ON GL₂ OF A LOCAL RING IN WHICH 2 IS NOT A UNIT

ΒY

A. W. MASON

ABSTRACT. Let A be a local ring with maximal ideal m, let N(m) be the order of the residue field A/m and let N be a subgroup of $GL_n(A)$ which is normalized by $SL_n(A)$. It follows from results of Klingenberg that N is normal in $GL_n(A)$ when $n \ge 3$ or $(\frac{1}{2} \in A \text{ and } N(m) > 3)$. Results of Lacroix show that this is also true when n = 2 and N(m) = 3, provided that $N \cap SL_2(A) \ddagger SL_2(A)'$.

The principal aim of this paper is to provide examples of non-normal subgroups of $GL_2(A)$ which are normalized by $SL_2(A)$. In the process we extend results of Lacroix and Levesque on $SL_2(A)$ -normalized subgroups of $GL_2(A)$, where $2 \in m$ and N(m) > 2.

Introduction. Let *A* be a (commutative) local ring with maximal ideal *m* and let N(m) be the order of the residue field A/m. After Klingenberg [1] we define the *order* of a subgroup *S* of $GL_n(A)$ to be the smallest ideal *q* such that $S \leq H_n(q)$, where $H_n(q)$ is the set of all matrices in $GL_n(A)$ which are scalar (mod *q*).

Let N be a subgroup of $GL_n(A)$ of order q which is normalized by $SL_n(A)$. Klingenberg [1] Satz 3 has proved that, if $n \ge 3$ or $(\frac{1}{2} \in A \text{ and } N(m) > 3)$, then $SL_n(q) \le N$, where $SL_n(q) = \text{Ker} (SL_n(A) \rightarrow SL_n(A/q))$. Lacroix [2] Theorem 2.1.6 has shown that this is also true when n = 2 and N(m) = 3, provided that $N \cap SL_2(A) \neq SL_2(A)'$.

Since the commutator subgroup $[GL_n(A), H_n(q)]$ is contained in $SL_n(q)$ it follows that, if $n \ge 3$ or $2 \notin m$, then every subgroup N of $GL_n(A)$ which is normalized by $SL_n(A)$ is normal in $GL_n(A)$, with the (possible) exception of the case n = 2, N(m) = 3 and $N \cap SL_2(A) = SL_2(A)'$. The obvious question arises as to whether or not there exist non-normal subgroups of $GL_2(A)$ which are normalized by $SL_2(A)$, when $2 \in m$ or N(m) = 3. The principal aim of this paper is to provide examples of such subgroups. We call subgroups of this type *almost-normal*.

Throughout the first half of the paper we assume that $2 \in m$ and that N(m) > 2. We prove first that under these hypotheses a subgroup of $GL_2(A)$ of order q, which is normalized by $SL_2(A)$, contains $SL_2(q^*)$, where q^* is the ideal in A generated by 2q, $q^2 (q \in q)$. This extends an earlier result of Lacroix and Levesque [3] Théorème 5.1. (See also [3] Lemme 3.5). We also obtain a lower bound for the normalizer in $GL_2(A)$ of such a subgroup. Applying these results to the case where m is principal we obtain

Received by the editors May 10, 1985, and, in revised form, August 18, 1986.

AMS Subject Classification (1980): 20 H 05.

[©] Canadian Mathematical Society 1985.

many examples of almost-normal subgroups of $GL_2(A)$, some of which have "minimal" normalizer in $GL_2(A)$.

In order to demonstrate the necessity of the hypothesis N(m) > 2 in the above results we next consider the case where $A = \mathbb{Z}_2$, the localization of the ring of rational integers \mathbb{Z} at 2. (The case N(m) = 2 is in general very complicated [2].) We prove that in this case there are $SL_2(A)$ -normalized subgroups of GL(A) of order q which do not contain $SL_2(q^*)$ and that nearly every $SL_2(A)$ -normalized subgroup of $GL_2(A)$ is normal in $GL_2(A)$. Finally we provide examples of almost-normal subgroups of $GL_2(A)$, where N(m) = 3.

For a given ring *R* the existence of almost-normal subgroups of $GL_n(R)$ (ie. nonnormal subgroups normalized by $SL_n(R)$) depends upon *n*. (See [7].) For example it is known [5] Corollary 3.3, [6] that almost-normal subgroups of $GL_n(\mathbb{Z})$ exist if and only if n = 2. In addition it is known [5] Corollary 5.6 that, when $n \ge 3$, almost-normal subgroups of $GL_n(\mathbb{Z}[i])$ exist if and only if *n* is even, where $i^2 = -1$.

