2. The case $\boldsymbol{m}=(\boldsymbol{\theta})$. Our principal aim in this section is to provide many examples of almost-normal subgroups of $G$. In the process we prove that Theorems 1.3, 1.5, 2.1 and Corollary 1.4 are best possible.

We assume throughout that $2 \in m, N(m)>2, m=(\theta)$, for some $\theta \in A$, and that $\cap_{i=1}^{\infty} m^{i}=\{0\}$. Each non-zero ideal $\boldsymbol{q}$ is therefore a power of $m$. If $q=m^{x}$ we write $x=\operatorname{ord} q$ and we write ord $a$, where $a \in A$, as shorthand for ord ( $(a))$. If $m^{y}=\{0\}$ and $m^{v-1} \neq\{0\}$, for some integer $y>1$, we write ord $0=y$.

Let $q, q_{1}$ be ideals in $A$ such that $q^{*}=2 q+q^{2} \leqslant q_{1} \leqslant q \leqslant m$. By [8] Theorem 4.1 the group $\Gamma(q) / \Gamma\left(q_{1}\right)$ is an elementary 2 -abelian group in which each element is uniquely represented by a matrix $\left[\begin{array}{cc}1+a & b \\ c & 1+a\end{array}\right]$, where $a, b, c \in q / q_{1}$. The map

$$
\left[\begin{array}{cc}
1+a & b \\
c & 1+a
\end{array}\right] \rightarrow(\mathrm{a}, b, c)
$$

is an isomorphism from $\Gamma(q) / \Gamma\left(q_{1}\right)$ onto the additive group $B^{3}$, where $B=q / q_{1}$. Further $\Gamma(q) / \Gamma\left(q_{1}\right)$ is generated by the images of $\Gamma$-conjugates of $T(q)$, where $q \in q$.

In particular $\Gamma(q) / \Gamma(q m)$ is generated by the images of $\Gamma$-conjugates of $T\left(u \theta^{i}\right)$, where $i=\operatorname{ord} q$ and $u$ belongs to a complete set of coset representatives of $A(\bmod m)$.

Our first results show that sharper versions of Corollary 1.4 and Theorem 1.5 hold when $A / m$ is perfect. (We recall that a field $F$ of characteristic 2 is perfect if each element of $F$ is a square. If $F$ is finite for example then $F$ is perfect.)

Theorem 2.1. Let $A / m$ be perfect and let $N$ be a subgroup of $G$ of order $q$ which is normalized by $\Gamma$. If ord $q^{*}-$ ord $q$ is odd then $\Gamma(r) \leqslant N$, where $m r=q^{*}$.

Proof. Since $q \leqslant m$, by [2] Lemma 1.2 .3 and [3] Théorème 5.1 there exists $u \in U(A)$ such that $T\left(u \theta^{i}\right) \in N$, where $i=\operatorname{ord} q$.

Let ord $q^{*}-$ ord $q=2 k+1$ and let

$$
w=\left\{\begin{array}{cc}
1+\theta^{k}, & k \neq 0 \\
1, & k=0
\end{array}\right.
$$

Then $w \in U(A)$. Conjugating $T\left(u \theta^{i}\right)$ by $D\left(w, w^{-1}\right)$ it follows that $T\left(w^{2} u \theta^{i}\right) \in N$. Now $\Gamma\left(q^{*}\right) \leqslant N$ by Corollary 1.4 and

$$
T\left(w^{2} u \theta^{i}\right) \equiv T\left(u \theta^{i}\right) T\left(u \theta^{2 k+i}\right)\left(\bmod q^{*}\right)
$$

Hence $T\left(u \theta^{2 k+i}\right) \in N$.
Since $A / m$ is perfect, $u \equiv v^{2}(\bmod \theta)$, for some $v \in U(A)$. We note that ord $r=2 k+i$ and that ord $q^{*}-$ ord $r=1$. It follows that $T\left(v^{2} \theta^{2 k+i}\right) \in N$, that $T\left(\theta^{2 k+i}\right) \in N$ and hence that $T\left(u^{2} \theta^{2 k+i}\right)$, for all $u \in U(A)$.

