
A GENERALIZATION OF THE YOUNG DIAGRAM 

M. D. BURROW 

1. Introduction. The method of A. Young for finding the set of primitive 
idempotents of the group algebra of the symmetric group is classical; it was 
first given by Frobenius (4) using results of Young (10 and 11). A concise 
account can be found in (9) and a very detailed treatment in (6). 

From the purely algebraic point of view Young's method consists of finding 
pairs of subgroups R and C of the symmetric group Sn so that if 

P = 2> . N= J*,c*(c), 
TtR ctC 

where a(c) = ± 1 according as c is an even or odd permutation, then PN is a 
multiple of a primitive idempotent of the group algebra of Sn. This will be 
the case if R and C satisfy a condition of von Neumann. Below, in Lemma 1, 
we show that a more general formulation of his condition applicable to any 
group is possible in algebraic terms. An application of this new condition to 
the group GL(2, q) is given in §§5-8 of this paper. In Lemma 2 we show that 
the condition is equivalent to a property of the representations of the group 
induced by the linear representations of R and C viz., that they have a single 
irreducible component in common, and neither induced representation con­
tains this component more than once. 

2. A Lemma on primitive idempotents. 

LEMMA 1. Let two subgroups R and C of a group G have representations of the 
first degree 6 and <j> respectively. If for any element s Ç G the condition 

s^ CR±±B{r) = <j>(c) 

holds for every pair of elements r Ç R, c Ç C for which srs~x = c then e = PN 
is a multiple of a primitive idempotent, where 

P = 2 > 0 ( r ) , N= £ c * ( c ) . 
reR ceC 

Proof. First note that 

P r io r i ) = X > 0 ( r ) r^(r i ) = E "i0(rri) = P , 
reR reR 

where rx is any element of R. Similarly Nci<l>(ci) = N. Consider the expression 
PNsPN. Use CR, s = cr say, then 

PNsPN = PNcrPN = &~i(r) <t>~l{c)PNPN = 0~l{r) <f>~1 (c)(PN)2. 

Received January 8, 1954; in revised form March 9, 1954. This paper is part of a Ph.D. 
thesis written at McGill University. The author wishes to thank Professor H. Zassenhaus for 
his guidance. 

498 

https://doi.org/10.4153/CJM-1954-053-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1954-053-6


A GENERALIZATION OF THE YOUNG DIAGRAM 499 

On the other hand if s ^CR then the condition of the lemma implies the exis­
tence of a pair r £ R and c € C such that srs~* = c and 6(f) 7e <j>(c). In this 
case 

PNsPN = e(r) PNsrs-1 sPN = 6(r) PNcsPN = 6{r) 4>~l{c) PNsPN. 

Hence: 
PNsPN(l - 6{r) <j>~l{c)) = 0. 

Since 0(r) ^ 0(c), we have PNsPN = 0. Writing s = PiV we get 

(2.1) é?i4e = Ae2 

where -4 is the group algebra of G over the field of representation A. Note 
that e2 5^ 0, otherwise eAe A = 0 and eA is a nilpotent right ideal, whereas 
the group algebra is semi-simple. Also eA ^ 0 otherwise e = 0 which is 
impossible. In fact the coefficient of the unit element / in PN is £0(r ) 0(c), 
and the summation is over all f, c for which re = / , i.e., over all r 6 R C\ C. 
Now If I~l — c~l and since I Ç Ci? the condition of the lemma gives 0 (r) — <jrl (c). 
Hence the coefficient of / in PN is L0(r) 0'1 (0 = -R ^ C: 1 ^ 0. By consider­
ing the expression Ps~xN and reasoning exactly as above we find that 
PAN = KPN = Ae. Since PAN D PNAPN = eAe we get 

(2.2) Ae D d e . 

Combining equations (2.1) and (2.2) we have e2 = Xe, so that 6 is a multiple 
of an idempotent. Besides it is seen from (1) that eAe is a field and hence 
by a well-known theorem e is a multiple of a primitive idempotent (1, p. 36). 

3. A necessary and suffcient condition. 

LEMMA 2. The condition of Lemma 1 is satisfied if and only if the representations 
of G induced by the linear representations of R and C have one and only one 
irreducible component in common, and neither induced representation contains 
this component more than once. 

