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Hypersonic flow on a V-shaped blunt leading edge (VSBLE) at Mach 12 is numerically
investigated. A series of self-induced shock–shock interactions and shock wave/boundary
layer interactions (SWBLIs) cause extremely high heat flux peaks on the crotch of the
VSBLE. Based on these shock structures, a simplified model that divides the flow field
into inviscid and viscous areas is constructed. This model can quickly solve the shock
interactions and predict the heating/pressure peaks with high accuracy. Furthermore, a
shock control bump (SCB) is placed on the SWBLI region to split the strong incident
shock into a weaker multi-wave system. The mechanism study of the SCB shows that
the inviscid effect significantly reduces the heating/pressure peaks, and the viscous effect
suppresses the SWBLI-induced separation. Finally, a VSBLE with SCBs is numerically
investigated. The heat flux peak is reduced by 66 % compared to that without the SCBs.
The robustness of the SCB under various working conditions is also evaluated. This paper
provides an idea for the simplified solution of complex shock interactions and extends the
application of the SCB as a thermal protection device in hypersonic flow for the first time.
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1. Introduction

Hypersonic vehicles are usually accompanied by shock–shock interactions and shock
wave/boundary layer interactions (SWBLIs), which may cause extremely high heat
flux peaks on the surface (Wieting & Holden 1989) or unsteady oscillation of the
flow field (Zhong 1994). Edney (1968) first summarized the shock interactions into
six types according to the relative position of the oblique shock and bow shock.
Furthermore, Hains & Keyes (1972), based on oblique shock and Prandtl–Meyer expansion
wave theory, developed theoretical and empirical formulations for the prediction of
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Figure 1. (a) Mach contour of a hypersonic airbreathing vehicle with a VSBLE (in the red frame).
(b) Volume streamlines (coloured by the Mach number) and heat flux of the VSBLE.

pressure/heating peaks. In particular, the correlation between pressure and heat flux peak
is of great practical value for engineering (Grasso et al. 2003). However, these correlations
are based on some typical configurations, such as the supersonic compression ramp or the
oblique shock impinging on a flat plate. The applicability of the correlation to complex
shock interactions needs further development (Li et al. 2019).

With the development of hypersonic airbreathing vehicles (see figure 1a), a V-shaped
blunt leading edge (VSBLE) (see figure 1b) of the inlet has been noted by researchers
(Malo-Molina et al. 2010). Xiao et al. (2018) first extracted the VSBLE configuration
from vehicles and defined the main geometric parameters including the half-span angle
β, the leading-edge radius r and the crotch radius R. Based on this model, Li et al.
(2019) and Wang et al. (2018) studied the pressure–heat flux correlation and unsteady
shock oscillation around the VSBLE. Furthermore, Zhang et al. (2019a, 2021a) combined
experiments, numerical simulations and theoretical analysis to explore the shock structures
around the VSBLE with a wide range of geometric parameters. Among them, the
VSBLE with R/r = 3.25 and β = 24° has attracted much attention. The self-induced shock
interactions cause extremely high heat flux peaks that can be up to seven times the
stagnation-point value, which is computed from the Fay–Riddell (F-R) theory (Fay &
Riddell 1958). However, the free stream adopted in the above studies is Mach 6. Note that
the working condition of airbreathing hypersonic vehicles with hydrogen fuel scramjet
engines can be up to Mach 12 or higher (Reubush, Nguyen & Rausch 2004). Studies
(Wieting & Holden 1989; Boldyrev et al. 2001) show that as the Mach number increases,
the detached shock moves closer to the wall and the heating load has an increasing trend.
Therefore, it is crucial to explore the flow characteristics of VSBLE at a higher Mach
number.

However, the purpose of exploring the flow mechanism and predicting heat flux peaks
is for better control and protection in aircraft design (Liu et al. 2022; Zhou et al. 2022).
In particular, shock control methods can effectively reduce the adverse effect caused by
SWBLI (Ashill, Fulker & Hackett 2005). Among many shock control devices, the shock
control bump (SCB) is a passive control device with a simple shape, high robustness and
low profile drag (Bruce & Colliss 2015).

As the name suggests, an SCB is a physical bump mounted on an aerodynamic surface.
It was first applied to the upper surface of transonic wings (Birkemeyer, Rosemann &
Stanewsky 2000), as shown in figure 2(a). The so-called smearing effect of the SCB
can split the near-normal shock into a weaker λ shock structure of the wing surface,
which can reduce the total pressure loss and drag (Qin, Wong & Le Moigne 2008).
Recently, researchers explored the application of the SCB in supersonic flow with an
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Figure 2. Principle of SCB operation: (a) on a supercritical wing with a near-normal shock and (b) on a
supersonic flat plate with an incident shock.

incident shock (see figure 2b). Based on the cowl shock/boundary layer interaction in a
supersonic inlet, Zhang et al. (2019b) investigated the control effect of a shape-memory
alloy bump by experimental and numerical methods. The shock-induced large separation
bubble transformed into two small-scale separation bubbles under the control of the
deformable bump. Schülein, Schnepf & Weiss (2022) proposed a new SCB contour shape
called the concave bump, which is marked by an expansion kink directly at the peak. The
highest values of separation-length reduction were up to 100 %.

