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Actions of Semitopological Groups

Jan van Mill and Vesko M. Valov

Abstract. We investigate continuous transitive actions of semitopological groups on spaces, as well
as separately continuous transitive actions of topological groups.

1 Introduction

All spaces under discussion are Tychonoò.
Continuous actions of semitopological groups are considered in this paper. Recall

that a group G with a topology on the set G that makes the multiplication G ×G → G
separately continuous is called semitopological. A semitopological group G is ω-nar-
row [11] if for every neighborhoodU of the neutral element e inG there is a countable
set A ⊂ G with UA = AU = G.

If not stated otherwise, we consider le� actions θ∶G × X → X, where G is a semi-
topological group and X is a space. We denote θ(g , x) by gx for all g ∈ G and x ∈ X.
If θ is continuous (resp., separately continuous), we say that the action is continu-
ous (resp., separately continuous). For any such action, we consider the translations
θ g ∶X → X and the maps θx ∶G → X deûned by θ g(x) = gx and θx(g) = gx. _ese
two types of maps are continuous when θ is separately continuous. We also say that
θ acts transitively on X if all θx , x ∈ X, are surjective maps. If the action θ can be
extended to a continuous action θ̃∶G × X̃ → X̃, where X̃ is a compactiûcation of X,
then X̃ is called an equivariant compactiûcation of X, or simply aG-compactiûcation.

_e paper is motivated by the celebrated theorem of Uspenskij [13, 14] that a com-
pactum X is a Dugundji space provided X admits a continuous transitive action
of an ω-narrow topological group. _ere is a growing interest recently in study-
ing paratopological, quasitopological, or semitopological groups versus topological
groups; see [2,3, 11]. In that spirit, we provide a generalization of Uspenskij’s theorem
in two directions. We consider spaces that are not necessarily compact and actions
not necessarily by topological groups. It is not clear to us whether our conditions are
all essential, but we will show that some are; see Example 2.6. A space is k-separable if
it contains a dense σ-compact set. Our main result, obtained by following Uspenskij’s
method of proof described in [3], is the following theorem.
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_eorem 1.1 Let X admit a continuous transitive action of an ω-narrow semitopo-
logical group G such that X has a G-compactiûcation. _en
(i) X is skeletally Dugundji provided it contains a dense Čech-complete k-separable

subspace;
(ii) X is openly Dugundji if X is Čech-complete and σ-compact.

Recall that a continuous map f ∶X → Y is skeletal [9] if Int f (U) /= ∅ for every
open U ⊂ X, where f (U) denotes the closure of f (U) in Y . Skeletally Dugundji
spaces were introduced in [7]. In a similar way we deûne openly Dugundji spaces:
A space X is skeletally (resp. openly) Dugundji if there exists a well ordered inverse
system S = {Xα , pβα , α < β < τ} with surjective skeletal (resp., open) bonding maps,
where τ is a cardinal, satisfying the following conditions (we identify the cardinal τ
with the initial ordinal of cardinality τ):
(i) X0 is a separable metrizable space and all maps pα+1

α have metrizable kernels
(i.e., there exists a separable metrizable space Mα such that Xα+1 is embedded
in Xα × Mα and pα+1

α coincides with the restriction π∣Xα+1 of the projection
π∶Xα ×Mα → Xα);

(ii) for any limit ordinal γ < τ the space Xγ is a (dense) subset of

lim←Ð{Xα , pβα , α < β < γ};

(iii) X is embedded in lim←ÐS such that pα(X) = Xα for each α, where pα ∶ lim←ÐS → Xα
is the α-th limit projection;

(iv) for every bounded continuous real-valued function f on lim←Ð S there exists α ∈ A
and a continuous function g on Xα with f = g ○ pα .

_e inverse system S is called almost continuous if it satisûes conditions (ii), and X is
said to be the almost limit of S if condition (iii) holds, whichwe denote by X = a−lim←Ð S.
We also say that S is factorizing if it satisûes condition (iv).
Dugundji spaces were introduced by Pelczynski [10] as the compacta X such that

for every embedding of X in another compactum Y , there is a regular linear extension
operator u∶C(X) → C(Y) between the Banach spaces of all continuous functions on
X andY . It was established byHaydon [8] that a compactum X is Dugundji if and only
if X is the limit space of a well ordered inverse system satisfying the above conditions
with all pβα being open. Equivalently, X is a Dugundji space if and only if X is a com-
pact openly Dugundji space. _ere is a tight connection between skeletally Dugundji
and Dugundji spaces: X is skeletally Dugundji if and only if every compactiûcation
of X is co-absolute with a Dugundji space; see [7, _eorem 3.3].