Proof, (a) First assume that the condition of Lemma 1 holds. Let 

6R = R7IF = ^ 7 ^ ^ ' 

ec = -Qr\N = c ^ ï S C *W> 

where R: 1 and C: 1 are the orders of the subgroups R and C respectively and 
the summations are taken over all r Ç R and c Ç C. Since Pr 0(r) — P (proof 
of Lemma 1) we see that P 2 = R: 1. so that eR

2 = eR. Similarly ec
2 = ec-

Then eR and ec are primitive idempotents of the subalgebras over R and C 
respectively (5, p. 46). We have 

eR = X) e\ ec = X) e3 

j j 
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where ej, ëj are indempotents or 0 belonging to thej th Wedderburn component 
of A. Now because the condition of Lemma 1 holds: 

dim ecAeR = d i m ^ PA ej = 1, 

therefore PA ej = 0 for all j except one, say j = fe, and we have either e3 = 0 or 
P = 0 if j 7e k. Moreover dim ëkAek = 1 so that ek and ek are primitive 
idempotents; hence the right ideals eRA and ecA which give the representa­
tions of G induced by the linear representations 6 and (f> of R and C respectively 
have a single minimal right ideal in common. 

(b) Assume that the induced representations of G have only one component 
in common, each containing it with multiplicity one. Let 

eR = e + . . . , ec = e + . . . , 

where e and e are from the same Wedderburn component and the decomposi­
tions have no other component in common. We may suppose that (eRec)

2 F^ 0 
since under present assumptions this condition can always be secured by 
transforming the group C with a suitable element g of G. Thus: 

{eRgecg~lY = egeg~legeg~l = (egëg^e) geg~l 

and the last expression in brackets cannot vanish for all g G G otherwise: 

0 = 2 egeg~xe = e (Z) g^g'1) e = \e2 ^ 0, 
0 Q 

the final step arising from the fact that the bracketted expression is a central 
element of the subalgebra to which e belongs. Hence with suitable choice of g: 
egeg~le ^ 0 —» egë ^ 0 and since e is a primitive idempotent egeg~le = \0 e. 
Returning to the first equation : 

(eRgecg-iy = Xg(ege) g~l * 0. 

Now 0 T^ (eRec)
2 = eëeë, so that eRec is a multiple of a primitive idempotent. 

Moreover eceR = ëe ^ 0. Also: 

ec s eR = ëse = nsëe = /zs ec eR. 

Because the last expression has only terms of the form cr, the same is true of 
the first. Therefore 5 (£CR —» fis = 0. On the other hand if 5 G CR then it is 
clear that /zs ^ 0. Let us suppose that 5 QCR so that ec s eR = 0, i.e. : 

J2 c s r e(r) *W = 0. 
Consider terms of the form cs in the above; such exist, e.g. when r — I, the 
unit element. These terms occur only when sr = cr s. Hence expressions with 
cs are 

] £ ' ccrsB{r) 4>(c) 

where the sum is now over c and such r for which sr — cT 5, i.e., for which 
srs~l — cT. We have then: 
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£ ' c cr s 6(r) <j>{c) = X)' es 6(r) «(c) 4>~l{cr). 

Now Lemma 1 required that for s QCR there should exist r, cr with srs - 1 = cr 

and 0(r) ^ <£(cr) ; hence to negate this condition of the lemma we assume that 
the equality always holds and we get 

( 2 > 0 ( c ) ) 5 = 0 - » e c = 0. ' 

which is impossible. Therefore the condition of Lemma 1 must be satisfied. We 
have now established Lemma 2. 

4. Calculation of the character. The character of the representation 
corresponding to the idempotent derived from PN (Lemma 1) can be cal­
culated by the formula 

(4.D ^)-wfel)S*W*W. 
where x is the character of the irreducible representation corresponding to the 
primitive idempotent formed from R and C; n is the degree of the irreducible 
representation; i is the index of the normalizer of the element g; r, c are ele­
ments of R and C and 0, 0 are their respective signatures. The summation is 
taken over all r, c for which re £ @(g), the class of elements conjugate to g. 

Proof of (4.1). In the first place, 

£ s(PN) s-1 

seG 

is an element of the centre of the subalgebra to which PN belongs1 ; moreover 
the expression: 

teG 

is the central idempotent of this subalgebra up to a multiple. Hence: 

teG seG 

Recalling that PN = J^ re 6(r) <j>{c) and equating coefficients of g on both sides 
we get: 

x(xte)) =2>to*'(<0 
where the summation is over all r, c for which, for some s, sres~1 = g. Now if 
this relation holds for a particular element 5 then it holds also for the element 
hs if h is an element of the normalizer N(g) of g: (hs) re{hs)~l = hghr1 = g. 
It follows that the contribution to the sum from each r, e for which re 6 S(g) 
is repeated N(g): 1 times. This permits us to write: 

(4.2) Xjt(g) = (N(g): l ) 2 > t o * W . 