From the above discussion and the hypotheses satisfied by $A / m$ it is clear that $\Gamma(r) / \Gamma\left(q^{*}\right)$ is generated by the images of the $\Gamma$-conjugates of $T\left(u^{2} \theta^{2 k+i}\right)$, where $u \in U(A)$. We deduce that $\Gamma(r) \leqslant N$

Corollary 2.2. If $A / m$ is perfect and $m=(2)$, then every $\Gamma$-normalized subgroup of $G$ is normal in $G$.

Proof. Let $N$ be a $\Gamma$-normalized subgroup of $G$ of order $q$. If $q=A$ then $\Gamma \leqslant N$ by [2] Theorem 2.1.1, in which case $[G, N] \leqslant N$.

We assume then that $q \leqslant m$. In this case $q^{*}=m q$ and so ord $q^{*}-$ ord $q=1$. By Theorem 2.1 therefore we have $\Gamma(\boldsymbol{q}) \leqslant N$. It follows that

$$
[G, N] \leqslant[G, H(q)] \leqslant \Gamma(q) \leqslant N
$$

Corollary 2.2 can be deduced directly from results of Lacroix and Levesque [3] Remarque 4.5.

Another consequence of Theorem 2.1 is that when $A / m$ is perfect every $\Gamma$-normalized of $G$ of order $m$ is normal in $G$.

Theorem 2.3. Let $A / m$ be perfect and let $N$ be a subgroup of $G$ of order $q$ which is normalized by $\Gamma$. Let

$$
q_{1}=\left\{a \in A: a q m \leqslant q^{*}\right\}
$$

and let $M$ be the normalizer of $N$ in $G$.
If ord $q^{*}$ - ord $q$ is odd then

$$
\Gamma \cdot U_{1} \leqslant M,
$$

where

$$
U_{1}=\left\{D(u, 1): u \equiv v^{2}\left(\bmod q_{1}\right), \text { for some } v \in U(A)\right\}
$$

Proof. The proof is almost identical to that of Theorem 1.5 and makes use of Theorem 2.1

By [2] Theorem 2.1.1 every $\Gamma$-normalized subgroup of $G$ of order $A$ is normal in $G$. Let $q$ be an ideal contained in $m$ and let $x=$ ord $q$ and $y=$ ord $q^{*}$. We define an ideal $\bar{q}$ by

$$
\text { ord } \bar{q}=\left\{\begin{array}{cl}
y, & y-x \text { even } \\
y-1, & y-x \text { odd }
\end{array}\right.
$$

Then $\bar{q}=q^{*}$, when $y-x$ is even, and $\bar{q} m=q^{*}$, when $y-x$ is odd. For the structure of $\Gamma(\underline{q}) / \Gamma(\bar{q})$ we now refer to the discussion at the beginning of this section.

Let $\Delta=\left\{k^{2} \theta^{x}+\bar{q}: k \in A\right\}$ and define a subgroup $N(\Delta)$ of $\Gamma(q)$ containing $\Gamma(\bar{q})$ by

$$
N(\Delta) / \Gamma(\bar{q})=\left\{\left[\begin{array}{cc}
1+a & b \\
c & 1+a
\end{array}\right]: b, c \in \Delta\right\} ;
$$

$N(\Delta)$ is well-defined since $\Delta$ is closed under addition.
Theorem 2.4. With the above notation,
(a) $N(\Delta)$ is a subgroup of $G$ of order $q$ normalized by $\Gamma$,
(b) $\Gamma(p) \leqslant N(\Delta)$ if and only if $p \leqslant \bar{q}$,
(c) $N(\Delta) \triangleleft G$ if and only if $q=\bar{q}$.