Since any Baire space admitting a continuous and transitive action of an ω-narrow
topological group G has a G-compactiûcation (see [5, 13]), we have the following
corollary.

Corollary 1.2 Let a space X admit a continuous transitive action of an ω-narrow
topological group. _en X is skeletally Dugundji (resp., openly Dugundji) provided
it contains a dense Čech-complete k-separable subset (resp., X is Čech-complete and
σ-compact).
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Note that Corollary 1.2 implies Uspenskij’s theorem mentioned above.
It appears that continuous actions of semitopological groups on compact spaces

can be reduced to continuous actions of topological groups. _is simple observation
combined with Uspenskij’s theorem implies the following theorem.

_eorem 1.3 If an ω-narrow semitopological group G acts continuously and transi-
tively on a pseudocompact space X and G is a k-space, then βX is a Dugundji space.

We also consider separately continuous actions of semitopological or topological
groups. Every separately continuous le� action θ∶G × X → X generates a right ac-
tion Θ∶G × C(X) → C(X), deûned by Θ(g , f )(x) = f (gx); see Lemma 2.2. It is
easily seen that this action is separately continuous when C(X) carries the pointwise
convergence topology (C(X) with this topology is denoted by Cp(X)). We say that
θ is an s-action, if each orbit of Θ is a separable subset of Cp(X). For example, if G
is separable and θ is separately continuous, then θ is an s-action. According to Lem-
mas 2.2 and 2.3, this is also true if θ is continuous, X is compact, andG is an ω-narrow
semitopological group.

_e conclusion of_eorem 1.1 remains true if continuity of the action is weakened
to separate continuity, but with the additional requirement that θ be an s-action.

_eorem 1.4 Let X admit a separately continuous transitive action θ of an ω-narrow
semitopological group G such that θ is extendable to a separately continuous s-action
of G over a compactiûcation of X. _en X is skeletally Dugundji provided it contains a
dense Čech-complete k-separable subspace.

For pseudocompact spaces, we have the following analogue of Uspenskij’s result
[13, _eorem 2].

_eorem 1.5 If a pseudocompact space X admits a separately continuous transitive
s-action of an ω-narrow semitopological group, then X is skeletally Dugundji.

Concerning separately continuous actions of topological groups, we have the fol-
lowing fact.

Proposition 1.6 If a pseudocompact (resp., Čech-complete and σ-compact) space X
admits a separately continuous transitive action of an ω-narrow topological group, then
βX is Dugundji (resp., X is openly Dugundji).

_e paper is organizing as follows: the proofs of _eorems 1.1 and 1.3 are given in
Section 2; Section 3 contains the proofs of _eorems 1.4 and 1.5, and Proposition 1.6.

2 Continuous Actions

Our ûrst lemma is a version of [3, Proposition 10.3.1]. Recall that a map f ∶X → Y is
nearly open if f (U) ⊂ Int f (U) for every open U ⊂ X; see [3].
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Lemma 2.1 Let θ∶G ×X → X be a separately continuous transitive action on a Baire
space X.
(i) If G is an ω-narrow semitopological group, then all maps θx ∶G → X, x ∈ X, are

skeletal;
(ii) If, in addition to (i), G is a topological group, then θx are nearly open maps.

Proof (i) We ûrst prove that θx(U) /= ∅ for every neighborhood U of the identity
e in G. Suppose x ∈ X and U is a neighborhood of e. Since G is ω-narrow, there
is a countable set A ⊂ G with AU = G. It follows from the transitivity of θ that
the map θx is surjective. Hence, {θx(gU) = gUx ∶ g ∈ A} is a countable cover
of X, and so is {gUx ∶ g ∈ A}. Because X is a Baire space, there is g ∈ A with
Int gUx /= ∅. Consequently, IntUx /= ∅ (recall that the translation θ g ∶X → X is a
homeomorphism).

If U ⊂ G is a non-empty open set, we choose g ∈ U and a neighborhood V of e
with gV ⊂ U . _en IntVx /= ∅, so Int gVx /= ∅. Finally, since gVx ⊂ Ux, we have
IntUx /= ∅. _erefore, θx is skeletal.

