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1. Introduction

When a disc rotates in a fluid at rest, fluid near the disc acquires azimuthal
momentum because of the viscous torque of the disc and outwards radial momen-
tum under the action of centrifugal forces. The resultant flow is essentially a
swirling jet. Away from the disc continuity requires the existence of an axial flow
towards the disc to compensate for the fluid which has been thrown outwards.
If the disc is finite there is a discontinuity in the boundary conditions at the edge
of the disc where the no-slip condition is suddenly replaced by a condition of zero
stress in the plane of the disc. The flow discharged from the edge of the disc is
essentially a wake embedded in a swirling radial jet. It appears that no investiga-
tion of this wake has yet been made.

Before proceeding, the results of research into a closely related flow problem,
namely, the wake that forms downstream from the trailing edge of a flat plate
placed parallel to a uniform stream, should be examined. The boundary layer
equations for the flow near a semi-infinite flat plate were first solved by Blasius
[1]. Goldstein [3] went one step further by solving the boundary layer equations
for the wake that develops downstream from the trailing edge of a finite flat plate.
Goldstein assumed that the boundary layer approximation is valid downstream
from the trailing edge itself and obtained a solution for the near wake, the near
wake being defined by 0 < x < /, where x denotes distance downstream from the
trailing edge and / is the length of the plate. However, as has been shown by
Stewartson [6], [7], the boundary layer approximation fails in the neighbourhood
of the trailing edge and the full Navier-Stokes must be used there. Goldstein’s
solution is therefore not appropriate to all of the near wake but to a slightly
smaller domain which Stewartson refers to as the Goldstein wake. Stewartson
[71 has demonstrated that for high Reynolds number flows the neighbourhood
of the trailing edge, which connects the Blasius flow over the plate with the Gold-
stein wake, may be split into two main regions. Suppose that the Reynolds
number of the flow is defined by Re = U, l/v, where U, is the free stream velocity
and v is the kinematic viscosity; that ¢ is defined by ¢ = Re™'; and that y measures
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perpendicular distance from the x axis. Then Stewartson has shown that the
neighbourhood of the trailing edge consists of ‘a central region in which x ~ £°/,
y ~ 1. .. and an intermediate region in which x ~ £*/, y ~ 3",

The primary aim of this paper is to show how the method developed by
Goldstein for the flat plate may be extended to obtain a solution for the near
wake of the discharge from a finite rotating disc. As in the case of the flat plate,
this solution is not valid in the neighbourhood of the edge of the disc. Any
examination of the flow in this neighbourhood would necessarily involve the full
Navier-Stokes equations and no such analysis will be attempted here. Following
Stewartson, the domain for which Goldstein’s solution is appropriate will be
referred to as the Goldstein wake of a finite rotating disc. Smith [5] has extended
Goldstein’s method to advance the solution for the free convection boundary
layer along a vertical plate past the level at which a discontinuity in plate tempera-
ture occurs. Smith has included a detailed discussion of the method and only a
brief outline is necessary here. The method, as originally used by Goldstein,
consists in forming two expansions for the stream function, one valid near the
wake axis (the inner expansion) and the other valid away from the wake axis
(the outer expansion). The inner expansion satisfies the boundary conditions at
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Fig. 1(a): Illustrates the various flow regions near the edge of the disc: in (i) Cochran’s (1934)
solution is valid; in (ii) the boundary layer equations are not valid; while (iii) and (iv) are the
Goldstein outer and inner wake regions respectively. (b) Shows the co-ordinate system used.
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the wake axis and its form is suggested by the Blasius solution. The outer expansion
satisfies the constraints imposed on the solution far from the wake axis and the
two expansions are matched by re-arranging the asymptotic expression for the
inner expansion into the same form as the outer expansion. For the rotating disc
Goldstein’s method is extended by forming expansions not only of the stream
function but also of the azimuthal velocity, and the form of the inner expansions
is derived from Cochran’s [2] improvement on the original solution by von
Karman [8] for the flow near an infinite rotating disc. The main flow regions
near the edge of the disc are illustrated in Fig. 1(a).