However, the application of an SCB in the hypersonic flow has hardly been explored. It
should be noted that the SWBLI-induced extremely high heating loads become a primary
problem under hypersonic conditions (Wieting & Holden 1989). The smearing effect of
the SCB gives us the idea that the SCB can be used not only to suppress separation but also
to eliminate the pressure/heating peak near the shock impingement. Therefore, this paper
extends the application of an SCB to hypersonic flow as a thermal protection strategy.

Moreover, as with all flow control devices, the SCB may be ineffective or have adverse
effects under off-design conditions. Bruce & Colliss (2015) summarized that the vast
majority of studies have assessed the performance potential of SCBs in terms of one or
both of the following two criteria: (1) control effect under design conditions; (2) adverse
effects under off-design conditions. Therefore, the SCB control effect under various
working conditions is studied following the above criteria to evaluate the robustness.

The rest of this paper is organized as follows. In § 2, the computational model and
numerical method verification are shown. Results and discussions are presented in § 3.
First, a baseline VSBLE at Mach 12 is numerically investigated in § 3.1. Subsequently, a
simplified model is constructed in § 3.2 to quickly solve the shock interactions and predict
the heat flux peak. Furthermore, an SCB-based shock control strategy is discussed in § 3.3
and the simulation result of a VSBLE with SCBs is presented in § 3.4. Finally, conclusions
are presented in § 4.

2. Models and numerical method

2.1. Computational models
The two-dimensional (2-D) and three-dimensional (3-D) schematics of the baseline
VSBLE model are shown in figure 3(a,b). The purple parts are two straight branches with
a half-span angle β. A profile of the leading edge with a blunt radius r is shown in the
dashed box. To get fully developed detached shocks in front of the leading edge, the length
of straight branches is L = 15r. The grey part is a crotch with a rounding radius of R. The
crotch is tangent to the straight branches. A Cartesian coordinate system with an origin at
the centre of the crotch is shown in the 3-D schematic. The x, y, z and ϕ axes denote the
streamwise, transverse, spanwise and circumferential directions, respectively. The VSBLE
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Figure 3. The VSBLE model: (a) 2-D schematic and (b) 3-D schematic.

L (mm) R (mm) r (mm) β (deg.) ϕ (deg.)

30 6.5 2 24 66

Table 1. Geometric parameters of the baseline VSBLE.
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Figure 4. (a) The SCB profile, (b) simplified SCB used in the theoretical analysis and (c) the VSBLE with
the SCBs. The black line, SCB shape; the dashed blue line, flat plate; the red line, baseline VSBLE shape.

model is symmetric about the y = 0 plane and z = 0 plane. All the geometric parameters
are listed in table 1.

The profile of the SCB in a rectangular coordinate system is shown in figure 4(a). The x
and y axes denote the streamwise and the wall-normal direction, respectively. The origin is

968 A15-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

44
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.447


Modelling and shock control

ξ

Ψ

ζ

y
z

x

Figure 5. Grid near the crotch of the baseline VSBLE.

set at the leading edge of the SCB. The characteristic of the SCB is marked by an expansion
corner (EC) directly at the top, which divides the SCB into a compression ramp (CR) and
an expansion ramp (ER). The contour line of the CR is generated by (2.1) with a length
of LCR. The ER is generated by (2.2) with a length of LER. A compression corner (CC)
is formed at the kink between the ER and the mounting plane. In theoretical analysis, the
SCB is simplified as a triangular wedge (see figure 4b). The CR is replaced by a flat plate
because of LCR � LER:

y(x) = hb

L3
CR

x3, 0 ≤ x ≤ LCR, (2.1)

y(x) = − hb

LER
x + hb

(
LCR + LER

LER

)
, LCR < x ≤ LCR + LER. (2.2)

A 3-D schematic of the VSBLE with SCBs is shown in figure 4(c). The CR of the SCB
is denoted by green shading and the ER is denoted by blue shading. Red lines mark the
contour of the baseline VSBLE and black lines mark the contour of the SCB. The contour
shape of the SCB is generated by (2.3) and (2.4), and ξ and ζ are variates in a body-fitted
coordinate system (see figure 5). The SCB’s profile is unchanged along the � direction:

ξ = hb

L3
CR
(ϕo × R − ζ )3, ϕoR ≤ ζ ≤ ϕoR − LCR, (2.3)

ξ = − hb

LER
x(ϕo × R − ζ )+ hb

(
LCR + LER

LER

)
, ϕoR − LCR < ζ ≤ ϕoR − LCR − LER.