(ii) _is item follows from the observation that the proof of [3, Proposition 10.3.1]
remains true for separately continuous actions of ω-narrow groups on Baire spaces.

If a semitopological group G acts on a space X, we say that a function f ∈ C∗(X)
is right-uniformly continuous if for every ε > 0, there is neighborhoodO of the neutral
element e such that for all g ∈ O and x ∈ X we have ∣ f (x) − f (gx)∣ < ε. We denote
the set of all right-uniformly continuous functions on X by C∗r ,G(X).

Lemma 2.2 Let X be a space and let θ∶G × X → X be a continuous action of a semi-
topological group G on X. _en the right action Θ∶G × C∗(X) → C∗(X), Θ(g , f ) =
f ○ θ g , is well deûned and each translation Θg ∶C∗(X) → C∗(X) is a linear isometry
on the Banach space C∗(X). Moreover, if X is compact, then C(X) = C∗r ,G(X).

Proof For every g ∈ G and f ∈ C∗(X), we haveΘ(g , f )(x) = f (gx), x ∈ X. Because
θ g ∶X → X is surjective, ∥Θ(g , f )∥ = ∥ f ∥. It is obvious that each map Θg ∶C∗(X) →
C∗(X), Θg( f ) = f ○ θ g , is linear. So all Θg are linear isometries. Moreover, for every
g , h ∈ G and f ∈ C∗(X), we have Θ(g , Θ(h, f )) = Θ(g , f ○ θh) = f ○ θh ○ θ g . Since
θh ○ θ g = θhg , Θ(g , Θ(h, f )) = f ○ θhg = Θ(hg , f ). So Θ is a right action.

Suppose X is compact. Let f ∈ C(X) and ε > 0. For every x ∈ X, choose a
neighborhoodWx of x in X such that ∣ f (x′) − f (x)∣ < ε/2 for all x′ ∈Wx . Because θ
is continuous, there exists a neighborhood Ox of e inG and a neighborhood Vx ⊂Wx
of x in X such that θ(Ox ×Vx) ⊂Wx . Let {Vx i ∶ i = 1, 2, . . . , k} be a ûnite subcover of
the cover {Vx ∶ x ∈ X}, and let O = ⋂k

i=1 Ox i . _en, for every g ∈ O and x ∈ X, there
is j ≤ k with x ∈ Vx j and gx ∈Wx j . Hence, ∣ f (gx)− f (x j)∣ < ε/2 and ∣ f (x)− f (x j)∣ <
ε/2. Consequently, ∣ f (gx) − f (x)∣ < ε, which completes the proof of the claim.

_e proof of next lemma is a slight modiûcation of the proof of [3, Lemma 10.3.2];
it is included for the sake of completeness.
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Lemma 2.3 Let θ∶G×X → X be a continuous action of an ω-narrow semitopological
group on a space X and Θ∶G × C∗(X) → C∗(X) be the action from Lemma 2.2. _en
the orbit f G = {Θ(g , f ) ∶ g ∈ G} is a separable subset of the Banach space C∗(X) for
each f ∈ C∗r ,G(X).

Proof We ûx f ∈ C∗r ,G(X). _en for every n ∈ N, there is a neighborhood Un of
e with ∥Θ(g , f ) − f ∥ < 1/n for all g ∈ Un . Because G is ω-narrow, for each n there
exists a countable set An ⊂ G such that UnAn = G. Hence, A = ⋃∞n=1 An is also
countable and it suõces to show that f A = {Θ(a, f ) ∶ a ∈ A} is dense in f G. To
this end, let g ∈ G and for each n choose gn ∈ Un and an ∈ An with g = gnan . _en
Θ(g , f ) = Θgn an( f ) = Θan(Θgn( f )). So

∥Θ(g , f ) −Θ(an , f )∥ = ∥Θg( f ) −Θan( f )∥ = ∥Θan(Θgn( f )) −Θan( f )∥.
Because Θan is an isometry, we obtain ∥Θ(g , f ) − Θ(an , f )∥ = ∥Θgn( f ) − f ∥ =
∥Θ(gn , f ) − f ∥ < 1/n. _erefore, every neighborhood of Θ(g , f ) meets Af , which is
as required.