2, The equations of motion

Let (r, ¢, z) be cylindrical polar co-ordinates with origin at the centre of the
disc and z axis of rotation. The velocity vector is (u, v, w) and the finite disc is
of radius a.

The boundary layer equations for flow in the Goldstein wake near a rotating
disc are, as given by Schlichting [4]:

2 2
(2.1) ua—u+wa—lf—v—=va—l:,
or 0z r 0z
2
(2.2) ua—v+w@+lﬂ= 6_12;,
ar 0z r oz
2
(2.3) W o Lo, 0w
0z p 0z 0z
2.4) 9w+ L owy = 0.
0 0z

Since the boundary layer equations involve the assumption that p and w are in-
dependent of r (2.3) may be written as

(2.5) Pwi—y W _ const.
p 0z
It remains only to solve (2.1), (2.2), (2.4) subject to the boundary conditions of
the problem. Then p may be calculated from (2.5).
For an infinite plate rotating in a still environment the boundary conditions
are

2.6
( ) zZ = 00 u=v =290, w finite;

where Q is the angular velocity of the disc. Equations (2.1), (2.2), (2.4), (2.6)
have been solved by von Kdrman [8] and Cochran [2]. They defined new variables
F, G, H, Z, by
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u = rQF(Z),
v =rQG(Z),
w = JYQH(Z),

z=VXZ.
Q

The functions F, G, H satisfy the following simultaneous system of ordinary
differential equations
F’+FH-G*-F"' =0
2.7 2FG+HG' -G =0,
2F+H' =0,
together with the transformed boundary conditions

Z=0: F=H-=0, G =1;
Z = o0: F=G=0, H finite.

The functions F, G, H, F’, G’ have been tabulated by Cochran.

3. The continuation problem

The continuation problem is to advance the solution to equations (2.1),
(2.2), (2.4) radially outwards, given the Cochran velocity profiles at the edge of
the disc. A transformation to non-dimensional variables of form appropriate to
the outflow from the disc edge is

u = aQuU,
v =aQl,
w = JvQW,
r = a(l+R),

z=VXZ.
Q

72 ~2
U6U+W6U_ 1% - U

The transformed equations are

oR oZ 1+R 0z’

o 2
G.1) v w UV 0V
R oz 1+R a2

d 0
og (R} +  {(1+RW} = 0.
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The profiles of U, ¥, W at R = 0, which are the Cochran profiles F, G, H, may be
expanded in Maclaurin series
U=a,Z+a,Z*+ay; 2%+ -+,

(3.2)
V=>by+b, Z+b,Z%+ -,

where, by successive differentiation of equations (2.7) it is easily shown that

a, = 0.510, b, = —0.616;
ay = —1/21, by =0;
a3 = —2b1/3', b3 = 2a1/3!.

4. The inner solution
From the third of equations (3.1) there is a stream function ¥ such that

v L W
1+R oz
1 oy

1+R éR

(4.1)

Following Goldstein, new independent variables & and # are defined by
= R},

@2) cERY

n=ZR733,

and the stream function and azimuthal velocity are taken to be

¥ = E (& ),

4.3
43 V= o).
Then, from (4.1) and (4.3)
¢
= ——f
(4.4) 3(1 +§_)1

(2f + 5f¢_’1f,,),

3148
and the initial conditions (3.2) become

U=a,(3n8)+a,(3né)*+ -,

(4.5) )
V =bo+b(3n8)+b,(3n8)* + - -~

A comparison of (4.4) and (4.5) suggests the following power series expansions
in ¢ for fand g:
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||
|M8

) m(n)f"'

(4.6)
m(n)é'”

II
IMS

If these series are substituted in equations (4.4) and (3.1), two sets of ordinary
differential equations are obtained by equating powers of ¢ to zero. The first
four equations of each set are:
hy’+2hghy = 0,

hy'+2hoh)'—3h4 hy + 3k h1 = —27k3,
(4.7 hy'+2ho hy —4hy by +4hyh, = 2h'? —3h, by —54kok,,

h3'+2ho by —Shghy+5hghy = 5hyhy—3h, hy —4h{'h,

—27k}—54kok,—adhy? +2hohy;
and
kg +2hohy = 0,
ky+2hok;—hok, = —3h, kg,
ky +2hok;—2hok, = hik,—3h ki —4h, kg,

ky+2hoki—3ho ks = 3hiko+2hy ky+hj ky—3hy ky—4h, ki —5h3 k.