2PiV remains a multiple of a primitive idempotent even after extension of A to an algebraically 
closed field so that actually the centre of the Wedderburn component is of dimension 1. 
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the summation now being over all r, c such that re Ç ©(g). In particular if g 
is the identity element / of the group G then N(g): 1 = G: 1 and re — I 
so that r and c must be from R C\ C and the condition of Lemma 1 requires 
that 6(r) = ^_1(c). In consequence: 

Arc = (G: l ) ( 2 ? n C : l ) 

where rc = xCO is the degree of the irreducible representation. Substitution 
for A in (4.2) gives the result (4.1). 

5. Application to GL(2, q). In the following paragraphs the preceding 
theory is used to find primitive idempotents of the group algebra of GL(2, q) 
as well as the actual bases for the corresponding irreducible representations. 
For this group there are (7; 8) 

(a) q — 1 irreducible representations of degree 1, 

(b) q — 1 irreducible representations of degree q, 

(c) i(<Z — 1)((Z "~ 2) irreducible representations of degree q + 1, 

(d) \q{q — 1) irreducible representations of degree q — 1. 

In each of the cases (a), (b), and (c) we find bases for the complete matrix 
algebra of the Wedderburn component. The writer has not been able to obtain 
similar results for the representations of (d) by the present method in the 
general case. For GL(2, 5) whose factor group with respect to its centre is S^ 
the R and C subgroups for a representation of degree q — 1 = 4 can be 
obtained from the appropriate Young tableau for 55 . 

6. Primitive idempotents of the group algebra of GL(2, q). We now 
obtain a pair of subgroups R and C of GL(2, q) which satisfy Lemma 1. By 
varying the signatures of R and C different primitive idempotents are obtained 
which will be classified in the next paragraph. The condition of Lemma 1 will 
be trivially satisfied if R C\ C = I and (R: 1) (C: 1) = G: 1, for then G = CR 
and 

sRs-1 C\C = crRr-lc~l C\ C = cRc~l C\ C = / , 

so that 

<t>{sRs~i r\c) = i = e(Rr\ s-iCs). 

The order of GL(2, q) is q(q — 1) (q2 — 1) ; (2). It is easy to find subgroups of 
orders q(q — 1) and q2 — 1 having only the identity / in common; take for R 
the triangular subgroup 

where a is any non-zero mark of GF(q) and /3 is any mark of this Galois field of 

https://doi.org/10.4153/CJM-1954-053-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1954-053-6


A GENERALIZATION OF THE YOUNG DIAGRAM 503 

q = pn elements. Then R: 1 = q(q — 1). If p is a primitive element of GF(g) 
and a = pa then 

with e a root of xq~l = 1 in the field of the representation, the field of complex 
numbers say, gives a representation of R of the first degree. Each root of this 
equation gives a distinct linear representation and we get them all in this way 
since 

is the commutator of R and its index in the latter is q — 1. 
For the subgroup C of order C: 1 = q2 — 1 we take the cyclic group 

generated by an element of GL(2, q) similar to 

in which a is a primitive root of the quadratic extension field GF(q2). That 
is 

(6.1) C = {T(° JV1} 
where T is chosen so that the elements lie in GL(2, q). Now 

*(r('" ,„,) r-) - j -

where w is a root of the equation xa*~l = 1 can clearly give all q2 — 1 linear 
representations of the cyclic group C. Recalling the definition of P and N 
(Lemma 1) we see that 

q— 1 Q3—1 / a 0 \ / m \ 

0 a=l m=l \ 1 / \ O- / 

is a multiple of a primitive indempotent for each choice of e and a>. 

7. Classification of the primitive idempotents. The primitive idem-
potents of the preceding section can be distinguished through the values of 
the corresponding irreducible characters on a suitable element of GL(2, q). 
We use for the calculation the formula (4.1). 

Let us calculate x(gi) for 

gi = ( P
 6l J , ax 7* i i . 