Throughout we put $G = GL_2(A)$, $\Gamma = SL_2(A)$, $\Gamma(q) = SL_2(q)$ and $H(q) = H_2(q)$. (By definition $\Gamma = \Gamma(A)$ and G = H(A).) We denote the set of units in A by U(A). For each $a \in A$ and $u, v \in U(A)$ we put

$$\mathbf{T}(a) = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \text{ and } D(u, v) = \begin{bmatrix} u & 0 \\ 0 & v \end{bmatrix}.$$

Finally, if *H*, *K* are subgroups of *G* then [H, K] is the subgroup generated by all the commutators $[h, k] = h^{-1}k^{-1}hk$, where $h \in H$ and $k \in K$.

1. The case of $2 \in m$, N(m) > 2. Throughout this section (and the next) we assume that $2 \in m$ and that N(m) > 2. The latter hypothesis ensures the existence of units u, v in A such that $u^2 + v = 1$.

Let S be a subgroup of G and let $a \in A$. We write

 $a \sim S$

if $\Gamma(q) \leq S$, where q = (a), or, equivalent, if $T(ta) \in S$, for all $t \in A$. (See [2] Lemma 1.3.4) It is obvious that if $a, b \sim S$ then $ax + by \sim S$, for all $x, y \in A$.

The proof of our first lemma is a simplified version of an earlier proof of Klingenberg [1] p. 148. This proof (unlike the other proofs in this section) does not require the hypothesis N(m) > 2.

LEMMA 1.1. Let N be a subgroup of G which is normalized by Γ and let $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in N$. Then, for all $u \in U(A)$ such that $u^2 \equiv 1 \pmod{c}$, we have

$$u^4 - 1 \sim N$$

PROOF. Let

$$X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \ \delta = ad - bc \ (\in U(A)) \quad \text{and} \quad Y = \begin{bmatrix} u & t \\ 0 & u^{-1} \end{bmatrix},$$

where $u \in U(A)$, $u^2 \equiv 1 \pmod{c}$ and $t \in A$. Then

166

г о **Т**

$$[Y,X] = \delta^{-1} \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \in N$$

where $\alpha = (u^{-1}d + ct)(ua + tc) - u^{-1}c(bu^{-1} + at), \gamma = ac - u^{2}ac - utc^{2}, \delta = u^{2}ac - utc^{2}$ $ad - u^2bc - utcd$.

Now choose $t \in A$ such that $a - u^2 a - utc = 0$. Then, for this choice of $t, \gamma = 0$ and $(\alpha - \delta) = (u^4 - 1)$. The result follows from [3] Lemme 3.3 (ii)

LEMMA 1.2. Let N be a subgroup of G which is normalized by Γ and let $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in N$, where $c \in m$. Then $2c^2$, $c^4 \sim N$ implies 2c, $c^2 \sim N$.

PROOF. Suppose that $\Gamma(q) \leq N$, where $q = (2c^2) + (c^4)$. Let

$$X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $\delta = ad - bc$.

Then

$$Z = [X^{-1}, T(1)] = \begin{bmatrix} e & f \\ g & h \end{bmatrix} \in N \cap \Gamma,$$

where $e = 1 + ac\delta^{-1}$ and $g = c^2\delta^{-1}$. We note that $2g, g^2 \in q$. Now let

$$R = [Z^{-1}, T(t)],$$

where $t \in A$. Then

$$R \equiv D(r,r)T(r^{-1}s) \pmod{q},$$

where r = 1 + teg and $s = t(1 - e^2) + t^2 eg$. We put

$$S = \begin{bmatrix} r(1+q) & q \\ -q & r \end{bmatrix},$$

where $q = 1 - r^2 \in q$. Then $S \in \Gamma \cap H(q)$ and $SR \equiv T(s) \pmod{q}$. It follows that $T(s) \in N \cdot H(q).$

We now conjugate Z by $D(u, u^{-1})$ and repeat the argument. We conclude that

$$T(t(1 - e^2))T(t^2u^2eg) \in N \cdot H(q),$$

for all $u \in U(A)$ and $t \in A$.

Now there exists $v \in U(A)$ such that $v - 1 \in U(A)$. Consider the above with t, e, g fixed and u = v, v - 1. Using the fact that $2g \in q$ it follows that $e^2 - 1 \sim N \cdot H(q)$. Now $a \in U(A)$ since $c \in m$ and so $2c + ac^2\delta^{-1} \sim N \cdot H(q)$. Conjugate X by $D(w, w^{-1})$, where $w, w^2 - 1 \in U(A)$ and repeat the argument. Then $2c + ac^2 w^2 \delta^{-1}$

~ $N \cdot H(q)$. It follows that $2c, c^2 \sim N \cdot H(q)$.