(4.8)

The boundary conditions to be satisfied by U, V and W in the region R > 0 are

Z=o0:U=V =0, W finite.
The boundary conditions at Z = 0 transform to
(4.9) n=0:h,=h)=k,=

while the boundary conditions as n — oo are obtained by equating the series
expansions of U and ¥ with the initial conditions in the form (4.5). Thus

hr

Lim -° = 3%q,,
1= 1
. h 3

(4.10a) Lim — = 3%a,,

n—so Y

Lim h; 3%a,,

n—o

Lim h —4h0 = 3%a,;

L g n
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(4.10b) Lim  — 3%, (m=0,1,23).

noo N
The solution for h,

The equation for 4, was investigated by Goldstein op. cit. He obtained the
following solution

(4.11) hy =ﬁ0n+ﬁ3;’ —Zﬂ +10/3

which is a MacLaurin series whose coefficients are computed by successive dif-
ferentiations of equation (4.7) for f,. Let Hy(n) be the solution to equation
(4.7) for hy with B, = 1. This solution is related to 4, by
(4.12) ho(n) = 531‘10(.33’1)-
Therefore

Lim hO(”) B% Lim HO('I) ,

n—~wo N n*o B
= B§ Lim H{/(y).
N

From the first of equations (4.10a)
m ho(n) _ 324

1= N

1>

= ao .
which implies

Bo = {xo/Lim H(n)}*.

n-*00
The asymptotic behaviour of h, as n — oo is, according to Goldstein
o ~ Yaon?
where n’ = n+3d,, 8, being an arbitrary constant. This may be written as
(4.13) hy ~ Aogn*+Bon+C,.

ho(n) is the solution to equation (4.7) for h, with Hy(0) = 1, Hy(0) = Hy'(0) =
Thus Hy(n), Hy(n) and Hy'(n) may be obtained numerically using a Runge-
Kutta technique and it was found that for large values of 5

(4.14) Ho(n) ~ 0.42357 (n+0.65364)*.

From (4.12) and (4.14) the values of 8, and §, may be found. They are
Bo = 3.0849,
5o = 0.37215.

Equation (4.7) for h, may now be solved, using B, as the initial value of A; .
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The solution for k

The solution to equation (4.8) for k,, satisfying boundary conditions (4.9)
and (4.10b) is a constant,

(415) ko = bo-
The solution for h,

Let H,,(n) be a particular integral of the equation (4.7) for 4, and H, (%)
the complementary function for which H,.(0) = H{(0) = 0 and H/(0) = 1.
Then

n3 5 1,5
H,(n) = n+3Bo n — 680 P +o
and, choosing a particular integral such that H,,(0) = H;,(0) = H{,(0) = 0,

3 5
= —27p2 (Y g Y o ...
Hifln) = =270 (5 =B %+ ).
The solution for 4, is therefore

(4.16) hy(n) = Hlp('l)'*‘)u H, (n),

where A, is to be determined from (4.10a). Asymptotically, the equation for f;
is satisfied by

(4.17) AP +Con' —(9b3+A4,)a5 ",

where exponentially small terms have been neglected. From (4.14a)
(4.18) A, = 3%a,.

Consequently the following asymptotic equality defines 4, :

(4.19) Ay = (340" = HY ) H ).

The functions H,,(n), H,.() and their first two derivatives were tabulated
by numerical solution of the homogeneous and non-homogeneous equations
respectively. The value of 1, was then found by substituting H,,(n) and Hj, into
(4.19), for “sufficiently” large n (y = 7 was found to be large enough to make
the exponential terms negligible). The value of C, was then found by comparing
the derivative of (4.17) with the right-hand side of (4.1b) for “sufficiently” large 7.