Here iV(g): 1 = ç(g + 1). Recall that R C\ C: 1 = 1. A simple choice for T 
in (6.1) can be obtained by assuming a matrix with unknown coefficients 
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and then determining them so as to ensure t h a t (6.1) lie in G L ( 2 , q). We shall 
use 

r - C i ) -
With this choice of T we have, for C, 

U(am+q - amç+1) A'1 (amq - am) A"1 \ \ . _ q 

so t h a t 

_ (a p\((am+Q - amQ+1) A"1 (amq - am) A"1 \ 
rc ~ \ lJ\-aq+\<Tmq - <jm) A'1 (a

{m+1)q - am+1) A"7 ' 

Since gi has two dist inct eigenvalues the requirement t h a t rc Ç ®(gi) will be 
satisfied if we make sure t h a t t race (rc) = trace gi and t h a t de te rminan t 
(rc) = de te rminan t g\. These conditions yield 

/ m+q mq+l\ ff+1/ mq m\ 0 i (.m+l)q ra+1 /ax i &i\ A 

a (or — o- ) — o" ( < r — o - ) p + (7 — <J = ( p + p ) A , 
( ' • I ) m((z+l) ai+&i 

a a = p 
For fixed m the la t ter equat ion determines a: a — pa^b^-m. Here <r and p 
have been so related t h a t aq+1 = p. Now /3 is uniquely determined by the former 
equat ion if <rm — amQ T^ 0. In this case r is fully determined for a given c 
and 

<t>(c) = com, 6(r) = ea^-m. 

On the other hand if <jm — amq = 0 then $ m a y b e any of the q marks of GF(q) ; 
also m = t(q + 1) where 1 < / < q — 1. Since o*5"1"1 = p and pe = p, the first 
equat ion of (7.1) gives 

ai+bi—It t i t ai \ bi 

p p -t- p = p -r p , 

and after simplification 

(p'f - (P<" + p»') p' + P
a'+Sl = 0, 

so t h a t either t = di or t = b\. There are then jus t two possibilities for the 
element c determined by m = di(q + 1) and by m = bi(q + 1). Each of 
these determines q possibilities for the element r. Also each value of m fixes the 
signature 6 of the corresponding elements r through the second equat ion of 
(7.1), so t h a t for one case 

0(c) = cofll(5+1), 6(r) = e&1~ai, 

and for the other 

0(c) = co&l(*+1), 0(r) = €
a i ~ 6 \ 

We are now able to wri te : 

£ 6(r) 0(c) = i f eai+&1"m com + <z[€&1"ai c/ l ( f f+1) + eai-&1 coM*+1)] ; 
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equation (4.1) now gives: 

(7-2) Xfei) = q { q \ ! ){ % €-+^-com+g(e&1-aicoai(ff+1)+6ai-6lcoôl(ff+1)) } , 

where m ^ 0(mod q + 1). The following cases can be considered: 

Case I: co = €. Then x(gi) = ^eai+&1 and each of the q — 1 roots e of the 
equation xq~l — 1 gives rise to a distinct character of degree n. Since gi is 
not a central element we know that n = 1 and that these are the q — 1 linear 
characters (7). 

Case I I : (co/€)ff+1 = 1, co ^ e. 

Now x(gi) = (n/o) eai+bl and we have q — 1 distinct characters, one for each €• 
Their degree isn = q. We remark that each choice of e gives a distinct character 
of degree q but that for fixed e, co can take g values. In this way we get q 
distinct idempotents associated with each irreducible representation of 
degree q. This remark will be useful in the next section. 

Case III: (co/e)5+1 ^ 1. 

In this case the summation term in equation (7.2) above is zero and we 
have: 

x(«i) = -p^i ^", "a'(î+1) +e<11"6' *>6,(s+1))-

Writing co5+1 = e/ei, where ei is a different root of the equation xq~l = 1, we 
get finally: 

X(gi) = ~T~J (€ ei + € €i )• 

In this formula e can take g — 1 values, to each of which ei may take q — 2 
values, since ei 7^ e. Hence values may be assigned to both in (q — 1) (q — 2) 
ways; however, half of these lead to the same character as the other half. 
The results indicate that these are the |((Z — 1)(? ~~ 2) irreducible characters 
of degree q + 1. We note that € and ei fix the character but that co is free to 
take q + 1 values, giving rise to q + 1 distinct idempotents belonging to the 
same irreducible representation of degree q + 1. 

We have now obtained, to within a multiple X, primitive idempotents for 
all the irreducible representations of degrees 1, q, and q + 1. The idempotents 
themselves can be determined since the trace XR&PN) in the regular repre­
sentation is equal to the degree of the irreducible representation. 

The irreducible representations of degree q — 1 have not appeared. The 
writer has been unable to find them by other choices of R and C which have 
merely led to one or other of the representations already obtained. 

