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ON GL. OF A LOCAL RING IN WHICH 2 IS NOT A UNIT

BY
A. W. MASON

ABSTRACT. Let A be a local ring with maximal ideal 7, let N(72) be
the order of the residue field A/ 72 and let N be a subgroup of GL, (A ) which
is normalized by SL,(A). It follows from results of Klingenberg that N is
normal in GL,(A) whenn = 3 or (% € A and N(22) > 3). Results of
Lacroix show that this is also true when n = 2 and N(»2) = 3, provided
that N N SL,(A) F SL.(A)'.

The principal aim of this paper is to provide examples of non-normal
subgroups of GL.(A) which are normalized by SL,(A). In the process we
extend results of Lacroix and Levesque on SL,(A)-normalized subgroups
of GL,(A), where 2 € 22 and N(mz) > 2.

Introduction. Let A be a (commutative) local ring with maximal ideal 72 and let
N(#72) be the order of the residue field A/»z. After Klingenberg [1] we define the order
of a subgroup S of GL,(A) to be the smallest ideal ¢ such that S < H,(¢), where H,(¢)
is the set of all matrices in GL,(A) which are scalar (mod ¢ ).

Let N be a subgroup of GL,(A) of order ¢ which is normalized by SL,(A).
Klingenberg [1] Satz 3 has proved that, if n = 3 or (3 € A and N(72) > 3), then
SL,(¢) < N, where SL,(¢) = Ker (SL,(A) — SL,,(A/(/)). Lacroix [2] Theorem
2.1.6 has shown that this is also true when n = 2 and N(72) = 3, provided that
N N SL,(A) ¥ SLy(A)".

Since the commutator subgroup [GL,(A), H,(¢)] is contained in SL, (¢ ) it follows
that, if n = 3 or 2 ¢ 2, then every subgroup N of GL,(A) which is normalized by
SL,(A) is normal in GL,(A), with the (possible) exception of the case n = 2, N(#72)
=3and N N SL,(A) = SL,(A)". The obvious question arises as to whether or not there
exist non-normal subgroups of GL,(A) which are normalized by SL,(A), when 2 € 72
or N(72) = 3. The principal aim of this paper is to provide examples of such sub-
groups. We call subgroups of this type almost-normal.

Throughout the first half of the paper we assume that 2 € 72 and that N(722) > 2.
We prove first that under these hypotheses a subgroup of GL,(A) of order ¢, which is
normalized by SL,(A), contains SL,(¢*), where ¢* is the ideal in A generated by 2q,
q* (q € ¢). This extends an earlier result of Lacroix and Levesque [3] Théoréme 5.1.
(See also [3] Lemme 3.5). We also obtain a lower bound for the normalizer in GL,(A)
of such a subgroup. Applying these results to the case where 7z is principal we obtain
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many examples of almost-normal subgroups of GL,(A), some of which have “minimal”
normalizer in GL,(A).

In order to demonstrate the necessity of the hypothesis N(#2) > 2 in the above
results we next consider the case where A = Z,, the localization of the ring of rational
integers Z at 2. (The case N(#72) = 2 is in general very complicated [2].) We prove
that in this case there are SL,(A)-normalized subgroups of GL(A) of order ¢ which do
not contain SL,(¢*) and that nearly every SL,(A)-normalized subgroup of GL,(A) is
normal in GL,(A). Finally we provide examples of almost-normal subgroups of
GL,(A), where N(»2) = 3.

For a given ring R the existence of almost-normal subgroups of GL,(R) (ie. non-
normal subgroups normalized by SL,(R)) depends upon n. (See [7].) For example it
is known [5] Corollary 3.3, [6] that almost-normal subgroups of GL,(Z) exist if and
only if n = 2. In addition it is known [5] Corollary 5.6 that, when n = 3, almost-normal
subgroups of GL,(Zi]) exist if and only if n is even, where i* = —1.

Throughout we put G = GL,(A),I' = SL,(A), I'(¢) = SLa(¢) and H(g ) = Ha(q).
(By definition I' = I'(A) and G = H(A).) We denote the set of units in A by U(A).
For each a € A and u,v € U(A) we put

T(a) = [(1) ‘l'] and D(u,v) = [g ?]

Finally, if H, K are subgroups of G then [H, K] is the subgroup generated by all the
commutators [k, k] = h ™'k 'hk, where h € H and k € K.

1. The case of 2 € 222, N(7zz) > 2. Throughout this section (and the next) we
assume that 2 € 72 and that N(»z) > 2. The latter hypothesis ensures the existence
of units u, v in A such that u> + v = 1.