Proof. Part ( $a$ ) is easily verified.
For part (b) suppose that $\Gamma(p) \leqslant N(\Delta)$ and that $p \neq \bar{q}$. Then $\Gamma(p+\bar{q})=$ $\Gamma(p) \cdot \Gamma(\bar{q})$ is contained in $N(\Delta)$ and $p+\bar{q} \neq \bar{q}$.

Let $z=$ ord $\bar{q}$. Then $T\left(\theta^{z-1}\right) \in N(\Delta)$ and so by definition there exists $k \in A$ such that

$$
k^{2} \theta^{x} \equiv \theta^{z-1}(\bmod \bar{q}),
$$

where (as above) $x=$ ord $q$. It follows that $z-x$ is odd. But by definition $z-x$ is even.

Part (c) follows from parts (a), (b) and [2] Theorem 2.3.7
Theorem 2.4 (which does not require $A / m$ to be perfect) shows that Theorems 1.3, 2.1 and Corollary 1.4 are best possible.

Consider for example the case where $m$ is not nilpotent, with $m \neq(2)$, and $q$ is a non-zero ideal distinct from $A$ and $m$. Theorem 2.4 shows that there exists an almost-normal subgroup of $G$ of order $q$.

The final result in this section shows that Theorems 1.5 and 2.3 are best possible.
Theorem 2.5. Let $A / m$ be perfect, let $q$ be a non-zero ideal contained in $m$ and let $\bar{q}$ and $N(\Delta)$ be defined as above. Let

$$
q_{2}=\{a \in A: a q \leqslant \bar{q}\} .
$$

Then the normalizer, $M(\Delta)$, of $N(\Delta)$ in $G$ is given by

$$
M(\Delta)=\Gamma \cdot U_{2},
$$

where

$$
U_{2}=\left\{D(u, 1): u \equiv v^{2}\left(\bmod q_{2}\right), \text { for some } v \in U(A)\right\}
$$

Proof. By Theorems $1.5 \& 2.3$ we have $\Gamma \cdot U_{2} \leqslant M(\Delta)$. We may assume that $q \neq \bar{q}$.

Now let $D(u, 1) \in M(\Delta)$. Since $A / m$ is perfect it follows that

$$
u \equiv t_{0}^{2}+t_{1}^{2} \theta+t_{2}^{2} \theta^{2}+\ldots\left(\bmod q_{2}\right)
$$

where $t_{0} \in U(A), t_{i}=0$, when $i \geqslant$ ord $q_{2}$, and $t_{i}=0$ or $t_{i} \in U(A)$, when $1 \leqslant i \leqslant$ ord $q_{2}$.

Let $w=t_{0}^{2}+t_{2}^{2} \theta^{2}+\ldots$ (only even powers of $\theta$ ). Then $w \in U(A)$ and, since $2 \in q_{2}$,

$$
w \equiv\left(t_{0}+t_{2} \theta+\ldots\right)^{2}\left(\bmod q_{2}\right)
$$

Hence $D(w, 1) \in U_{2}$ and so $D\left(u_{0}, 1\right) \in M(\Delta)$, where $u_{0}=w^{-1} u$.
Suppose now that $u_{0} \neq 1$. Then $u_{0}=1+v \theta^{k}$, for some odd $k$ and for some $v \in$ $U(A)$, where $k<$ ord $q_{2}$. Now

$$
D\left(u_{0}, 1\right) T\left(\theta^{x}\right) D\left(u_{0}^{-1}, 1\right) T\left(-\theta^{x}\right)=T\left(v \theta^{x+k}\right) \in N(\Delta)
$$

where $x=$ ord $q$. By definition therefore there exists $a \in A$ such that ord $\left(a^{2} \theta^{x}\right)=$ $x+k$. But $k$ is odd. Hence $u_{0}=1, u=w$ and so $M(\Delta) \leqslant \Gamma \cdot U_{2}$
3. The case $\boldsymbol{A}=\mathbb{Z}_{\mathbf{2}}$. Our aim in this section is to demonstrate the necessity of the hypothesis $N(m)>2$ in the two previous sections. (We recall that Lemma 1.1 does not require this hypothesis). The case $N(m)=2$ appears in general to be very complicated. (See [2].) Accordingly we confine ourselves in this section to the case where $A=\mathbb{Z}_{2}$, the localization of $\mathbb{Z}$ at 2 .