Thus $\Gamma(q_0) \leq N \cdot H(q)$, where $q_0 = (2c) + (c^2)$. Now by [2] Proposition 1.3.6 we have $[\Gamma, \Gamma(q_0)] = \Gamma(q_0)$ and $\Gamma(q) = [\Gamma, H(q)]$. Hence

$$\Gamma(q_0) \leq [\Gamma, H(q)][\Gamma, N] \leq N \quad \Box$$

Lacroix [2] Theorem 2.1.1 has proved that if N is a subgroup of G of order A which is normalized by Γ then $\Gamma \leq N$. We now come to the principal theorem of this section which extends this result.

THEOREM 1.3. Let N be a subgroup of G of order q which is normalized by Γ and let q^* be the ideal in A generated by $2q, q^2$, where $q \in q$. Then

$$\Gamma(q^*) \leq N.$$

PROOF. Let $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in N$. By considering conjugates of X by $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ it is sufficient to prove that $2c, c^2 \sim N$.

If $c \notin m$ then q = A and the result follows from [2] Theorem 2.1.1. We may assume therefore that $c \in m$. Now the (2, 1)-entry of $[X^{-1}, T(1)] \in N$ is $c^2\delta^{-1}$, where $\delta = ad - bc \in U(A)$. By Lemma 1.2 therefore it is sufficient to prove that $2c^4, c^8 \sim N$.

By Lemma 1.1 it follows that, for all $x, y \in A$,

$$(1 + xc)^4 - (1 + yc)^4 = (x - y)c[2 + (x + y)c][2 + 2(x + y)c] + (x^2 + y^2)c^2] \sim N.$$

Conjugating X by $D(w, w^{-1})$ we can replace c at any stage by w^2c , where $w \in U(A)$. Now put x = u, y = v, where $u, v \in U(A)$ and u + v = 1. Then $u - v = 1 - 2v \in U(A)$ and so

$$c[2 + c][2 + 2c + (1 - 2uv)c^{2}] \sim N.$$

But $c(2 + c)(2 + 2c + c^2) \sim N$ (put x = 1, y = 0 in the above) and so

$$2c^{3}(2+c) \sim N$$

Replacing c by u^2c , where $u, u^2 - 1 \in U(A)$, we conclude that $2c^4 \sim N$.

Now by the above (with x = 1, y = 0) it follows that $c^4 + 4c^3 + 6c^2 + 4c \sim N$. Hence $c^8 + 4c^7 + 6c^6 + 4c^5 \sim N$ and so $c^8 \sim N$

COROLLARY 1.4. Let N be a subgroup of G of order q which is normalized by Γ and let q be principal. Then

$$\Gamma(2q + q^2) \le N.$$

PROOF. Immediate from Theorem 1.3

COROLLARY 1.4 also follows from results of Lacroix [2] and Lemma 1.2.3 and Lacroix, Levesque [3], and Lemme 3.5, Théorème 5.1.

We show in the next section that Theorem 1.3 and Corollary 1.4 are best possible in the sense that there are subgroups of N of G of order q, normalized by Γ , which contain $\Gamma(r)$ if and only if $r \leq q^*$.

We now provide a lower bound for the normalizer in G of a Γ -normalized subgroup of G which we will show in the next section to be best possible.

THEOREM 1.5. Let N be a subgroup of G of orger q which is normalized by Γ and let

$$q_0 = \{a \in A : aq \leq q^*\},$$

where q^* is defined as above. Let M be the normalizer of N in G. Then

$$\Gamma \cdot U_0 \leq M$$
,

where

$$U_0 = \{D(u, 1) : u \equiv v^2 \pmod{q_0}, \text{ for some } v \in U(A)\}$$

PROOF. Clearly $\Gamma \leq M$ and $D(w^2, 1) = D(w, w)D(w, w^{-1}) \in M$, for all $w \in U(A)$. Now let $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in N$ and let $u = v^2 + q_0$, where $u, v \in U(A)$ and $q_0 \in q_0$. Using the fact that $bq_0, cq_0 \in q^*$ it is easily verified that

$$D(u, 1)XD(u^{-1}, 1) \equiv D(v, v^{-1})XD(v^{-1}, v) \pmod{q^*}.$$

By Theorem 1.3 we have $\Gamma(q^*) \leq N$ and so $D(u, 1) \in M$ \square .

The definition of an ideal similar to q_0 can be found in [3] p. 213.

2. The case $m = (\theta)$. Our principal aim in this section is to provide many examples of almost-normal subgroups of G. In the process we prove that Theorems 1.3, 1.5, 2.1 and Corollary 1.4 are best possible.