If (4.17) is expressed as a polynomial in 7, it is noticed that the asymptotic
behaviour of A is

(4.20) hy ~ Ay’ + B n*+Cyn+Dy,

where A4, is given by (4.18) and B,, C{, and D, are related to 4, and C, by
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Bl = 3A1 50,
Cl = Cl +3A1 63,
Dy = A, 85+C,5o—(9b3+A,)og .

The solution for k

The equation (4.8) for k, is homogeneous since k, is constant. If K, is the
complementary function satisfying K;.(0) = 1, k;.(0) = 0, then

(4.21) ki, =pu ke

where p, is to be determined from (4.10b). The asymptotic behaviour of k, is
easily shown to be

ky ~ Gy
(4.22) L

~ Gl ’7+H1’
where H; = 0,G,. From (4.10b)

(4.23) G, = 3b,,
hence, using (4.21), (4.22), (4.23)
(4.249) uy = 3b,Jk},.

The functions k .(n) and k}_(n) were tabulated by numerical solution of the dif-
ferential equation and the limiting value of the right-hand side of (4.23) was
obtained.

The solutions for h, and k, (n = 2, 3)

The solutions for f, and g, are:

hy(n) = H,,(n)+4, Hy(n),

(4.25)
ha(n) = Hs,(n)+ 13 H3(n),
and
(426) kZ(") = KZP(")+NZ KZc(n)’
ka(n) = Ksp(n)+ s Ksn),
where H,,, K,,(n = 2, 3) are particular integrals and H,., K, are complementary

functions for the appropriate differential equations of (4.7) and (4.8). The func-
tions H,,, H,., K, satisfy the same conditions at n = 0 as H,,, H,., k. res-
pectively, while K,,(0) = K,,(0) = 0. The 4, and p, are to be determined from
(4.10a) and (4.10b) respectively, in the same manner that A, and u, were deter-
mined.

The asymptotic forms of 4, and k, may be inferred directly from the results
of Smith op. cit. for his free-convection boundary layer problem. Thus 4, and k,

have the following asymptotic behaviour:
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hy ~ Ayn*+B,n* +Cyn* +Dyn+E,,

(4.27) . \
hy ~ Asn®+Byn*+Csn® + Dyn* +E;n+F;,

and
ky ~ G2’12+H2’7+12’
ky ~ Gy’ +Hyn* +Ln+Js,

where the coefficients A4,, A5, etc., are obtained numerically.

5. The outer solution

The outer expansion is obtained as follows. The inner expansion for large n
is written in terms of the outer variable Z and, with the assumption that re-ar-
rangement is possible, equations (4.13), (4.15), (4.20), (4.22) and (4.27) combine

to give
Y~ Ao(Z/3)* +A(Z]3) +
+&(Bo(Z/3)+B1(Z]3)" +
(5.1) +E(Co+C(Z]3)+Co(Z/3)* + - )
+8(D+Dy(Z/3)+ - - ),
4o
and
V ~ ko+G(Z/3)+G(Z/3)* +
652) +E(Hy+ H(Z]3)+ )

+E(L+1(Z)3)+ - )
+ .

The expressions (5.1) and (5.2) suggest the following expansions for the outer
solution, provided ZR~* is sufficiently large:

¥ = Yo(Z)+ ““‘/’ (Z)+ ‘//2(Z)+

(5.3)
V= VO(Z)+ VI(Z)+ 2 VZ(Z)+

where

Vo =a,Z+a,Z*+as; 23+ - - -,
(5.4) Y, =3By Z+ 3122‘1'273223

Y, =2Co+3C, Z+3C, 27+

Y3 = 6D,+2D,Z+2D,Z*+
and
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VO = bo+blZ+b222+b323+ Tt

(55) Vl = H1+%‘sz+%H3ZZ+ Tt
V,=6L+3LZ+ -,
V3 =J3+ . e

When the series (5.3) are substituted into the first two equations of (3.1), the fol-
lowing equations for , and ¥, (n = 1, 2, 3} are obtained:

Yivo—¥ Yo =0,
(5.6) Vavo—va ¥y = ¥ Yy -y,

UsWo— Vs = 6040 + Vo) +y Yy =3+ 207y,
and

Vi ‘p(’)_V(;l/H =0,

Vabo— Vo, =¥, Vi—¥1 V1,

Vao—Vos = 6(Vs" "+ Voo)+ 20, Vi+y, V;

“2‘//'1 Vz_‘p; V.