(2.4)

Here, ϕo = 1.15R. Note that the shape of the SCB is slightly changed compared to that in
figure 4(a) due to the local curvature of the VSBLE. The EC is located at ϕ= ±40° and
the CC is located at ϕ= ±38.2°. The geometric parameters of the SCB are listed in table 2.
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LCR (mm) LER (mm) hb (mm) θe (deg.) θc (deg.)

2.95 0.2 0.05 14.51 14.04

Table 2. Geometric parameters of the SCB.

2.2. Numerical method validation
In this paper, all the numerical studies are conducted with our in-house solver, MI-CFD,
which has been widely validated in hypersonic flow simulations (Jiang et al. 2017; Zhang
et al. 2022). The vicious simulation uses the Reynolds-averaged Navier–Stokes (RANS)
equations (Launder & Spalding 1974) coupled with Menter’s k–ω shear stress transport
(SST) turbulence model (Menter 1994). The inviscid simulation uses the Euler equations.
Roe’s flux difference splitting scheme is employed for the spatial discretization of the
inviscid fluxes (Roe 1981). The viscous terms were discretized using the second-order
scheme. The equation of state for an ideal gas is used (Jiang & Yan 2019), the molecular
viscosity is assumed to obey Sutherland’s law and the ratio of specific heat γ is 1.4.

Figure 5 shows the computational grid of the crotch area. A body-fitted coordinate
system is appended. The ξ , ζ and� denote the wall’s normal, circumferential and spilling
direction, respectively. The outer boundaries are set to be pressure far-field. The body
surface is a non-slip, isothermal wall, and Tw = 300 K. In addition, although the model is
symmetric about the y = 0 plane, the flow field may be slightly asymmetrical due to the
collision of shear layers. Therefore, the symmetric boundary condition is only used in the
z = 0 plane.

First, a simulation of the VSBLE at Mach 6 (caseM6) is compared with Zhang et al.
(2019a) experiment to verify the reliability of the computational program. The incoming
flow parameters are set according to the wind tunnel condition (see table 3, caseM6).
The comparison of numerical schlieren (density gradient magnitude) and experimental
schlieren in the crotch area is shown in figure 6(a), and the heat flux distribution along the
centreline is shown in figure 6(b). The heat flux is normalized by the reference stagnation
point value qo(M6), which is calculated by the F-R theory (Fay & Riddell 1958) with the
same radius r under the same free stream condition. Both shock structures and heat flux of
the simulation are in good agreement with the experiment.

Next, the same model at Mach 12 (caseM12) is simulated with three different resolution
grids (as shown in table 4, cases 1–3) to verify the grid independence. The fine grid
increases the resolution in the boundary layer and the crotch area. The refined grid
improves the resolution around the shock interaction regions. Additionally, the near-wall
grid in all cases follows y+ ≤ 0.2 (Brown 2013) to ensure the accuracy of the heat flux
simulation. The incoming flow parameters of caseM12 are listed in table 3 (caseM12), which
has the same Reynolds number as caseM6. Lower static temperature and static pressure are
selected to realize wind tunnel experiments in the future. The total temperature is 1490 K.
According to the Li et al.’s (2023) study about the real gas effects of VSBLE under various
temperature conditions, when the total temperature is below 1500 K, both shock structures
and heat flux are similar to the results of a perfect gas. Therefore, we adopt a perfect gas
in the following simulations.

The residual of each equation and wall heat flux are monitored during the calculation.
The criterion for convergence of the numerical calculation is that the residual decreases
by four orders of magnitude or the residual remains stable and the monitored flow field
parameters remain stable. The centreline heat flux of the three cases collapses together
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Case Ma∞ p∞ (pa) T∞ (K) To (K) Tw (K) qo (W m−2) Re/m

caseM6 6 1247 122 1001 300 8.69287 × 105 5.60 × 106

caseM12 12 152 50 1490 300 1.04889 × 106 5.61 × 106

Table 3. In flow condition of Mach 6 and Mach 12.

Case ξ × ζ ×ψ Total cell number Surface cell thickness (mm) y+

Coarse grid 301 × 201 × 101 1.3 × 106 1 × 10−3 0.2
Fine grid 801 × 401 × 161 5.2 × 107 5 × 10−4 0.1
Refined grid 1657 × 421 × 181 1.3 × 108 5 × 10−4 0.1

Table 4. Three sets of grids used in the grid independence study.
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Figure 6. (a) and (b) Comparisons between the numerical (Num) and Zhang et al.’s (2019a) experimental
(Exp) of schlieren and centreline heat flux at Mach 6; (c) centreline heat flux of various grid resolutions at
Mach 12.

in figure 6(c) and is normalized by the reference stagnation point value qo(M12), which is
calculated by the F-R theory at Mach 12.