We assume throughout that $2 \in m$, N(m) > 2, $m = (\theta)$, for some $\theta \in A$, and that $\bigcap_{i=1}^{\infty} m^i = \{0\}$. Each non-zero ideal q is therefore a power of m. If $q = m^x$ we write x = ord q and we write ord a, where $a \in A$, as shorthand for ord ((*a*)). If $m^y = \{0\}$ and $m^{y-1} \neq \{0\}$, for some integer y > 1, we write ord 0 = y.

Let q, q_1 be ideals in A such that $q^* = 2q + q^2 \le q_1 \le q \le m$. By [8] Theorem 4.1 the group $\Gamma(q)/\Gamma(q_1)$ is an elementary 2-abelian group in which each element is uniquely represented by a matrix $\begin{bmatrix} 1+a & b\\ c & 1+a \end{bmatrix}$, where $a, b, c \in q/q_1$. The map

$$\begin{bmatrix} 1+a & b \\ c & 1+a \end{bmatrix} \leftrightarrow (a,b,c)$$

is an isomorphism from $\Gamma(q)/\Gamma(q_1)$ onto the additive group B^3 , where $B = q/q_1$. Further $\Gamma(q)/\Gamma(q_1)$ is generated by the images of Γ -conjugates of T(q), where $q \in q$.

In particular $\Gamma(q)/\Gamma(qm)$ is generated by the images of Γ -conjugates of $T(u\theta^i)$, where $i = \operatorname{ord} q$ and u belongs to a complete set of coset representatives of $A(\mod m)$.

Our first results show that sharper versions of Corollary 1.4 and Theorem 1.5 hold when A/m is perfect. (We recall that a field F of characteristic 2 is perfect if each element of F is a square. If F is finite for example then F is perfect.)

THEOREM 2.1. Let A/m be perfect and let N be a subgroup of G of order q which is normalized by Γ . If ord q^* – ord q is odd then $\Gamma(r) \leq N$, where $mr = q^*$.

PROOF. Since $q \le m$, by [2] Lemma 1.2.3 and [3] Théorème 5.1 there exists $u \in U(A)$ such that $T(u\theta^i) \in N$, where i = ord q.

169

Let ord q^* - ord q = 2k + 1 and let

$$w = \begin{cases} 1 + \theta^k, & k \neq 0, \\ 1, & k = 0. \end{cases}$$

Then $w \in U(A)$. Conjugating $T(u\theta^i)$ by $D(w, w^{-1})$ it follows that $T(w^2u\theta^i) \in N$. Now $\Gamma(q^*) \leq N$ by Corollary 1.4 and

$$T(w^2 u \theta^i) \equiv T(u \theta^i) T(u \theta^{2k+i}) \pmod{q^*}$$

Hence $T(u\theta^{2k+i}) \in N$.

Since A/m is perfect, $u \equiv v^2 \pmod{\theta}$, for some $v \in U(A)$. We note that ord r = 2k + i and that ord $q^* - \operatorname{ord} r = 1$. It follows that $T(v^2 \theta^{2k+i}) \in N$, that $T(\theta^{2k+i}) \in N$ and hence that $T(u^2 \theta^{2k+i})$, for all $u \in U(A)$.

From the above discussion and the hypotheses satisfied by A/m it is clear that $\Gamma(r)/\Gamma(q^*)$ is generated by the images of the Γ -conjugates of $T(u^2\theta^{2k+i})$, where $u \in U(A)$. We deduce that $\Gamma(r) \leq N$

COROLLARY 2.2. If A/m is perfect and m = (2), then every Γ -normalized subgroup of G is normal in G.

PROOF. Let N be a Γ -normalized subgroup of G of order q. If q = A then $\Gamma \leq N$ by [2] Theorem 2.1.1, in which case $[G, N] \leq N$.

We assume then that $q \le m$. In this case $q^* = mq$ and so ord q^* – ord q = 1. By Theorem 2.1 therefore we have $\Gamma(q) \le N$. It follows that

$$[G,N] \leq [G,H(q)] \leq \Gamma(q) \leq N \quad \Box$$

Corollary 2.2 can be deduced directly from results of Lacroix and Levesque [3] Remarque 4.5.

Another consequence of Theorem 2.1 is that when A/m is perfect every Γ -normalized of G of order m is normal in G.

THEOREM 2.3. Let A/m be perfect and let N be a subgroup of G of order q which is normalized by Γ . Let

$$q_1 = \{a \in A : aqm \le q^*\}$$

and let M be the normalizer of N in G.