We prove that (in contrast with Theorem 2.4) nearly every $\Gamma$-normalized subgroup of $G$ is normal in $G$. However there are almost-normal subgroups of $G$ of order $A$ (c.f. Corollary 2.2). Moreover these subgroups show that Theorem 1.3, Corollary 1.4, together with [2] Theorem 2.1.1 do not hold when $N(m)=2$.

In this case we have $m=(2)$. We define (as before) ord $m^{x}=x$ and we write $2^{x}$ for $m^{x}$, where $x \geqslant 0$.

Lemma 3.1. Let $N$ be a subgroup of $G$ of order $2^{n}$ which is normalized by $\Gamma$, where $n>1$. Then

$$
\Gamma\left(2^{n+1}\right) \leqslant N .
$$

Proof. There exists $X=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right] \in N$, where ord $(a-d)$, ord $b$ or ord $c$ is equal to $n$. Conjugating if necessary by $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ or $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ we may assume that ord $c=n$.

Suppose now that $n \geqslant 3$ and let $u=1+2^{n-1}$. Then $u \in U(A)$ and $u^{2} \equiv 1$ $(\bmod c)$. By Lemma 1.1 therefore $u^{4}-1 \sim N$, from which it follows that $\Gamma\left(2^{n+1}\right) \leqslant N$.

Suppose that $n=2$. Then $3^{2} \equiv 1(\bmod c)$ and so by Lemma 1.1 we have $\Gamma(16) \leqslant$ $N$. It is readily verified that

$$
Y=[T(1), X] \equiv\left[\begin{array}{rr}
5 & * \\
0 & -3
\end{array}\right] \text { or }\left[\begin{array}{rr}
-3 & * \\
0 & 5
\end{array}\right](\bmod 16) .
$$

Now $\mathbb{Z}_{2} /(16) \cong \mathbb{Z} /(16)$ and by [2] Lemma 1.3 .4 the group $\mathrm{SL}_{2}(B)$ is generated by elementary matrices, where $B=\mathbb{Z} /(16)$. It follows that

$$
\Gamma / \Gamma(16) \cong \mathrm{SL}_{2}(B)
$$

McQuillan [4] Proposition 1 has listed all the normal subgroups of $\mathrm{SL}_{2}(B)$, which are contained in $\operatorname{Ker}\left(\mathrm{SL}_{2}(B) \rightarrow \mathrm{SL}_{2}(B /(2))\right)$. From the above $N \cap \Gamma / \Gamma(16)$ maps onto one such subgroup $\bar{N}$, say, which contains an element congruent to $\left[\begin{array}{cc}5 & { }^{*} \\ 0 & -3\end{array}\right]$ or $\left[\begin{array}{cc}-3 & * \\ 0 & 5\end{array}\right]$ $(\bmod 16)$. From McQuillan's list it is clear that $\bar{N}$ contains $\operatorname{Ker}\left(\mathrm{SL}_{2}(B) \rightarrow \mathrm{SL}_{2}(B /(8))\right)$ and hence that $\Gamma(8) \leqslant N \cap \Gamma$

THEOREM 3.2. Let $N$ be a subgroup of $G$ of order $2^{n}$ which is normalized by $\Gamma$, where $n>0$. Then $N$ is normal in $G$.

Proof. When $n \geqslant 2$ we have $\Gamma\left(2^{n+1}\right) \leqslant N$, by Lemma 3.1. Let $X \in N$ and $u \in U(A)$. Then $X$ is scalar $\left(\bmod 2^{n}\right)$ and $u \equiv 1(\bmod 2)$. It is readily verified that $[D(\mathrm{u}, 1), X]$ $\equiv I\left(\bmod 2^{n+1}\right)$. Hence $[G, N] \leqslant N$ and so $N \triangleleft G$.