The peak heat flux of the coarse grid is observed to be lower. With the grid refined, the
peak heat flux converges to a fixed level. However, the heat flux distribution in the middle
of the crotch is slightly asymmetrical, which may be due to the instability collision of jets
on both sides. This asymmetry does not affect the heat flux peaks. The refined grid is used
in the following analysis due to its higher resolution.

3. Results and discussion

3.1. Baseline VSBLE simulation
Numerical simulation of a baseline VSBLE at Mach 12 is first conducted and the free
stream parameters are listed in table 3 (caseM12). Since the heat flux peak is located on the
centreline of the model (z = 0), the following analyses are focused on the z = 0 symmetry
plane. An overall view of the flow field and the VSBLE model is shown in figure 7(a). Two
frames on the left and bottom magnify the local flow details. The flow field is shown as a
Mach contour and the wall is shaded in grey.
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Figure 7. Simulation result of the baseline VSBLE: (a) an overall view of VSBLE; (b) and (c) Mach contour
and numerical schlieren of the crotch area, the wall is coloured by heat flux contour; (d) pressure ( p) and heat
flux (q) along the centreline, normalized by the stagnation point values (po and qo).

Shock structures near two straight branches are relatively simple. Zhang et al. (2021a)
proved that the branches can be regarded as swept cylinders. Bow shocks are generated
in front of the branches due to their bluntness. Along the flow direction, the bow shocks
gradually develop into detached shocks (DSs) with a constant distance (δ1) from the wall.
The inset on the left side of figure 7(a) shows the profile of the DS in the y–z plane. In the
z = 0 plane, the DS can be regarded as a 2-D oblique shock with a shock angle β, which is
the same as the half-span angle of the VSBLE.

In the crotch area, shock structures become complex. The inset at the bottom of
figure 7(a) shows that a series of compression waves are generated from the near-wall
region due to the inwardly curved surface. Additionally, the compression waves converge
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Figure 8. Numerical schlieren around the outermost peak. The blue lines with arrows are 2-D streamlines
and red lines are sonic lines (Ma = 1).

into a curved shock (CS) almost parallel to the surface. Figures 7(b) and 7(c) are a
magnification of the crotch area. The upper half is a Mach contour with several 2-D
streamlines and the lower half is a numerical schlieren. The wall is coloured by the heat
flux contour. There is a near-normal shock in front of the crotch area, which is a Mach stem
(MS) formed by a Mach reflection between the two DSs on both sides. The streamline
indicates that the center of the MS is arched due to a large counter-rotating vortex pair
(CVP). Since the flow field is symmetric about y = 0, only one vortex is shown. Most
of the flow behind the MS is subsonic, except for two slender supersonic jets attached
to the crotch. As shown in the schlieren, there is a shear layer (SL) with a high density
gradient between the jet and subsonic flow. A series of shocks and expansion waves reflect
alternately between the SL and the wall, which causes high heating/pressure loads on the
crotch.

The wall heat flux (q) and pressure ( p) along the centreline are shown in figure 7(d).
They are non-dimensionalized by the stagnation point values (qo and po) of a cylinder
with the same radius r. The global maximums of p and q are symmetrically located at
ϕ= ±40°, called the outermost peaks, with ppeak = 10.0po and qpeak = 9.3qo. In the middle
of the crotch (−30°<ϕ < 30°), a series of alternating peaks and valleys are caused by the
shock/expansion waves reflection in the jets.

Since the outermost peak is much higher than the heating loads in the middle of the
crotch area, it may damage the structure of vehicles. The flow details around the outermost
peak (the red box in figure 7c) are magnified in figure 8. For a more precise analysis,
the field is divided into several subzones according to the shock waves and SL. Three
representative 2-D streamlines are appended. The free stream is defined as zone (0).
The streamline-a from zone (0) crosses the MS to zone (1) and decelerates to subsonic.
The DS and MS intersect at a triple point (TP). A transmitted shock (TS1) and SL are
generated from the TP. Essentially, the local shock structure resembles Edney’s type-III
shock interaction. Streamlines-b and streamlines-c cross the DS to zone (2) (streamline-c
has already crossed the DS in the far front). Then streamlines-b crosses TS1 to zone (3),
and streamline-c crosses CS1 to zone (4). TS1 and CS1 cross each other to become TS2 and
CS2, which is similar to Edney’s type-I shock interaction. Subsequently, TS2 impinges on
the wall and causes as SWBLI. The CS2 impinges on the SL and reflects as Prandtl–Meyer
expansion waves (PMER). Note that the SL coincides with the sonic line, which is the
dividing line between the supersonic jet and the subsonic flow.
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Figure 9. Flow details around the SWBLI region: (a) pressure contour with 2-D streamlines; (b) wall heat
flux with limiting streamlines; (c) pressure/heating loads on the centreline.