If ord q^* – ord q is odd then

$$\Gamma \cdot U_1 \leq M$$
,

where

$$U_1 = \{D(u, 1) : u \equiv v^2 \pmod{q_1}, \text{ for some } v \in U(A)\}$$

PROOF. The proof is almost identical to that of Theorem 1.5 and makes use of Theorem 2.1 $\hfill\square$

June

By [2] Theorem 2.1.1 every Γ -normalized subgroup of G of order A is normal in G. Let q be an ideal contained in m and let $x = \operatorname{ord} q$ and $y = \operatorname{ord} q^*$. We define an ideal \overline{q} by

ord
$$\overline{q} = \begin{cases} y & y \\ y - 1, & y - x \text{ odd.} \end{cases}$$

Then $\overline{q} = q^*$, when y - x is even, and $\overline{q}m = q^*$, when y - x is odd. For the structure of $\Gamma(q)/\Gamma(\overline{q})$ we now refer to the discussion at the beginning of this section.

Let $\Delta = \{k^2 \theta^x + \overline{q} : k \in A\}$ and define a subgroup $N(\Delta)$ of $\Gamma(q)$ containing $\Gamma(\overline{q})$ by

$$N(\Delta)/\Gamma(\bar{q}) = \left\{ \begin{bmatrix} 1+a & b \\ c & 1+a \end{bmatrix} : b, c \in \Delta \right\};$$

 $N(\Delta)$ is well-defined since Δ is closed under addition.

THEOREM 2.4. With the above notation, (a) $N(\Delta)$ is a subgroup of G of order q normalized by Γ , (b) $\Gamma(p) \leq N(\Delta)$ if and only if $p \leq \overline{q}$, (c) $N(\Delta) \leq G$ if and only if $q = \overline{q}$.

PROOF. Part (a) is easily verified.

For part (b) suppose that $\Gamma(p) \leq N(\Delta)$ and that $p \leq \overline{q}$. Then $\Gamma(p + \overline{q}) = \Gamma(p) \cdot \Gamma(\overline{q})$ is contained in $N(\Delta)$ and $p + \overline{q} \neq \overline{q}$.

Let $z = \text{ord } \overline{q}$. Then $T(\theta^{z-1}) \in N(\Delta)$ and so by definition there exists $k \in A$ such that

$$k^2 \theta^x \equiv \theta^{z-1} \pmod{\bar{q}},$$

where (as above) x = ord q. It follows that z - x is odd. But by definition z - x is even.

Part (c) follows from parts (a), (b) and [2] Theorem 2.3.7 \Box

Theorem 2.4 (which does not require A/m to be perfect) shows that Theorems 1.3, 2.1 and Corollary 1.4 are best possible.

Consider for example the case where m is not nilpotent, with $m \neq (2)$, and q is a non-zero ideal distinct from A and m. Theorem 2.4 shows that there exists an almost-normal subgroup of G of order q.

The final result in this section shows that Theorems 1.5 and 2.3 are best possible.

THEOREM 2.5. Let A/m be perfect, let q be a non-zero ideal contained in m and let \overline{q} and $N(\Delta)$ be defined as above. Let

$$q_2 = \{a \in A : aq \leq \bar{q}\}.$$

Then the normalizer, $M(\Delta)$, of $N(\Delta)$ in G is given by

$$M(\Delta) = \Gamma \cdot U_2,$$

where

$$U_2 = \{D(u, 1) : u \equiv v^2 \pmod{q_2}, \text{ for some } v \in U(A)\}$$

PROOF. By Theorems 1.5 & 2.3 we have $\Gamma \cdot U_2 \leq M(\Delta)$. We may assume that $q \neq \overline{q}$.

Now let $D(u, 1) \in M(\Delta)$. Since A/m is perfect it follows that

$$u \equiv t_0^2 + t_1^2 \theta + t_2^2 \theta^2 + \dots \pmod{q_2},$$

where $t_0 \in U(A)$, $t_i = 0$, when $i \ge \text{ord } q_2$, and $t_i = 0$ or $t_i \in U(A)$, when $1 \le i \le \text{ord } q_2$.

Let $w = t_0^2 + t_2^2 \theta^2 + \dots$ (only even powers of θ). Then $w \in U(A)$ and, since $2 \in q_2$,

$$w \equiv (t_0 + t_2\theta + \dots)^2 \pmod{q_2}.$$

Hence $D(w, 1) \in U_2$ and so $D(u_0, 1) \in M(\Delta)$, where $u_0 = w^{-1}u$.