8. Bases for the irreducible subalgebras. For the linear representations 
there is nothing to be discussed as each idempotent is already a basis and 
the linear characters are in fact representations. 
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Recalling Cases I I and I I I of the previous section we see t h a t for each of 
the irreducible representat ions of degree q or q + 1 there are as m a n y dis t inct 
primitive idempotents as the degree n; these, together with an equal number 
of primitive idempotents obtained by reversing the roles of R and C, will be 
used to construct the n2 basis elements of the matr ix subalgebra. 

We notice t h a t in both cases II and I I I the signature e remains fixed for all 
the equivalent idempotents ; the changes in co distinguish them. T h u s the 
terms P in 

èt = XPNt 

are the same2 for all the idempotents êt. T h e Nt s tand for N under the dif­
ferent choices of co. Now: 

êiêj = \2PNiPNj = y\2PNj = vèj. 

T h e second step is from the fact t h a t PAN = APN (§2). T h u s 

èiêièj = vèiêj = v2êj = êiêj = vèj 

and hence 
(v2 - v) è, = 0, 

implying t h a t either *> = 0 or v = l, and so êiêj = êj or 0. Similarly êjêi = êi or 0. 

L E M M A 3. êiêj = êj ^ ejet — et. 

Proof. If A is the group algebra then 

and, since èiA— is minimal, èjA — êtA —> êt = êjX, so t h a t 

êjêi = êjêjX = êjX = èi. 

COROLLARY. êiêj = 0 <=± êjêi = 0. 

However this is not possible; for let etej = 0 = èjèu then èu èj are pr imit ive 
mutua l ly orthogonal idempotents of a matr ix algebra: we identify t hem with, 
say, en and e22- Then 

èiAèj = enAe22 = A^i2 TA 0; 

b u t 
èiAèj = \2PNiAPNj = APNj = AêJt 

so t h a t £i2 = rêj and this is impossible. Hence 

(8.1) êiêj = éy. 

Now we interchange R and C, i.e., the group formerly taken for C will be used 
for R and vice versa. In terms of the original R and C the idempotents a re 
now: 

e = XiVP. 

2X also remains the same since the coefficient of / in PNi is 1, so that XR(^Ï) — X(G : 1). 
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Since the trace and determinant of an element cr is the same as that of the 
element re the equations (7.1) are not changed and the features of cases II 
and III remain the same. Let eu e2, . . . eh . . . be the new system of equivalent 
idempotents belonging to a particular irreducible representation of degree q 
or q + 1, so that et = \NiP. As for the èu we prove for et in an entirely 
analogous way: 
(8.2) etej = et. 

LEMMA 4. For the systems èt and et of a particular representation: 

etej = 0, i 9e j , 
(8.3) etd 9* 0, 

etej 7e- 0, for all i, j . 

Proof. In the first place NtNj must vanish since Nit Nj are multiples of 
different smallest central idempotents of the group algebra of C. Thus 
èieù = \2PNi NjP = 0. On the other hand 

èffii = \*PNi Nt P = X2(C: 1) PNt P ^ 0 , 

otherwise on right multiplication by Nt we would get 

X'PNiPNi = èt
2 = èi = 0. 

Moreover, 
etej = \2NiPPNj = X2(i?: 1) NtPNs ^ 0, 

otherwise on left multiplication by P we should get 

\2PNiPNj = 0 = ètêj = êj. 

Relations (8.3) show èt and e^ are distinct; for if è 

èi = èiêi = èiej — 0. 

Again if ê* = e< then 
èi = èjèt = èfi = 0. 

LEMMA 5. -4 matrix basis for the irreducible subalgebra, corresponding to a 
particular idempotent of degree q or q + 1, is given by Etj = e ^ with suitable 
normalization.z 

Proof. 

EijEkm = eièjekêm = 0, if j ^ k. 

EijEjm = XtetPNjNjPPNn = X3(C: 1)(2J: 1) eiPNjPNm 

= X(C: 1)(J2: 1) e ^ A = X(C: l)(i2: 1) etem 

= X(C: l)(i?: 1)E<„. 

3The referee has kindly drawn the author's attention to an interesting paper by Frame (3) 
in which a pair of subgroups is used to give an irreducible representation of the group. 
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The normalized system is thus Etj = Eij/\(C: 1)(R: 1), for then 

ËijËkm = 0, j j * k, 

and EijEjjc = Eik. The A is known from the regular trace. The En are 
primitive idempotents since 

EaAEii = eièiAeièi = ke^i = AEii} 

the second step arising from the fact that ^ is a primitive idempotent. 
The Eij give bases for the actual construction of any of the irreducible repre­
sentations of degree q or q + 1. 
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