Details of the SWBLI region are shown in figure 9(a–c). The pressure contour and
streamlines near the TS2 impingement (see figure 9a) show that TS2 causes a strong
SWBLI with flow separation. The separation bubble footprint on the surface is visualized
by limiting streamlines, as shown in figure 9(b). The convergent line on the left is a
separation line (SepL), and the divergent line on the right is a reattachment line (RL).
Note that the SWBLI region has a 3-D characteristic. The SepL and RL are curved
due to the swept-back nature of TS2. Along the z-direction, the crossing flow increases
and the heat flux decreases. However, the SWBLI is nominally 2-D near the centreline,
since the limiting streamlines show that there is almost no crossing flow here. The
centreline p and q distributions under the SWBLI region are shown in figure 9(c). The
wall pressure experiences two increasing steps, which are caused by separation shock (SS)
and reattachment shock (RS), respectively. There is a pressure plateau (pplt) under the
separation bubble. The heat flux decreases in the separation region and then increases with
the reattachment. The positions of ppeak and qpeak coincide. Downstream of the SWBLI
region, both p and q decrease due to the favourable pressure gradient caused by the PMER.
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3.2. Modelling of shock interactions
The 3-D simulation result of VSBLE shows that the self-induced shock interactions cause
transmitted shocks and extremely high heat flux peaks on the crotch. However, due to the
complexity of the local shock structures, understanding the flow mechanism and predicting
the heat flux peak are still challenging. It is necessary to develop a universal and effective
model to solve the flow parameters of each subzone and predict the peak heat flux. Note
that most of the flow field far from the wall can be regarded as inviscid shock–shock
interactions. In the near-wall region, the viscous effect must be considered.

A simplified model is proposed to isolate the SWBLI region from the overall flow field
by a control volume, which can be regarded as a black box. Outside the black box, inviscid
shock relations (Rankin–Hugoniot relations) are used to solve the shock interactions. For
the black box, boundary conditions obtained by the inviscid solutions are used as input
variables. The output variables, including the SWBLI characteristics and pressure/heating
peaks, can be predicted by a 2-D simplified simulation.

To make these ideas concrete, a 2-D inviscid shock interaction sketch (see figure 10a) is
drawn to describe the structures in the schlieren (see figure 8b). Black dashed lines frame
the SWBLI area as a black box. Some simplifications need to be explained: first, the details
of the SWBLI are replaced by several inviscid shocks; second, the wall is regarded as a
flat plate; furthermore, the MS is idealized as a normal shock without a deflection angle.
Next, the regions outside and inside the black box are solved separately.

3.2.1. Inviscid analysis for the shock interactions
First, the flow field outside of the black box is analysed by inviscid theory. The classical
theory of wave systems is listed in Appendix A. The parameters of each subzone are
represented by their subscript. The deflection angle of flow across the shock is θ .
Additionally, a pressure–deflection angle shock polar is plotted in figure 10(b) according to
the Mach number of each subzone. The shock interactions are solved along the streamlines.
As shown in figure 10(a), streamline-a from zone (0) crosses the normal shock MS to zone
(1). The parameters of zone (1) can be calculated using the normal-shock relation:

Ma2
1 = f (Ma∞, 0), p1/p∞ = g(Ma∞, 0). (3.1a,b)

All states that may be reached from zone (0) by passing through any oblique/normal shock
are represented by the polar Γ 0 in figure 10(b), which is plotted by the Mach number of the
incoming flow. Since streamline-a crosses the MS without deflection, the strength of the
MS is represented by the pressure jump between the origin and the apex of Γ 0 where both
ordinates are zero. As shown in figure 11, streamline-b from the free stream first crosses
the oblique shock DS to zone (2). The shock angle (β2) of the DS is equal to the half-span
angle of the VSBLE, that is, β2 = 24°. The deflection angle θ2 of the DS can be solved by

S(Ma∞, β2, θ2) = 0. (3.2)

The parameters of zone (2) can be calculated using the oblique shock relation:

Ma2
2 = f (Ma∞, β2), p2/p∞ = g(Ma∞, β2). (3.3a,b)

The polar Γ 2 of zone (2) is plotted according to Ma2, and its origin is at the point (θ2,
p2/p∞), which is the weak solution of Γ 0. The strength of the DS is represented by the
pressure jump from p∞ to p2. Then the streamline-b crosses TS1 to zone (3). Zone (1) and
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Figure 10. (a) The 2-D shock interaction sketch and (b) pressure–deflection angle shock polar. The thick blue
lines represent shocks, the thin blue lines with arrows represent streamlines and the red double-dashed line
represents the SL.
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Figure 11. Shock interaction of the MS and DS.
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Figure 12. Shock interaction of the TS1 and CS1.