Let S be a subgroup of G and let a € A. We write

a~S§

ifI'(¢) < S, where ¢ = (a), or, equivalent, if T(ta) € S, forallt € A. (See [2] Lemma
1.3.4) It is obvious that if a,b ~ S then ax + by ~ §, for all x,y € A.

The proof of our first lemma is a simplified version of an earlier proof of Klingenberg
[1] p. 148. This proof (unlike the other proofs in this section) does not require the
hypothesis N(7z2) > 2.

LEMMA 1.1. Let N be a subgroup of G which is normalized by T and let [* ') € N.
Then, for all u € U(A) such that 4> = 1 (mod ¢), we have

ut—1~N.
PROOF. Let
X = [“ b],szad— be (€ U(A)) and Y = {” ! ]
c d 0 u'
where ¥ € U(A), u> = 1 (mod ¢) and 1 € A. Then
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[Y.X] = 8" [0‘ B} E N,
vy 9

where o = (u”'d + ct)(ua + tc) — u'c(bu™" + at), y = ac — ulac — utc?, § =
ad — u*be — utced.

Now choose t € A such that @ — u’a — utc = 0. Then, for this choice of ¢, y = 0
and (o — 8) = (u* — 1). The result follows from [3] Lemme 3.3 (ii) []

LEMMA 1.2. Let N be a subgroup of G which is normalized by T and let [ )] € N,
where ¢ € . Then 2¢*,¢* ~ N implies 2¢,¢*> ~ N.

PROOF. Suppose that I'(¢) < N, where ¢ = (2¢) + (¢*). Let
X = [a b] and 8 = ad — bc.
¢ d

Then

f

h]ENﬂF,

Z=X"T() = [;

where ¢ = 1 + acd ' and g = ¢’3'. We note that 2g,¢° € ¢.
Now let
R =[Z" T,

where t € A. Then

Il

R=D(r,nNT(r's) (mod ¢),

where r = 1 + teg and s = (1 — ) + t’eg. We put

g = [r(l +q) q]’
-q r.
whereg=1—-r*€ ¢g. Then S €' N H(¢)and SR = T(s) (mod ¢ ). It follows that
T(s) € N‘-H(g).
We now conjugate Z by D(u,u"') and repeat the argument. We conclude that

T(t(1 — e))T(r'u’eg) E N*H(g),

forallu € U(A) and r € A.

Now there exists v € U(A) such that v — | € U(A). Consider the above with ¢, e, g
fixed and u = v,v — 1. Using the fact that 2g € ¢ it follows that e* — | ~ N-H(¢q).

Now a € U(A) since ¢ € »2 and so 2¢ + ac’d™' ~ N-H(g). Conjugate X by
D(w,w™"), where w,w? — | € U(A) and repeat the argument. Then 2¢ + ac’w?d™!
~ N+H(g). It follows that 2¢,¢* ~ N-H(q).

Thus I'(¢y) < N-H(g), where ¢y = (2¢) + (¢?). Now by [2] Proposition 1.3.6 we
have [I',T'(¢y)] = I'(¢y) and I'(¢) = [I',H(¢)]. Hence

I'(go) < ITHIT NI <N [
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Lacroix [2] Theorem 2.1.1 has proved that if N is a subgroup of G of order A which
is normalized by I" then I' < N. We now come to the principal theorem of this section
which extends this result.

THEOREM 1.3. Let N be a subgroup of G of order ¢ which is normalized by I" and
let ¢* be the ideal in A generated by 2q, g, where g € ¢. Then

I'(g*) <N.
PROOF. Let X = [* ] € N. By considering conjugates of X by [} \]and [| 4] it is
sufficient to prove that 2¢,¢* ~ N.
If ¢ GE m then ¢ = A and the result follows from [2] Theorem 2.1.1. We may

assume therefore that ¢ € »2. Now the (2, I)-entry of [X ', T(1)] € N is ¢*d',
where & = ad — bc € U(A). By Lemma 1.2 therefore it is sufficient to prove that
2¢*, ¢ ~ N.

By Lemma 1.1 it follows that, for all x,y € A,

(I +xe) = (1 +ye)=(x—y)2+ x+yecl2+2(x+ y)
+ (x> + y)Hc'l ~ N.