We assume from now on that $n=1$. As in the proof of Lemma 3.1 there exists $X=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in N \cap H(2)$, where ord $c=1$. Now $3^{2} \equiv 1(\bmod c)$ and so by Lemma 1.1 we have $\Gamma(16) \leqslant N$. Consider the element

$$
\left[X^{-1}, T(1)\right]=\left[\begin{array}{cc}
* & * \\
u c^{2} & *
\end{array}\right] \in N \cap \Gamma
$$

where $u \in U(A)$. Again as in proof of Lemma 3.1 the group $N \cap \Gamma / \Gamma(16)$ maps onto a normal subgroup of $\mathrm{SL}_{2}(B)$, contained in $\operatorname{Ker}\left(\mathrm{SL}_{2}(B) \rightarrow \mathrm{SL}_{2}(B /(2))\right.$ ), which contains an element of the form $\left[\begin{array}{cc}* & * \\ 4, *\end{array}\right]$, where $B=\mathbb{Z} /(16)$ and $v \in U(B)$. By [4] Proposition 1 we deduce that $\Gamma(8) \leqslant N$.

For each $u \in U(A)$ we have $u \equiv \pm 1(\bmod 4)$ and it is readily verified that $[H(4), H(2)] \leqslant \Gamma(8) \leqslant N$. It is sufficient therefore to prove that

$$
[D(-1,1), X] \in N, \quad \text { for each } X \in N
$$

Let $X=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in N$. It is easily verified that

$$
\begin{aligned}
{[D(-1,1), X] } & \equiv\left[\begin{array}{ll}
1 & 2 b \\
2 c & 1
\end{array}\right](\bmod 8) \\
{[T(1), X] } & \equiv\left[\begin{array}{cc}
* & * \\
-c^{2} & *
\end{array}\right](\bmod 8)
\end{aligned}
$$

and

$$
[Y, X] \equiv\left[\begin{array}{cl}
\delta+c^{2} & * \\
* & \delta+b^{2}
\end{array}\right](\bmod 8)
$$

where $Y=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ and $\delta=a d-b c=\operatorname{det} X$. As above $N \cap \Gamma / \Gamma(8)$ maps onto a normal subgroup $\bar{N}$, say, of $\mathrm{SL}_{2}(C)$, where $C=\mathbb{Z} /(8)$. By considering the image of $[Y, X] \in N \cap \Gamma$ it is clear that $b^{2} \equiv c^{2}(\bmod 8) .($ See $[4]$ Proposition 1$)$.

If $b \equiv c \equiv 0(\bmod 4)$, then $[D(-1,1), X] \equiv I(\bmod 8)$ and so $[D(-1,1), X] \in N$, since $\Gamma(8) \leqslant N$.

Suppose now that $b \equiv c \equiv 2(\bmod 4)$. Then $[T(1), X] \in N \cap \Gamma$ and

$$
[T(1), X] \equiv\left[\begin{array}{ll}
* & * \\
4 & *
\end{array}\right](\bmod 8) .
$$

By [4] Proposition 1 any normal subgroup of $\mathrm{SL}_{2}(C)$ containing an element of the form $\left[\begin{array}{ll}* & * \\ 4\end{array}\right]$ also contains $\left[\begin{array}{ll}1 & 4 \\ 4 & 4\end{array}\right]$. But $[D(-1,1), X] \equiv\left[\begin{array}{cc}1 & 4 \\ 4 & 1\end{array}\right](\bmod 8)$. Hence $[D(-1,1), X] \in N$

Let

$$
X=\left[\begin{array}{rr}
1 & 2 \\
2 & -1
\end{array}\right]
$$

and let

$$
N=\left\{Y \in \Gamma: Y \equiv \pm I, \pm\left[\begin{array}{ll}
5 & 4 \\
0 & 5
\end{array}\right], \pm\left[\begin{array}{ll}
5 & 0 \\
4 & 5
\end{array}\right], \pm\left[\begin{array}{ll}
1 & 4 \\
4 & 1
\end{array}\right](\bmod 8)\right\} .
$$

Then, by [4] Proposition 1, $N \triangleleft G$. Let $N_{0}=\langle X, N\rangle$. Then it can be shown that $N_{0}$ is a normal subgroup of $G$ of order 2 containing $\Gamma(8)$ but not $\Gamma(4)$. This example shows that Theorem 1.3, Corollary 1.4 and Theorem 2.1 do not hold when $N(m)=2$.