zone (3) are connected by the SL. According to triple point theory, the pressure and flow
direction on both sides of the SL are continuous. That is,

p1 = p3, θ1 = θ2 + θ3. (3.4a,b)

Since θ1 = 0, θ3 =−θ2. The shock angle β3 of TS1 is related to the deflection angle θ3 by

S(Ma∞, β3, θ3) = 0. (3.5)

The parameters of zone (3) can be calculated using the oblique shock relation:

Ma2
3 = f (Ma2, β3), p3/p2 = g(Ma2, β3). (3.6a,b)

The polar Γ 3 of zone (3) can be plotted according to Ma3, and its origin is at the point (0,
p3/p∞), which is the weak solution of Γ 2. In addition, the origin of Γ 3 also coincides with
the apex of Γ 0, because the static pressure of zone (1) and zone (3) is equal. The strength
of TS1 is represented by the pressure jump from p2 to p3.

As shown in figure 12, the parameters of zone (4) and zone (5) can be solved by flowing
streamline-c. Note that the streamline-c has already crossed the DS in the far front although
it is not shown here. The shock angle β4 and deflection angle θ4 of CS1 can be calculated
by the theory proposed by Zhang (2021). The parameters of zone (4) can be calculated
using the oblique shock relation:

Ma2
4 = f (Ma2, β4), p4/p2 = g(Ma2, β4). (3.7a,b)

The polar Γ 4 of zone (4) is plotted by Ma4. Its origin is at the point (θ2+θ4, p4/p∞),
which is the weak solution of Γ 2. The strength of CS1 is represented by the pressure jump
from p2 to p4. TS1 and CS1 regularly reflect, which is similar to Edney’s type-I shock
interaction. Note that streamline-b passes through CS2 while streamline-c passes through
TS2, and they are divided by the SL. Both sides of the SL have the same pressure and flow
direction. The pressure and flow direction of zone (5) can be determined from the shock
polar. That is, the intersection of Γ 3 and Γ 4 represents the state of zone (5). The strength
of TS2 and CS2 are represented by the pressure jump from p3 to p5 and the pressure jump
from p4 to p5, respectively.

The CS2 impinges the SL at P2 and reflects as PMER. As shown in figure 13,
streamline-b from zone (5) passes through the PMER to zone (6). And the pressure of zone
(6) and zone (1) is equal. The deflection angle of the PMER can be solved by expansion
wave relationship:

υ(Ma1)− υ(Ma2) = θ, p6/p5 = χ(Ma5,Ma6). (3.8a,b)

All the shock interactions outside the black box have been solved by the inviscid theory,
and flow parameters of each sub-zone are listed in table 5.
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(5)
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(3)

(1)

SL

CS2

b

Figure 13. Shock interaction of the CS2 and SL.

Subzone pi/p∞ Mai θ i (deg.) Ti/T∞

(0) 1 12 – 1
(1) 167.83 0.38 0 28.94
(2) 27.63 4.66 18.87 5.57
(3) 167.83 2.98 18.87 10.75
(4) 173.41 2.90 19.98 11.14
(5) 576.05 2.02 18.30 16.93
(6) 167.83 2.81 19.10 11.90

Table 5. Flow parameters of subzones.

RS
PMEw

IS

θw

δ

hg

Ma = 2.9

Lw

Lx

ximp

Figure 14. Two-dimensional computational domain for the black box.

3.2.2. Two-dimensional simulation of the black box
For the black box (the dashed line frame in figure 10a), the inlet condition on the left side
has been solved by inviscid analysis. The incident shock wave TS2 and expansion wave
PMER at the top are determined by their inviscid deflection angles. The boundaries at the
bottom and right side are regarded as output interfaces. A simplified 2-D computational
domain is constructed to simulate flow details in the black box. As shown in figure 14,
TS2 and PMER are replaced by IS and PMEW, which are generated from a finite-length
wedge. The wedge angle θw is the same as the TS2 deflection angle. The incoming flow
parameters are set by the zone (4) parameters in table 5. The boundary layer on the bottom
is developed from a flat plate with a sharp leading edge. The distance from the leading
edge to the shock impingement is the same as the length of the straight branches, to ensure
that the boundary layer thickness is accurately reproduced. An outlet boundary condition
is used on the right side. The geometric parameters of the 2-D computational domain are
listed in table 6.