(5.7)

The first equation of (5.6) may be integrated immediately to yield

(5.8a) ¥y = kibo,
the constant k being found from a comparison of the first two expansions of (5.4).
Hence

k = B0/3al .

The expansion for {y, may now be integrated to give
(5.8b) Vo = ko + 1o,
with the first and third expansions of (5.4) implyingthat

l = 2(C1 —_ 3a2k2)/3a1 .
The solution for /4 is

(5-8¢) Y, = 6 ( f V°;"’° dZ+m) + k3o +3kly.

2
0o 0

The coefficient of Y, in the expression for /5 involves an arbitrary constant of
integration, m. The expansion for i3 in powers of y is

¥, = k(3a,k*—3a,1)+6(aym+as k> +a, kl)y +0(y*),
and by comparison with the expansion (5.4) for ¥,

m = (3D, —ask*—a,kl)/a,.
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The functions V, (n = 1, 2, 3) are now defined in terms of k, /, m and the initial
solutions ¥, and V. They are:

Vl = kVO,,
V, = kK*Vy+1Vy,
17 V TI V4 trs
(5.9) _ 800+ Vo o, °)+6‘F{)(f Yot %o dZ)
%o ¥

+ KV + 3k, (ﬁ) .
¥

6. Discussion of the results

Profiles of the non-dimensional radial and azimuthal velocity components
U and V are shown in Figures 2(a) and 2(b) respectively for several values of the
non-dimensional radial variable &, in the range 0 £ ¢ < 0.3. The profiles were
plotted by fitting together the inner solution, which is obtained by substituting the
solutions for 4, and k,, (m = 0, 1, 2, 3) into (4.6), and the outer solution, which
is obtained by substituting ¥,, and V,,, as calculated from (5.8) and (5.9) into
(5.3). For values of ¢ greater than 0.3 the overlap between the inner and outer
solutions is lost, as the m = 4 terms neglected in the expansions (4.6) and (5.3)
become significant. Goldstein was able to proceed further downstream than this
because he was able, with the Blasius solution as the initial profile, to expand his
stream function in powers of &>™*! compared with the expansion in powers of
&m+ 1 allowed by the Cochran solution.

It is observed that the velocity profiles have adjusted rapidly to the new
boundary condition in the plane Z = 0, and are approaching smoothly towards
a swirling radial jet flow before the eventual decay at large distances from the
disc. As ¢ increases the radial velocity profile is steadily filling in and the azimuthal
velocity is gradually flattening.

7. Conclusions

It has been shown that the matched asymptotic method used by Goldstein
to solve the boundary layer equations for the near wake downstream from the
trailing edge of a finite flat plate may be extended to solve the boundary equations
for the near wake region of the discharge from the edge of a finite rotating disc.
This is, of course, only the first step towards obtaining the complete picture of
the discharge and it remains to investigate the flow in the neighbourhood of the
edge of the disc and also to continue the boundary layer solution past the near
wake region. Any attempt to examine the flow in the neighbourhood of the edge
of the disc must necessarily involve the full Navier-Stokes equations, but the flow

https://doi.org/10.1017/51446788700013707 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700013707

§13] The wake of a finite rotating disc 303

0-20

015

0-10

0-05

Figure 2(a)
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Fig. 2. Profiles of the dimensionless radial velocity, U, and azimuthal velocity, V, are plotted
in (a) and (b) respectively for several values of £ in the range 0 = & = 0.3.
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past the near wake region should not be difficult to obtain by using one of the
many methods available for the continuation of boundary layer solutions. Gold-
stein’s method itself may be used in a step-by-step manner to continue the boun-
dary layer solution indefinitely but this is true in principle only and proves far
too tedious in practice. A direct numerical method should prove to be most
suitable.
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