Theorem 3.3. (i) $\Gamma^{\prime}$ has order $A$. Further $\Gamma / \Gamma^{\prime}$ is cyclic of order 4, generated by the image of $T(1)$.
(ii) Let $N$ be a subgroup of $G$ of order $A$ which is normalized by $\Gamma$. Then $N \geqslant \Gamma^{\prime}$.

Proof. (i) $\Gamma^{\prime}$ has order $A$ since, for example $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})^{\prime}$, by [9] Theorem 1.3.1, p. 16. We now apply Lemma 1.1 to this element (with $u=3$ ) and conclude that $\Gamma(16) \leqslant \Gamma^{\prime}$.

Now $\Gamma^{\prime} / \Gamma(16) \cong \operatorname{SL}_{2}(\mathbb{Z})^{\prime} \cdot \bar{\Gamma}(16) / \bar{\Gamma}(16)$, where $\bar{\Gamma}(16)=\operatorname{Ker}\left(\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow\right.$ $\left.\mathrm{SL}_{2}(\mathbb{Z} /(16))\right)$. The subgroup $\bar{\Gamma}(16) \cdot \mathrm{SL}_{2}(\mathbb{Z})^{\prime}$ is a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ which Rankin denotes by $\Gamma^{4}$, and it is known that $\mathrm{SL}_{2}(\mathbb{Z}) / \Gamma^{4}$ is cyclic of order 4, "generated" by $T(1)$, [9] Theorem 1.3.1, p. 16 (The subgroup of $\mathrm{SL}_{2}(Z /(4))$ corresponding to $\Gamma^{4}$ is not listed by McQuillan [4] Proposition 1. See also [6], §5).
(ii) As above there exists $X=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right] \in N$ with $c \in U(A)$ and so $\Gamma(16) \leqslant N$ by Lemma 1.1 (put $u=3$ ). Then $N \cap \Gamma / \Gamma(16)$ is isomorphic to a normal subgroup $\bar{N}$ of $\mathrm{SL}_{2}(\mathbb{Z} /(16))$ containing the image of $[T(1), X]=\left\lceil_{-r^{2}}^{*}{ }^{*}\right]$.

By [6] $\S 5$ it follows that $\bar{N}$ must contain the image of the subgroup $\Gamma^{4} / \bar{\Gamma}(16)$. Hence by (i) we have $\Gamma^{\prime} \leqslant N \cap \Gamma$.

By Theorem 3.3 each element of $G$ is congruent to an element $\left[\begin{array}{ll}0 \prime \prime \\ 0 & 1\end{array}\right]$ of $G\left(\bmod \Gamma^{\prime}\right)$, where $u \in U(A)$ and $x=0, \pm 1,2$.

Theorem 3.4. Let

$$
N=\left\langle\left[\begin{array}{ll}
u & x \\
0 & 1
\end{array}\right], \Gamma^{\prime}\right\rangle
$$

where

$$
u \in U(A), u \equiv 1(\bmod 4), u \neq 1 \text { and } x= \pm 1 .
$$

Then $N$ is an almost-normal subgroup of $G$ (of order $A$ ).
Proof. It is easily verified that $\Gamma$ normalizes $N$. We now prove that $N \cap \Gamma=\Gamma^{\prime}$. Let $T(y) \in N \cap T$. Then by definition either $T(y) \in \Gamma^{\prime}$ or there exists $n \neq 0$ such that

$$
\left[\begin{array}{cc}
u & x \\
0 & 1
\end{array}\right]^{n} \equiv T(y)\left(\bmod \Gamma^{\prime}\right) .
$$

Now comparing determinants $u^{n}=1$ and since $A=\mathbb{Z}_{2} \subseteq \mathbb{R}$, we conclude that $u=1$. But $u \neq 1$.