Conjugating X by D(w,w™") we can replace ¢ at any stage by w’c, where w € U(A).
Now put x = u, y = v, where u,v € U(A)andu + v =1. Thenu — v =1 —
2v € U(A) and so

c[2 + ¢][2 + 2¢ + (1 — 2uv)c?] ~ N.
But ¢(2 + ¢)(2 + 2¢ + ¢ ~ N (putx = |, y = 0 in the above) and so
2¢*2 + ¢) ~ N.

Replacing ¢ by u’c, where u,u’> — 1 € U(A), we conclude that 2¢* ~ N.
Now by the above (with x = 1, y = 0) it follows that ¢* + 4¢* + 6¢% + 4¢ ~ N.
Hence ¢® + 4¢” + 6¢° + 4> ~Nandsoc* ~N [J

COROLLARY 1.4. Let N be a subgroup of G of order ¢ which is normalized by I and
let ¢ be principal. Then

I'Qg + g% <N.

ProOOF. Immediate from Theorem 1.3 [

COROLLARY 1.4 also follows from results of Lacroix [2] and Lemma 1.2.3 and
Lacroix, Levesque [3], and Lemme 3.5, Théoréme 5.1.

We show in the next section that Theorem 1.3 and Corollary 1.4 are best possible
in the sense that there are subgroups of N of G of order ¢, normalized by I', which
contain I'(7) if and only if » < ¢*.

We now provide a lower bound for the normalizer in G of a I'-normalized subgroup
of G which we will show in the next section to be best possible.
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THEOREM 1.5. Let N be a subgroup of G of orger ¢ which is normalized by I' and
let

g0 =1{a € Arag < ¢*},
where g* is defined as above. Let M be the normalizer of N in G. Then

F'UO = M,
where

Up = {D(u, 1):u = v’(mod ¢,), for some v € U(A)}.

PrOOF. Clearly I' < M and D(w?, 1) = D(w,w)D(w,w ") EM, forall w € U(A).
Now let X = [¢ ] € Nand letu = v* + gy, where u, v € U(A) and g, € ¢,. Using
the fact that bq,, cqy € ¢* it is easily verified that

D(u, DXD(u™', 1) = D(v,v " H)XD(v"',v)(mod ¢*).
By Theorem 1.3 we have I'(¢*) < N and so D(u, 1) €M [J.
The definition of an ideal similar to ¢, can be found in [3] p. 213.

2. The case 72z = (0). Our principal aim in this section is to provide many examples
of almost-normal subgroups of G. In the process we prove that Theorems 1.3, 1.5, 2.1
and Corollary 1.4 are best possible.

We assume throughout that 2 € 72, N(#22) > 2, »2 = (0), for some 6 € A, and that
N, 772" = {0}. Each non-zero ideal ¢ is therefore a power of 72. If ¢ = 772" we write
x = ord ¢ and we write ord a, where a € A, as shorthand for ord ((a)). If 72" = {0}
and 72" ~' F {0}, for some integer y > 1, we write ord 0 = y.

Let ¢, ¢, be ideals in A such that ¢* = 2¢ + ¢* < ¢, < ¢ < m. By [8] Theorem
4.1 the group I'(¢)/T'(¢)) is an elementary 2-abelian group in which each element is

uniquely represented by a matrix [' ¢ 71, where a, b, ¢ € ¢/¢:. The map
l1+a b ]
[ ¢ 1 +a = (@b,0)

is an isomorphism from I'(¢)/T'(¢,) onto the additive group B, where B = ¢/¢,.
Further I'(¢)/T'(¢)) is generated by the images of [-conjugates of T(q), where
q€q.

In particular I'(¢)/I"(¢722) is generated by the images of I'-conjugates of T(u6"),
where i = ord ¢ and u belongs to a complete set of coset representatives of A(mod 772).

Our first results show that sharper versions of Corollary 1.4 and Theorem 1.5 hold
when A/7 is perfect. (We recall that a field F of characteristic 2 is perfect if each
element of F is a square. If F is finite for example then F is perfect.)

THEOREM 2.1. Let A/ be perfect and let N be a subgroup of G of order ¢ which
is normalized by U'. If ord ¢* — ord ¢ is odd then I'(») < N, where mr = g*.

PROOF. Since ¢ < 72, by [2] Lemma 1.2.3 and [3] Théoréme 5.1 there exists
u € U(A) such that T(u8') € N, where i = ord ¢.
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Let ord ¢* —ord ¢ = 2k + 1 and let

[+ eh kFO,
W_{ 1, k=0

Then w € U(A). Conjugating T(u6') by D(w, w™") it follows that T(w’u6’) € N. Now
I'(¢*) = N by Corollary 1.4 and

T(w?u0) = T(udHT(ud>* ') (mod ¢*)

Hence T(u0**") € N.