For any compact space X let H(X) be the homeomorphism group of X with the
compact-open topology. It is well known [1] that H(X) is a topological group. We
need the following observation.

Lemma 2.4 Let X be a compact space admitting a continuous action θ∶G×X → X of
a semitopological group G. _en the homomorphism φ∶G →H(X), deûned by φ(g) =
θ g , is continuous.

Proof Let K ⊂ X be compact and let U ⊂ X be open. Consider the subbasic open
set [K ,U] = {h ∈ H(X) ∶ h(K) ⊂ U} in H(X). Take an arbitrary g ∈ φ−1([K ,U]).
_en φ(g) = θ g ∈ [K ,U], hence gK ⊂ U . Consider the open set θ−1(U) in G × X.
It contains {g} × K. So by the compactness of K, there is a neighborhood V of g in
G such that V × K ⊂ θ−1(U). Hence, g′ ∈ V implies g′K ⊂ U , which means that
V ⊂ φ−1([K ,U]).

Proof of_eorem 1.1 Suppose X contains a dense Čech-complete k-separable sub-
space D. Suppose also that θ∶G × X → X is a continuous transitive action of a semi-
topological ω-narrow group on X such that θ can be extended to a continuous action
θ̃∶G × Y → Y , where Y is a compactiûcation of X. According to Lemma 2.4, the
image φ(G) is a topological ω-narrow subgroup ofH(Y). SinceH(Y) acts continu-
ously on Y , so does φ(G). On the other hand, φ(G) acts transitively on X, becauseG
does. _erefore, we can assume that G is an ω-narrow topological group such that θ̃
is a continuous action on Y , and its restriction θ is a continuous and transitive action
on X. According to Lemma 2.2, each f ∈ C(Y) is right-uniformly continuous. As
above, θ̃(g , y) is denoted by g y for all g ∈ G and y ∈ Y . _e action θ̃ generates a
right continuous action Θ̃∶G × C(Y) → C(Y), deûned by Θ̃(g , f )(y) = f (g y) (see
Lemma 2.2).
Because D is k-separable, it contains a dense σ-compact set Z. Let Z = ⋃∞i=1 Fi and

Y∖D = ⋃∞i=1 Yi , where Fi and Yi are compact sets. Since Fi∩Yj = ∅, for each i , j there
is f i j ∈ C(Y) with f i j(Fi) ∩ f i j(Yj) = ∅. Let C0 = {Θ̃(g , f i j) ∶ g ∈ G , i , j = 1, 2, . . .}
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and C(Y)∖C0 = { fγ ∶ γ < τ}, where τ is the cardinality of C(Y)∖C0. For every car-
dinal 0 < α < τ, deûne Cα = C0 ∪ {Θ̃(g , fγ) ∶ g ∈ G , γ < α}. _en C(Y) = ⋃0≤α<τ Cα
and Y is embedded in RC(Y) by identifying each y ∈ Y with ( f (y)) f ∈C(Y). We con-
sider the natural projections pα ∶Y → RCα for α ≥ 0 and pβα ∶Yβ → Yα for β > α,
where Yβ = pβ(Y) and Yα = pα(Y). Obviously, all pα and pβα are continuous and
pα = pβα ○ pβ for β > α. Observe that pα(y) = ( f (y)) f ∈Cα for each y ∈ Y and α < τ.
Because every f ∈ C(Y) is right-uniformly continuous, we can apply Lemma 2.3 to
conclude that the orbits Γ( f ) = {Θ̃(g , f ) ∶ g ∈ G}, f ∈ C(Y), are separable subsets
of C(Y). Hence, C0 is also a separable subset of C(Y) and p0(Y) = Y0 is a metric
compactum. Let Xα = pα(X) and Zα = pα(Z) for all α ≥ 0. Because Z is dense in X,
every Zα is dense in Xα .

Claim 1 Every Xα contains a dense Čech-complete subspace, and hence it is a Baire
space.

Indeed, let L0 = Y0 ∖ ⋃∞i=1 p0(Yi) and L = p−1
0 (L0). _en L0 is Čech-complete,

and we have the inclusions Z0 ⊂ L0 ⊂ X0 and Z ⊂ L ⊂ X. Moreover, the map
p0∣L∶ L → L0 is perfect, so L is also Čech-complete. Since C0 ⊂ Cα , p−1

α (pα(L)) = L
and the map pα ∣L∶ L → Lα = pα(L) is a perfect surjection. So Lα is a dense Čech-
complete subspace of Xα .