Inviscid simulation is first conducted to clarify the shock structures, and the result is
shown as a pressure contour in figure 15(a). In addition, the leading edge of the flat plate
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Lx (mm) Lw (mm) hg (mm) θw (deg.) δ (mm)

30 1.2 2.7 18.3 0.2

Table 6. Two-dimensional computational domain geometric parameters.
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β = 37°

θw = 18.3°

PMEw

–15

x/δ

(b)

(a)

Figure 15. Simulation results of the black box: (a) inviscid pressure contour and (b) numerical schlieren.

is not shown in the field. The IS and PMEW are generated from the leading edge and tail
of the wedge, respectively. The PMEW first interacts with the IS from the same family and
weakens the IS. Then the PMEW interacts with a reflected shock (RS) from the opposite
families and penetrates the RS, causing a favourable pressure gradient in the near-wall
region downstream of the shock impingement. The coordinate origin is set on the inviscid
shock impingement.

The viscous simulation result is shown as a numerical schlieren with the same
perspective in figure 15(b), and a sonic line (the red line) is superimposed. The RS is
replaced by the separation shock, reflected expansion wave and reattachment shock. The
sonic line deviates from the wall near the shock impingement.

The SWBLI region is studied in detail to assess the accuracy of the heating/pressure
peaks predicted by the model. The flow field is shown as the Mach contour, pressure
contour and temperature contour in figure 16(a,b,e). The skin friction coefficient (Cf ) is
shown in figure 16(c). Furthermore, the p and q distributions on the wall are compared
with the values on the VSBLE in figure 16(d, f ). The p is normalized by the inflow static
pressure p4, and the temperature (T) is normalized by the inflow static temperature, T4.
The flow direction of the VSBLE uses the skin coordinate system (ξ ) and is normalized
by δ.
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Figure 16. Simulation results of the SWBLI region: (a,b,e) Mach contour, pressure contour and temperature
contour; (c) wall friction coefficient; (d, f ) comparison of wall p/q between the 2-D model and the VSBLE.

Figures 16(a) and 16(c) shows that the Cf begins to decrease upstream of the separation
shock. The length of the separation bubble is Lsep = 6.2δ, which is defined by the interval
where Cf < 0. Downstream of the reattachment, Cf rises to a higher level than the
incoming boundary layer. The reattached shear layer is accelerated by the PMEW and
induces a higher wall shear stress.

Figure 16(d) shows that the pressure distribution predicted by the 2-D model is in
good agreement with the VSBLE value. In particular, the plateau and peak are accurately
reproduced. According to the free interaction theory, the strength of the separation shock
only depends on the incoming boundary layer state and free stream Mach number.
A plateau pressure prediction by Zukoski (1967) is shown in figure 16(d), which is in good
agreement with the simulation result. This suggests that the Reynolds number is high
enough such that the plateau pressure ratio essentially depends on the upstream Mach
number, which is also observed by Pasquariello, Hickel & Adams (2017) in the direct
numerical simulation results. The inviscid wall pressure is also shown in figure 16(d), and
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q/qo p/po

VSBLE (3-D) 9.30 9.75
Model prediction (2-D) 9.25 10.00
Prediction errors 0.5 % 2.6 %

Table 7. Comparison of the p and q peaks between the 2-D model prediction and the VSBLE.

the peak value is much higher than the actual pressure. Because the subsonic layer can
propagate the downstream favourable pressure gradient (caused by the PMEW) forwards,
this indicates that viscosity is a non-negligible factor in SWBLI region.

Figure 16(e) shows a strong temperature gradient at the bottom of the incoming
boundary layer. Figure 16( f ) shows that the q slowly decreases with boundary layer
thickening along the flow direction. In addition, the heat flux of a flat plate under the
same inflow condition but without impinging shock is used as a reference. For the
SWBLI region, the q first decreases with the flow separation then increases in the rear
of the separation bubble. Furthermore, note that the pressure contour (see figure 16b)
and temperature contour (see figure 16e) near the peak are similar to the distribution of
stagnation points. Since the reattachment shock here is almost parallel to the wall, the
shear layer normally passes through the shock with severe compression and heating, which
causes extremely high pressure/heating loads. Such a flow pattern was also observed by
Sriram et al. (2016).

As introduced in § 1, the pressure-heating correlation has a practical value for
engineering. Markarian (1968) summarized a simple correlation between the peak heat
flux and peak pressure:

q∗
peak

qref
= C ×

(
ppeak

pref

)N

. (3.9)

In (3.9), C depends on the type of interactions and N depends on the incoming boundary
layer state. According to the above analysis, the heat flux in the black box is essentially
caused by an impinging shock wave/turbulence boundary layer interaction. For this
classical SWBLI model, these parameters are defined as

C = 1, N = 0.85. (3.10a,b)

The pref and qref are the wall pressure and heat flux of the incoming boundary layer, which
can be obtained from the reference case (see figure 16 f ), where pref = p4, qref = 3qo, and
ppeak = 3.76 p4.