Since A/ is perfect, u = v? (mod 8), for some v € U(A). We note that
ord 7 = 2k + i and that ord ¢* — ord » = 1. It follows that T(v’6>**') € N, that
T®**"y € N and hence that T(x?0%**"), for all u € U(A).

From the above discussion and the hypotheses satisfied by A/»z it is clear that
['(7)/T'(¢*) is generated by the images of the I'-conjugates of T(u’6>* "'
u € U(A). Wededuce that T'(») = N [

), where

COROLLARY 2.2. If A/ 2 is perfect and 1 = (2), then every I'-normalized subgroup
of G is normal in G.

PROOF. Let N be a I'-normalized subgroup of G of order ¢. If ¢ = Athen ' < N
by [2] Theorem 2.1.1, in which case [G,N] = N.

We assume then that ¢ < 722. In this case ¢* = 722¢ and so ord ¢* — ord ¢ = 1.
By Theorem 2.1 therefore we have I'(¢) = N. It follows that

[G.N] =[G, H(¢))=T(¢)=N []

Corollary 2.2 can be deduced directly from results of Lacroix and Levesque [3]
Remarque 4.5.

Another consequence of Theorem 2.1 is that when A/»z is perfect every
['-normalized of G of order #2 is normal in G.

THEOREM 2.3. Let A/ be perfect and let N be a subgroup of G of order ¢ which
is normalized by T'. Let

g1 =1{a € Aragme = ¢*}

and let M be the normalizer of N in G.
Iford ¢* — ord ¢ is odd then

r-u,=sm,
where
U, = {D(u, 1):u = v’ (mod ¢,), for some v € U(A)}.

PROOF. The proof is almost identical to that of Theorem !.5 and makes usc of
Theorem 2.1 []
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By [2] Theorem 2.1.1 every I'-normalized subgroup of G of order A is normal in G.
Let ¢ be an ideal contained in 7z and let x = ord ¢ and y = ord ¢*. We define an
ideal ¢ by

_ y o, y — x even
a7=1
ot g y—1, y — x odd.

Then ¢ = ¢*, wheny — xiseven, and ¢722 = ¢*, when y — x is odd. For the structure
of I'(¢)/T'(g) we now refer to the discussion at the beginning of this section.

Let A = {k’0" + ¢ :k € A} and define a subgroup N(A) of I'(¢) containing I'(7)
by

b

vayrag ={|'

N(A) is well-defined since A is closed under addition.

THEOREM 2.4. With the above notation,

(a) N(A) is a subgroup of G of order ¢ normalized by T,
(L)T'(p)<NQ@)ifandonly if p < ¢,

(¢c)NA) ]G ifandonly if g = ¢q.

PROOF. Part (a) is easily verified.
For part (b) suppose that ['(#) < N(A) and that » € . Then F'ip + ¢g) =
['(p)-T(g) is contained in N(A) and p + 7 ¥ 7.
Let z = ord ¢. Then T(6°~ " € N(A) and so by definition there exists k € A such
that
k*0* = 6°"' (mod ¢),

where (as above) x = ord ¢. It follows that z — x is odd. But by definition z — x is

even.
Part (¢) follows from parts (a), (b) and [2] Theorem 2.3.7 [J

Theorem 2.4 (which does not require A/ 72 to be perfect) shows that Theorems 1.3,
2.1 and Corollary 1.4 are best possible.

Consider for example the case where 77z is not nilpotent, with 72 4: (2), and ¢ is
a non-zero ideal distinct from A and 7z. Theorem 2.4 shows that there exists an
almost-normal subgroup of G of order ¢.

The final result in this section shows that Theorems 1.5 and 2.3 are best possible.

THEOREM 2.5. Let A/ be perfect, let ¢ be a non-zero ideal contained in 72 and
let ¢ and N(A) be defined as above. Let

g»=1{a € Aiag < g}.
Then the normalizer, M(A), of N(A) in G is given by
M) =T-U,,
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where
U, = {D(u, 1):u = v’ (mod ¢,), for some v € U(A)}.

PrOOF. By Theorems 1.5 & 2.3 we have I'*U, < M(A). We may assume that

7fq
Now let D(u, 1) € M(A). Since A/ is perfect it follows that

u=t,+ 6,0 + 6502+ ... (mod @),

where 1) € U(A), t; = 0, wheni = ord ¢, and t;, = 0O ort;, € U(A), when | =i <
ord ¢».