If $N \triangleleft G$, then $[D(-1,1), E]=T\left(2 x u^{-1}\right) \in N$, where $E=\left[\begin{array}{ll}u & x \\ 0 & 1\end{array}\right]$. But $N \cap \Gamma=\Gamma^{\prime}$. Hence $N$ is not normal in $G$

The subgroup $N$ of Theorem 3.4 has order $A$ and contains $\Gamma\left(2^{\prime \prime}\right)$ if and only if $n \geqslant 2$. This demonstrates the necessity of the hypothesis $N(m)>2$ in [2] Theorem 2.1.1.
4. The case $\mathbf{N}(\boldsymbol{m})=\mathbf{3}$. Lacroix [2] Theorems 2.1.6, 2.3.7, has shown that when $N(m)=3$ every $\Gamma$-normalized subgroup $N$ of $G$ of order $q$ contains $\Gamma(q)$, except when $N \cap \Gamma=\Gamma^{\prime}$. ( $\Gamma^{\prime}$ has order $A$ and contains $\Gamma(q)$ if and only if $q \leqslant m$ ). It follows that if $N \cap \Gamma \neq \Gamma^{\prime}$ then $N \triangleleft G$.

As in the previous section it can be shown from the structure of $\mathrm{SL}_{2}(\mathbb{Z})^{\prime}$ that $\Gamma / \Gamma^{\prime}$ is cyclic of order 3, "generated" by $T(1)$. (See [9] Theorem 1.3.1, p. 16.) The following theorem is proved in an identical way to Theorem 3.4.

Theorem 4.1. Let

$$
N=\left\langle\left[\begin{array}{ll}
u & x \\
0 & 1
\end{array}\right], \Gamma^{\prime}\right\rangle,
$$

where $x= \pm 1, u \in U(A), u \equiv 1(\bmod m)$. If either $u$ has infinite order or $u$ has finite order divisible by 3, then $N$ is an almost-normal subgroup of $G$ (of order $A$ ).

## References

[^1]7. A. W. Mason, On non-normal subgroups of $G L(n, A)$ which are normalized by elementary matrices, Illinois J. Math 28 (1984), pp. 125-138.
8. A. W. Mason and W. W. Stothers, On subgroups of $G L(n, A)$ which are generated by commutators, Invent. math. 23 (1974), pp. 327-346.
9. R. A. Rankin, Modular forms and functions, Cambridge University Press, Cambridge, 1977.

Department of Mathematics
The University
Glasgow, G12 8QW


[^0]:    Received by the editors May 10, 1985, and, in revised form, August 18, 1986.
    AMS Subject Classification (1980): 20 H 05 .
    (C) Canadian Mathematical Society 1985.

[^1]:    1. W. Klingenberg, Lineare Gruppen über lokalen Ringen, Amer. J. Math. 83 (1961), pp. 137-153.
    2. N. H. J. Lacroix, Two-dimensional linear groups over local rings, Canad. J. Math. 21 (1969), pp. 106-135.
    3. N. H. J. Lacroix and C. Levesque, Sur les sous-groupes normaux de $S L_{2}$ sur un anneau local, Canad. Math. Bull. 26(2) (1983), pp. 209-219.
    4. D. L. McQuillan, Classification of normal congruence subgroups of the modular group, Amer. J. Math. 87 (1965), pp. 285-296.
    5. A. W. Mason, On subgroups of $G L(n, A)$ which are generated by commutators II, J. Reine Angew. Math. 322 (1981), pp. 118-135.
    6. A. W. Mason, Anomalous normal subgroups of the modular group, Comm. Algebra 11 (1983), pp. 2555-2573.