Suppose now that $u_0 \neq 1$. Then $u_0 = 1 + v\theta^k$, for some odd k and for some $v \in U(A)$, where $k < \text{ord } q_2$. Now

$$D(u_0, 1)T(\theta^x)D(u_0^{-1}, 1)T(-\theta^x) = T(v\theta^{x+k}) \in N(\Delta),$$

where x = ord q. By definition therefore there exists $a \in A$ such that $\text{ord } (a^2 \theta^x) = x + k$. But k is odd. Hence $u_0 = 1$, u = w and so $M(\Delta) \leq \Gamma \cdot U_2$

3. The case $A = \mathbb{Z}_2$. Our aim in this section is to demonstrate the necessity of the hypothesis N(m) > 2 in the two previous sections. (We recall that Lemma 1.1 does not require this hypothesis). The case N(m) = 2 appears in general to be very complicated. (See [2].) Accordingly we confine ourselves in this section to the case where $A = \mathbb{Z}_2$, the localization of \mathbb{Z} at 2.

We prove that (in contrast with Theorem 2.4) nearly every Γ -normalized subgroup of G is normal in G. However there are almost-normal subgroups of G of order A (c.f. Corollary 2.2). Moreover these subgroups show that Theorem 1.3, Corollary 1.4, together with [2] Theorem 2.1.1 do not hold when N(m) = 2.

In this case we have m = (2). We define (as before) ord $m^x = x$ and we write 2^x for m^x , where $x \ge 0$.

LEMMA 3.1. Let N be a subgroup of G of order 2^n which is normalized by Γ , where n > 1. Then

$$\Gamma(2^{n+1}) \leq N.$$

PROOF. There exists $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in N$, where ord (a - d), ord b or ord c is equal to n. Conjugating if necessary by $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ or $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ we may assume that ord c = n.

Suppose now that $n \ge 3$ and let $u = 1 + 2^{n-1}$. Then $u \in U(A)$ and $u^2 \equiv 1 \pmod{c}$. By Lemma 1.1 therefore $u^4 - 1 \sim N$, from which it follows that $\Gamma(2^{n+1}) \le N$.

Suppose that n = 2. Then $3^2 \equiv 1 \pmod{c}$ and so by Lemma 1.1 we have $\Gamma(16) \leq N$. It is readily verified that

[June

 $Y = [T(1), X] \equiv \begin{bmatrix} 5 & * \\ 0 & -3 \end{bmatrix}$ or $\begin{bmatrix} -3 & * \\ 0 & 5 \end{bmatrix}$ (mod 16).

Now $\mathbb{Z}_2/(16) \cong \mathbb{Z}/(16)$ and by [2] Lemma 1.3.4 the group $SL_2(B)$ is generated by

 $\Gamma/\Gamma(16) \cong SL_2(B).$

McQuillan [4] Proposition 1 has listed all the normal subgroups of $SL_2(B)$, which are contained in Ker (SL₂(B) \rightarrow SL₂(B/(2))). From the above $N \cap \Gamma/\Gamma(16)$ maps onto

one such subgroup
$$\overline{N}$$
, say, which contains an element congruent to $\begin{bmatrix} 5 & *\\ 0 & -3 \end{bmatrix}$ or $\begin{bmatrix} -3 & *\\ 0 & 5 \end{bmatrix}$
(mod 16). From McQuillan's list it is clear that \overline{N} contains Ker (SL₂(B) \rightarrow SL₂(B/(8)))

elementary matrices, where $B = \mathbb{Z}/(16)$. It follows that

and hence that $\Gamma(8) \leq N \cap \Gamma$ \Box .

THEOREM 3.2. Let N be a subgroup of G of order 2^n which is normalized by Γ , where n > 0. Then N is normal in G.

PROOF. When $n \ge 2$ we have $\Gamma(2^{n+1}) \le N$, by Lemma 3.1. Let $X \in N$ and $u \in U(A)$. Then X is scalar (mod 2^n) and $u \equiv 1 \pmod{2}$. It is readily verified that [D(u, 1), X] $\equiv I \pmod{2^{n+1}}$. Hence $[G, N] \leq N$ and so $N \triangleleft G$.

We assume from now on that n = 1. As in the proof of Lemma 3.1 there exists $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in N \cap H(2)$, where ord c = 1. Now $3^2 \equiv 1 \pmod{c}$ and so by Lemma 1.1 we have $\Gamma(16) \leq N$. Consider the element

$$[X^{-1},T(1)] = \begin{bmatrix} * & * \\ uc^2 & * \end{bmatrix} \in N \cap \Gamma,$$

where $u \in U(A)$. Again as in proof of Lemma 3.1 the group $N \cap \Gamma/\Gamma(16)$ maps onto a normal subgroup of $SL_2(B)$, contained in Ker $(SL_2(B) \rightarrow SL_2(B/(2)))$, which contains an element of the form $\begin{bmatrix} * & * \\ 4v & * \end{bmatrix}$, where $B = \mathbb{Z}/(16)$ and $v \in U(B)$. By [4] Proposition 1 we deduce that $\Gamma(8) \leq N$.