Let w = t(z) + t%G2 +...(only even powers of 6). Then w € U(A) and, since
2 € 42,

w=(t, + 1,0 +...)" (mod ¢,).
Hence D(w, 1) € U, and so D(uy, 1) € M(A), where ug = w™'u.
Suppose now that uy + 1. Then uy = 1 + v6*, for some odd k and for some v €
U(A), where k < ord ¢,. Now

D(uo, DT(0)D(uy ', NT(=6") = T(v0'**) € N(A),

where x = ord ¢. By definition therefore there exists a € A such that ord (a*0") =
x + k. But kis odd. Hence uy = 1, u = wand soMA) <T'-U, [

3. The case A = Z,. Our aim in this section is to demonstrate the necessity of the
hypothesis N(7z) > 2 in the two previous sections. (We recall that Lemma 1.1 does
not require this hypothesis). The case N(7z) = 2 appears in general to be very
complicated. (See [2].) Accordingly we confine ourselves in this section to the case
where A = 7Z,, the localization of Z at 2.

We prove that (in contrast with Theorem 2.4) nearly every I'-normalized subgroup
of G is normal in G. However there are almost-normal subgroups of G of order A (c.f.
Corollary 2.2). Moreover these subgroups show that Theorem 1.3, Corollary 1.4,
together with [2] Theorem 2.1.1 do not hold when N(72z) = 2.

In this case we have 7z = (2). We define (as before) ord 72* = x and we write 2*
for 772", where x = 0.

LEMMA 3.1. Let N be a subgroup of G of order 2" which is normalized by I', where
n > 1. Then

I“(2n+ l) < N.

PROOF. There exists X = [ Z] € N, where ord (a — d), ord b or ord ¢ is equal
to n. Conjugating if necessary by [} 7] or [] ~§] we may assume that ord ¢ = n.

Suppose now that n = 3 and let u = 1 + 2"'. Then u € U(A) and u’ = 1
(mod ¢). By Lemma 1.1 therefore u* — 1 ~ N, from which it follows that
ret' <nN.

Suppose that n = 2. Then 3> = | (mod ¢) and so by Lemma 1.1 we have ['(16) <
N. 1t is readily verified that
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Y = [T(1),X] = [5 *] or [‘3 *] (mod 16)
o lo -3 0 5 ’
Now Z,/(16) = Z/(16) and by [2] Lemma 1.3.4 the group SL,(B) is generated by
elementary matrices, where B = Z/(16). It follows that

[/I(16) = SL,(B).

McQuillan [4] Proposition 1 has listed all the normal subgroups of SL,(B), which
are contained in Ker (SL,(B) — SL,(B/(2))). From the above N N I'/I"(16) maps onto
one such subgroup N, say, which contains an element congruent to [; _;] or [ 5]
(mod 16). From McQuillan’s list it is clear that N contains Ker (SL,(B)— SL.(B/(8)))
and hence that T®) <= N N T [

THEOREM 3.2. Let N be a subgroup of G of order 2" which is normalized by I', where
n > 0. Then N is normal in G.

PROOF. Whenn =2 wehave I'(2"'') < N,by Lemma3.1. Let X E Nand u € U(A).
Then X is scalar (mod 2") and # = 1| (mod 2). It is readily verified that [D(u, 1), X]
=/ (mod 2"*"). Hence [G,N] < N and so N < G.

We assume from now on that n = 1. As in the proof of Lemma 3.1 there exists
X=[ Z] € N N H(2), where ord ¢ = 1. Now 3> = | (mod ¢) and so by Lemma 1.1
we have I'(16) < N. Consider the element

xlraor=| ", S|ennr.

where u € U(A). Again as in proof of Lemma 3.1 the group N N I'/I'(16) maps onto
a normal subgroup of SL,(B), contained in Ker (SL,(B) — SL,(B/(2))), which con-
tains an element of the form [,, .|, where B = Z/(16) and v € U(B). By [4]
Proposition 1 we deduce that I'(8) < N.

For each u € U(A) we have u = =1 (mod 4) and it is readily verified that
[H(4),H(2)] =< I'(8) < N. It is sufficient therefore to prove that

[D(—1,1),X] €N, foreachX € N.