Claim 2 Each pα ∶Y → Yα is a skeletal map.

Since Cα is Θ̃-invariant (i.e., Θ̃(G ,Cα) = Cα), there is an action θ̃α ∶G × Yα → Yα ,
deûned by θ̃α(g′ , pα(y)) = ( f (g′y)) f ∈Cα , which makes the diagram below commu-
tative.

G × Y
θ̃ÐÐÐÐ→ Y

×××Ö
id×pα

×××Ö
pα

G × Yα
θ̃αÐÐÐÐ→ Yα

Moreover, the restriction θα = θ̃α ∣G×Xα is an action on Xα such that (pα ∣X)○θ = θα .
Let show that θα is separately continuous. For this, we only need that θ̃ is separately
continuous. Indeed, ûx g ∈ G. Clearly, (θ̃α)g is continuous by commutativity of the
diagram and compactness of all spaces involved. Now, ûx yα ∈ Yα . Pick z ∈ Y such
that pα(z) = yα . _en θ̃ yα

α is equal to pα ○ θ̃z and hence is continuous, being the
composition of two continuous functions.

Note that, since θ is transitive on X, each θα acts transitively on Xα . To show that
pα is skeletal, letU ⊂ Y be open. Since X is dense in Y , we can ûx x ∈ U ∩X. _en the
maps θx ∶G → X and θ y

α ∶G → Xα are continuous and pα ○ θx = θ y
α , where y = pα(x).

446

https://doi.org/10.4153/CMB-2018-010-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-010-5


Actions of Semitopological Groups

So we have the commutative diagram

G θ x
//

θ y
α   

X

pα

��
Xα .

Since Xα is Baire space, according to Lemma 2.1(ii), θ y
α is nearly open, and

θ y
α((θx)−1(U ∩X)) = pα(U ∩X) implies pα(U ∩X) ⊂ IntXα clXα pα(U ∩X). Hence,
every pα ∣X∶X → Xα is nearly open. Because Xα is dense in Yα and U ∩ X is dense in
U , IntYα clYα pα(U) /= ∅. _us, pα is a skeletal map.

Claim 3 Each map pα+1
α has a metrizable kernel.

Let Γ( fα) be the orbit of fα and let qα ∶Y → RΓ( fα) be the projection. Since, by
Lemma 2.3, Γ( fα) is a separable subspace ofC(Y) andY is compact, the image qα(Y)
is a metric compactum. Finally, because pα+1 is the diagonal product pα △ qα , pα+1

α
has a metrizable kernel. Note that the inverse system SY = {Yα , pβα , α < β < τ} is well
ordered such that Y0 is a metric compactum, all maps pα are skeletal, and Y = lim←Ð SY .
_e system SY is continuous, because Cα = ⋃γ<α Cγ for every limit cardinal α < τ.
Moreover, it follows from our construction that SY is factorizable. So Y is a skeletally
Dugundji space. Finally, since X is dense in Y , the space X is skeletally Dugundji as
well (see [7, _eorem 3.3]).

To prove_eorem 1.1(ii), observe that if X is Čech-complete and σ-compact, then
Lα = Xα for all α and the maps pα ∣X∶X → Xα are perfect and nearly open (see the
proof of Claim 2). Because every closed nearly open map is open, we ûnally obtain
that all pα ∣X are open. _en the inverse system SX = {Xα , tβα , α < β < τ} is contin-
uous such that tβα are open and perfect maps, where tβα = pβα ∣Xβ . Moreover tα+1

α have
metrizable kernels and X0 is a Polish space. _erefore, X is openly Dugundji.

We will now show that _eorem 1.1 does not hold for spaces on which we do not
impose extra conditions. A P-space is a space in which every Gδ-subset is open.

Lemma 2.5 Every skeletally Dugundji P-space is discrete.