For each $u \in U(A)$ we have $u \equiv \pm 1 \pmod{4}$ and it is readily verified that $[H(4), H(2)] \leq \Gamma(8) \leq N$. It is sufficient therefore to prove that

$$[D(-1,1),X] \in N$$
, for each $X \in N$.

Let $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in N$. It is easily verified that

$$[D(-1,1),X] \equiv \begin{bmatrix} 1 & 2b \\ 2c & 1 \end{bmatrix} \pmod{8},$$
$$[T(1),X] \equiv \begin{bmatrix} * & * \\ -c^2 & * \end{bmatrix} \pmod{8},$$

and

$$[Y,X] \equiv \begin{bmatrix} \delta + c^2 & * \\ * & \delta + b^2 \end{bmatrix} \pmod{8},$$

where $Y = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and $\delta = ad - bc = \det X$. As above $N \cap \Gamma/\Gamma(8)$ maps onto a normal subgroup \overline{N} , say, of $SL_2(C)$, where $C = \mathbb{Z}/(8)$. By considering the image of $[Y,X] \in N \cap \Gamma$ it is clear that $b^2 \equiv c^2 \pmod{8}$. (See [4] Proposition 1).

to $\begin{bmatrix} 5 & * \\ 0 & -3 \end{bmatrix}$ or $\begin{bmatrix} -3 & * \\ 0 & 5 \end{bmatrix}$

If $b \equiv c \equiv 0 \pmod{4}$, then $[D(-1, 1), X] \equiv I \pmod{8}$ and so $[D(-1, 1), X] \in N$, since $\Gamma(8) \leq N$.

Suppose now that $b \equiv c \equiv 2 \pmod{4}$. Then $[T(1), X] \in N \cap \Gamma$ and

$$[T(1), X] \equiv \begin{bmatrix} * & * \\ 4 & * \end{bmatrix} \pmod{8}.$$

By [4] Proposition 1 any normal subgroup of $SL_2(C)$ containing an element of the form $\begin{bmatrix} * & * \\ 4 & * \end{bmatrix}$ also contains $\begin{bmatrix} 1 & 4 \\ 4 & 1 \end{bmatrix}$. But $[D(-1, 1), X] \equiv \begin{bmatrix} 1 & 4 \\ 4 & 1 \end{bmatrix}$ (mod 8). Hence $[D(-1, 1), X] \in N$ \Box .

Let

$$X = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$

and let

$$N = \left\{ Y \in \Gamma : Y \equiv \pm I, \ \pm \begin{bmatrix} 5 & 4 \\ 0 & 5 \end{bmatrix}, \ \pm \begin{bmatrix} 5 & 0 \\ 4 & 5 \end{bmatrix}, \ \pm \begin{bmatrix} 1 & 4 \\ 4 & 1 \end{bmatrix} \pmod{8} \right\}.$$

Then, by [4] Proposition 1, $N \triangleleft G$. Let $N_0 = \langle X, N \rangle$. Then it can be shown that N_0 is a normal subgroup of *G* of order 2 containing $\Gamma(8)$ but not $\Gamma(4)$. This example shows that Theorem 1.3, Corollary 1.4 and Theorem 2.1 do not hold when N(m) = 2.

THEOREM 3.3. (i) Γ' has order A. Further Γ/Γ' is cyclic of order 4, generated by the image of T(1).

(ii) Let N be a subgroup of G of order A which is normalized by Γ . Then $N \ge \Gamma'$.

PROOF. (i) Γ' has order A since, for example $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \in SL_2(\mathbb{Z})'$, by [9] Theorem 1.3.1, p. 16. We now apply Lemma 1.1 to this element (with u = 3) and conclude that $\Gamma(16) \leq \Gamma'$.

Now $\Gamma'/\Gamma(16) \cong SL_2(\mathbb{Z})' \cdot \overline{\Gamma}(16)/\overline{\Gamma}(16)$, where $\overline{\Gamma}(16) = \text{Ker}(SL_2(\mathbb{Z}) \rightarrow SL_2(\mathbb{Z}/(16)))$. The subgroup $\overline{\Gamma}(16) \cdot SL_2(\mathbb{Z})'$ is a subgroup of $SL_2(\mathbb{Z})$ which Rankin denotes by Γ^4 , and it is known that $SL_2(\mathbb{Z})/\Gamma^4$ is cyclic of order 4, "generated" by T(1), [9] Theorem 1.3.1, p. 16 (The subgroup of $SL_2(\mathbb{Z}/(4))$ corresponding to Γ^4 is not listed by McQuillan [4] Proposition 1. See also [6], §5).