Let X = [“ "] € N. It is easily verified that
1 2b

DX =], ]

} (mod 8),

Mo« *
ro.xi=| L ] meas),

and

[+
XI=1 w0 54 p

] (mod 8),
where Y = [(,) '(')] and 8 = ad — bc = det X. As above N N I'/T'(8) maps onto a normal

subgroup N, say, of SL,(C), where C = Z/(8). By considering the image of
[Y,X] € N N T itis clear that b* = ¢* (mod 8). (See [4] Proposition 1).
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If b=c¢=0(mod4), then [D(—1,1),X]=1(mod 8) and so [D(—1,1),X] EN,
since I'(8) < N.
Suppose now that b = ¢ = 2 (mod 4). Then [T(1),X] € N N I and

*

4

*

X1 = || (mod s),

By [4] Proposition | any normal subgroup of SL,(C) containing an element of
the form [4 ::] also contains Il Tl. But [D(—1,1),X] = [)1 T] (mod 8). Hence
[D(—=1,D),X1eN [

Let
1 2]
X= [2 -1

and let
. 5 4] [5 0} [l 4] }
= . = + + -+ -+
N {YEI.Y AI‘_[O s Fla sl Fla I7(m0d8).
Then, by [4] Proposition 1, N I G. Let N, = (X, N). Then it can be shown that N, is

a normal subgroup of G of order 2 containing ['(8) but not I'(4). This example shows
that Theorem 1.3, Corollary 1.4 and Theorem 2.1 do not hold when N(»2) = 2.

THEOREM 3.3. (i) I’ has order A. Further U/ is cyclic of order 4, generated by
the image of T(1).
(it) Let N be a subgroup of G of order A which is normalized by I'. Then N = T"'.

PrOOF. (i) I'" has order A since, for example [f 1 € SL.(2)', by [9] Theorem 1.3.1,
p. 16. We now apply Lemma I.1 to this element (with ¥ = 3) and conclude that
I'e) < 1.

Now I7/I'(16) = SL.(Z) -T(16)/T(16), where I'(16) = Ker (SL,(Z) —
SL,(Z/(16))). The subgroup ['(16)-SL.(Z)" is a subgroup of SL,(Z) which Rankin
denotes by I'*, and it is known that SL,(Z)/T* is cyclic of order 4, “generated” by T(1),
[9] Theorem 1.3.1, p. 16 (The subgroup of SL,(Z/(4)) corresponding to I'* is not listed
by McQuillan [4] Proposition 1. See also [6], §5).

(ii) As above there exists X = [¢ f}] € N with ¢ € U(A) and so ['(16) < N by
Lemma 1.1 (put u = 3). Then N N I'/I'(16) is isomorphic to a normal subgroup N of
SL,(Z/(16)) containing the image of [T(1),X]| = [ _.» .].

By [6] §5 it follows that N must contain the image of the subgroup I”/f‘( 16). Hence
by (i) wehave ' s NN T. [

By Theorem 3.3 each element of G is congruent to an element [ )] of G (mod I'"),
where u € U(A) and x = 0, = 1, 2.

v =[5

THEOREM 3.4. Let
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where
u€ UA),u=1(mod4),u =}t 1 and x = *=1.
Then N is an almost-normal subgroup of G (of order A).

PROOF. It is easily verified that I normalizes N. We now prove that N N I" = I".
Let T(y) € N N T. Then by definition either T(y) € I"' or there exists n # 0 such that

u X n _ ,
[0 1] = T(y) (mod I').
Now comparing determinants 4" = | and since A = Z, C R, we conclude that u = 1.
Butu # 1.

IfN <G, then[D(—1,1),E]=TQxu"Y EN, where E=[; |]. BuuNNT =1".
Hence N is not normal in G [

The subgroup N of Theorem 3.4 has order A and contains I'(2") if and only if
n = 2. This demonstrates the necessity of the hypothesis N(#72) > 2 in [2] Theorem
2.1.1.

4. The case N(722z) = 3. Lacroix [2] Theorems 2.1.6, 2.3.7, has shown that when
N(#2) = 3 every I'-normalized subgroup N of G of order ¢ contains I'(¢), except
when NN I'=T". (I'" has order A and contains I'(¢) if and only if ¢ < 222). It follows
that if NN T % I'" then N < G.

As in the previous section it can be shown from the structure of SL,(Z)’ that I'/T"
is cyclic of order 3, “generated” by T(1). (See [9] Theorem 1.3.1, p. 16.) The following
theorem is proved in an identical way to Theorem 3.4.

v=(lg il

wherex = *1,u € U(A), u =1 (mod 72 ). If either u has infinite order or u has finite
order divisible by 3, then N is an almost-normal subgroup of G (of order A).

THEOREM 4.1. Let
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