Proof Let X be a skeletally Dugundji P-space, and assume that x is a non-isolated
point of X. Consider βX. It consequently contains the non-isolated P-point x. As-
sume that βX is co-absolute with a Dugundji space Z. _en there is a compact space
Y which admits irreducible maps f ∶Y → βX and g∶Y → Z (irreducible maps are
surjective by deûnition). _e set A = f −1({x}) is a nowhere dense closed P-set in Y
since f is irreducible. We claim that Y does not satisfy the countable chain condition.
Indeed, by recursion on α < ω1, we will construct a nonempty open subset Uα of Y
such that Uα ∩(A∪⋃β<α U β) = ∅. Suppose that we deûnedUβ for every β < α < ω1.
_en V = Y ∖ ⋃β<α U β is a neighborhood of A. Hence, since A is nowhere dense,
there is a nonempty open subset Uα of Y such that Uα ⊆ V ∖ A. _en, clearly, Uα is
as required. It now suõces to observe that the collection {Uα ∶ α < ω1} witnesses the
fact that Y does not satisfy the countable chain condition. But this means that Z does
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not satisfy the countable chain condition since g is irreducible. _is is a contradiction,
since Z is Dugundji and hence dyadic [3, 10.1.3].

Example 2.6 Let X be the one-point Lindelöõcation of a discrete space of size
ω1. _en X is a P-space, and hence so is its free topological group F(X) [3, 7.4.7].
Moreover, ûnite products of X are Lindelöf, hence F(X) is Lindelöf [3, 7.1.18]. _is
means that F(X) is a Lindelöf P-group and hence, in particular, is ω-narrow. Since X
is not discrete, F(X) has no isolated points. By Teleman [12], F(X) has an F(X)-com-
pactiûcation. But F(X) is not skeletally Dugundji by the lemma just proved.

_e following question remains open.

Question 2.7 Let the (k-separable) Baire space X admit a continuous transitive
action of anω-narrow semitopological groupG such that X has aG-compactiûcation.
Is X skeletally Dugundji?

Proof of_eorem 1.3 Suppose X is a pseudocompact space and θ∶G × X → X is a
continuous transitive action, where G is an ω-narrow semitopological group that is
a k-space. _en there is a continuous action θ̃∶G × βX → βX extending θ. Indeed,
since each θ g ∶X → X is a homeomorphism, θ g can be extended to a homeomorphism
θ̃ g ∶ βX → βX. Hence, we can deûne θ̃∶G × βX → βX by θ̃(g , x) = θ̃ g(x). Obviously,
θ̃(g1 , θ̃(g2 , x)) = θ̃(g1g2 , x). So it remains to show that θ̃ is continuous. To this end,
observe that G × βX is a k-space as a product of the k-space G and the compactum
βX (see [6, _eorem 3.3.27]). _erefore, it is enough to show that each restriction
θ̃K = θ̃∣(K × βX) is continuous, where K ⊂ G is compact. And this is true, because
by [6, _eorem 3.10.26] the product K × X is pseudocompact. Hence, by Glicksberg’s
theorem [6, 3.12.20(c)], β(K × X) = K × βX. _us, θ∣(K × X) has a continuous
extension to K × βX and it is obvious that this extension coincides with θ̃K .

Now we can complete the proof of_eorem 1.3. We apply Lemma 2.4 to the action
θ̃ and obtain that φ∶G → H(βX) is a continuous homomorphism. So φ(G) is a
an ω-narrow topological group acting continuously on βX. Denote this action by
θ̃φ ∶φ(G) × βX → βX. Obviously θ̃φ , restricted on φ(G) × X, provides a continuous
and transitive action θφ ∶φ(G) × X → X on X. _erefore, X is a pseudocompact
space admitting a continuous and transitive action of an ω-narrow topological group.
Hence, we can apply [13, _eorem 2] to conclude that βX is a Dugundji space.

3 Separately Continuous Actions

First we prove the following lemma.

Lemma 3.1 Let F ⊂ Cp(X) be a separable subset and let p∶X → RF be the diagonal
product of all h ∈ F. _en p(X) is a sub-metrizable space.

Proof Take a countable dense subset Γ of F and let φ∶X → RΓ be the diagonal prod-
uct of all h ∈ Γ. _en φ(X) is a metrizable space. _ere is a continuous surjection
λ∶ p(X) → φ(X) assigning to each point p(x) = (h(x)h∈F) ∈ p(X) the point φ(x) =
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(h(x)h∈Γ) ∈ φ(X). We claim that λ is one-to-one. Suppose λ(p(x1)) = λ(p(x2)) for
the distinct points p(x1), p(x2) ∈ p(X). So there is h ∈ F with h(x1) /= h(x2), and
let ∣h(x1) − h(x2)∣ = η. Since Γ is dense in F with respect to the pointwise topology,
there exists f ∈ Γ such that ∣ f (x i) − h(x i)∣ < η/2 for i = 1, 2. Hence, f (x1) /= f (x2),
which contradicts the equality φ(x1) = φ(x2).