(*ii*) As above there exists $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in N$ with $c \in U(A)$ and so $\Gamma(16) \leq N$ by Lemma 1.1 (put u = 3). Then $N \cap \Gamma/\Gamma(16)$ is isomorphic to a normal subgroup \overline{N} of $SL_2(\mathbb{Z}/(16))$ containing the image of $[T(1), X] = \begin{bmatrix} a & b \\ -c^2 & e \end{bmatrix}$.

By [6] §5 it follows that \overline{N} must contain the image of the subgroup $\Gamma^4/\overline{\Gamma}(16)$. Hence by (*i*) we have $\Gamma' \leq N \cap \Gamma$.

By Theorem 3.3 each element of *G* is congruent to an element $\begin{bmatrix} u & x \\ 0 & 1 \end{bmatrix}$ of *G* (mod Γ'), where $u \in U(A)$ and $x = 0, \pm 1, 2$.

THEOREM 3.4. Let

$$N = \left\langle \begin{bmatrix} u & x \\ 0 & 1 \end{bmatrix}, \, \Gamma' \right\rangle$$

174

where

$$u \in U(A), u \equiv 1 \pmod{4}, u \neq 1 \text{ and } x = \pm 1.$$

Then N is an almost-normal subgroup of G (of order A).

PROOF. It is easily verified that Γ normalizes *N*. We now prove that $N \cap \Gamma = \Gamma'$. Let $T(y) \in N \cap T$. Then by definition either $T(y) \in \Gamma'$ or there exists $n \neq 0$ such that

$$\begin{bmatrix} u & x \\ 0 & 1 \end{bmatrix}^n \equiv T(y) \pmod{\Gamma'}.$$

Now comparing determinants $u^n = 1$ and since $A = \mathbb{Z}_2 \subseteq \mathbb{R}$, we conclude that u = 1. But $u \neq 1$.

If $N \triangleleft G$, then $[D(-1, 1), E] = T(2xu^{-1}) \in N$, where $E = \begin{bmatrix} u & x \\ 0 & 1 \end{bmatrix}$. But $N \cap \Gamma = \Gamma'$. Hence N is not normal in $G \square$

The subgroup N of Theorem 3.4 has order A and contains $\Gamma(2^n)$ if and only if $n \ge 2$. This demonstrates the necessity of the hypothesis N(m) > 2 in [2] Theorem 2.1.1.

4. The case N(m) = 3. Lacroix [2] Theorems 2.1.6, 2.3.7, has shown that when N(m) = 3 every Γ -normalized subgroup N of G of order q contains $\Gamma(q)$, except when $N \cap \Gamma = \Gamma'$. (Γ' has order A and contains $\Gamma(q)$ if and only if $q \leq m$). It follows that if $N \cap \Gamma \neq \Gamma'$ then $N \triangleleft G$.

As in the previous section it can be shown from the structure of $SL_2(\mathbb{Z})'$ that Γ/Γ' is cyclic of order 3, "generated" by T(1). (See [9] Theorem 1.3.1, p. 16.) The following theorem is proved in an identical way to Theorem 3.4.

THEOREM 4.1. Let

$$N = \left\langle \begin{bmatrix} u & x \\ 0 & 1 \end{bmatrix}, \, \Gamma' \right\rangle,$$

where $x = \pm 1$, $u \in U(A)$, $u \equiv 1 \pmod{m}$. If either u has infinite order or u has finite order divisible by 3, then N is an almost-normal subgroup of G (of order A).

References

1. W. Klingenberg, Lineare Gruppen über lokalen Ringen, Amer. J. Math. 83 (1961), pp. 137-153.

2. N. H. J. Lacroix, *Two-dimensional linear groups over local rings*, Canad. J. Math. **21** (1969), pp. 106–135.

3. N. H. J. Lacroix and C. Levesque, Sur les sous-groupes normaux de SL_2 sur un anneau local, Canad. Math. Bull. **26**(2) (1983), pp. 209–219.

4. D. L. McQuillan, *Classification of normal congruence subgroups of the modular group*, Amer. J. Math. **87** (1965), pp. 285–296.

5. A. W. Mason, On subgroups of GL(n, A) which are generated by commutators II, J. Reine Angew. Math. **322** (1981), pp. 118–135.

6. A. W. Mason, Anomalous normal subgroups of the modular group, Comm. Algebra 11 (1983), pp. 2555-2573.

7. A. W. Mason, On non-normal subgroups of GL(n, A) which are normalized by elementary matrices, Illinois J. Math **28** (1984), pp. 125–138.

8. A. W. Mason and W. W. Stothers, On subgroups of GL(n, A) which are generated by commutators, Invent. math. 23 (1974), pp. 327-346.

9. R. A. Rankin, Modular forms and functions, Cambridge University Press, Cambridge, 1977.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY GLASGOW, G12 8QW

176