Proof of_eorem 1.4 We follow the proof of _eorem 1.1. Let X contain a dense
Čech-complete k-separable space D and let θ∶G × X → X be a transitive separately
continuous action of an ω-narrow semitopological group such that θ can be extended
to a separately continuous s-action θ̃∶G × Y → Y , where Y is a compactiûcation
of X. Suppose also that Z is a dense σ-compact set of D. _e action θ̃ generates
a right separately continuous action Θ̃∶G × Cp(Y) → Cp(Y) such that each orbit
Γ( f ) = {Θ̃(g , f ) ∶ g ∈ G}, f ∈ C(Y), is a separable subset of Cp(Y). As in the
proof of _eorem 1.1, we embed Y in RC(Y), deûne the sets C0 and Cα and consider
the projections pα ∶Y → RCα , α ≥ 0. According to Claim 1, each Xα is a Baire space.
Because θ̃ is separately continuous and θ is transitive, the actions θα ∶G×Xα → Xα are
also separately continuous and transitive; see Claim 2. _e proof that pα are skeletal
maps is the same. _e only diòerence is, according to Lemma 2.1(i), that the map
θ y
α ∶G → Xα is skeletal for every y ∈ Xα . So for every openU ⊂ Y and points x ∈ U∩X
and y = pα(x), we have IntXα clXα θ

y
α((θx)−1(U∩X)) = IntXα clXαpα(U∩X) /= ∅. _is

implies that pα is skeletal; see the proof of Claim 2. Finally, in the proof of Claim 3 we
can use Lemma 3.1 to conclude that every pα+1

α has a metrizable kernel.

Proof of_eorem 1.5 Suppose X is a pseudocompact space,G is anω-narrow semi-
topological group, and θ∶G × X → X is a separately continuous transitive s-action.
_en θ generates a separately continuous action Θ∶G × Cp(X) → Cp(X) such that
each orbit Γ( f ) = {Θ(g , f ) ∶ g ∈ G}, f ∈ C(Y), is a separable subset of Cp(Y).
We follow the proof of _eorem 1.1, considering X instead of Y . We embed X in
RC(X), where C(X) = { fγ ∶ γ < τ}, and let Cα = C0 ∪ {Θ(g , fγ) ∶ g ∈ G , γ < α}
with C0 being the set of all constant functions on X. We also consider the projections
pα ∶X → Xα ⊂ RCα , and the transitive actions θα ∶G × Xα → Xα , 0 ≤ α < τ. Observe
that X0 is a point, because all f ∈ C0 are constant functions. Since θ is separately con-
tinuous, so is each θα (see the proof of Claim 2). Because every Xα is a Baire space
(being pseudocompact), following the proof of Claim 2 and using Lemma 2.1(i), we
show that all maps pα are skeletal.

It remains to show that the maps pα+1
α have metrizable kernels. Let Γ( fα) =

{Θ(g , fα) ∶ g ∈ G} be the orbit of fα and let qα ∶X → RΓ( fα) be the projection. Since
Γ( fα) is a separable subset of Cp(X), by Lemma 3.1, qα(X) is sub-metrizable. On
the other hand, qα(X) is pseudocompact. So by [15], qα(X) is a metric compactum.
_erefore, the inverse system S = {Xα , pβα , α < β < τ} is well ordered, almost continu-
ous, consists of skeletal maps with X0 being a point and each pα+1

α having ametrizable
kernel. Moreover, S is factorizable and X = a−lim←Ð S. Hence, X is a skeletally Dugundji
space.

Proof of Proposition 1.6 Suppose θ∶G × X → X is a separately continuous transi-
tive action on a Baire space X, where G is an ω-narrow topological group. _en, by
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Lemma 2.1(ii), each θx ∶G → X is nearly open. Consequently, by [4, Proposition 2], θ
is continuous. If X is Čech-complete and σ-compact, Corollary 1.2 implies that X is
openly Dugundji. In the case where X is pseudocompact, we apply [13, _eorem 2]
to conclude that βX is Dugundji.
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