Therefore, the predicted peak heat flux is

q∗
peak = 9.25qo, (3.11)

which is only 0.5 % lower than the simulation result qpeak = 9.30qo. This result shows that
the peaks of q and p on the VSBLE can be correlated by the classical pressure–heat flux
correlation.

The comparison of the pressure/heating peak between the 2-D model prediction and the
3-D VSBLE is listed in table 7, and the prediction error is also shown. The model has a
high prediction accuracy.
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3.3. Shock control and 2-D SCB design
The above theoretical model proves that the high pressure/heating peak on the VSBLE
is essentially caused by the incident shock. Inspired by this result, a local shock control
strategy based on an SCB is proposed: try to weaken the pressure peak by controlling the
incident shock, thereby indirectly reducing the heating loads. In this section, the control
strategy and the SCB’s parameter design are discussed first. A 2-D simulation for an
oblique shock impinging on the SCB is then conducted to verify the control effect.

3.3.1. Discussion of the shock control strategy
As introduced in § 1, the SCB is a passive control device with a low-drag profile and good
control effect. In particular, the concave-shaped SCB proposed by Schülein (2022) can
split strong incident shock into a weaker multi-wave system, which has great potential to
reduce the pressure/heating peaks. Inspired by the results of Schülein, a shock control
strategy of placing a concave SCB on the shock impingement is proposed. However,
Schülein also proves that the control effect is highly sensitive to the bump’s contour shape
and the relative position with the incident shock, which needs to be carefully designed to
maximize the control performance.

Before choosing the shape parameters of the SCB, it should clarify two goals of our
shock control strategy. On the one hand, we hope that the SCB can significantly reduce
or even eliminate the wall pressure/heating peaks and the separation bubble caused by the
incident shock. On the other hand, we hope that the SCB changes the original flow field as
little as possible. Because the control strategy is designed for the inside of the black box
(the near-wall region). If the shock interactions in the free stream change significantly, the
position of the incident shock will also change, which may lead to control failure or bring
additional high heating loads.

To achieve the first goal, an appropriate turning angle θE of EC (see figure 4a) needs to
be selected, because the SCB essentially works through the beneficial interaction between
incident shock and expansion fan generated by the EC. Schülein (2022) proved that the
SCB had the best control effect when the θE was equal to or slightly greater than the
incident shock deflection angle. In this paper, the deflection angle θw of the IS has been
solved by the inviscid theory. Therefore, we need design the θE as θw. To achieve the
second goal, a long and smooth CR should be designed to ensure that the incoming
flow experiences an isentropic compression process without any shock. Therefore, an
asymmetric SCB is adopted in our design to achieve both goals. Specifically, the contour
shape of the CR is generated by a cubic spline (see (2.1)) with a leading-edge tangent to
the mounting plane. The ER is a line with an incline angle of θc, which is equal to θw. The
specific geometric parameters are listed in table 2.

Next, we focus on the position of the SCB. As shown in figure 17(a–c), flow patterns are
divided into three cases according to the relative position of the EC and IS. In figure 17(a),
the shock impingement is upstream of the EC, and neither the IS nor the RS is affected by
the PMEEC. The SCB does not have a beneficial control effect in this case. In figure 17(b),
the IS reflects at the EC, and the RS is weakened by PMEEC. In particular, if θE = θw,
the RS will be eliminated theoretically. In figure 17(c), the shock impingement moves
downstream of the EC. The IS first interacts with the PMEEC and reflects on the ER.

According to the three cases analysed by inviscid theory, the case in figure 17(b) seems
to be the optimum working condition of the SCB. The pressure jump caused by the IS can
be weakened or even eliminated by the EC. However, such a design may cause problems
in applications. On the one hand, the SCB is under a thick boundary layer in viscous flow.
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Figure 17. Shock structures near the SCB under different working conditions.

The IS may cause a strong SWBLI on the impingement. Many studies (White & Ault 1996;
Li & Yang 2015; Sathia Narayanan & Verma 2015; Zhang et al. 2021b) on the SWBLI
near an expansion corner show that if the IS impinges on the EC, the SWBLI-induced
separation bubble will not be eliminated. The subsonic layer can propagate the adverse
pressure gradient forwards. The boundary layer separates upstream of the EC and
reattaches near the EC, which may induce a pressure/heating peak at the reattachment.
On the other hand, it is too demanding to ensure that the IS impinges at the EC accurately.
Experiments and simulations show that the transmitted shock (TS2) of the VSBLE has
a minor amplitude oscillation mode. This means that if the shock impingement moves
upstream of the EC, the bump will lose its control effects. Such a design may weaken the
robustness of the SCB.

In fact, when the IS impinges the boundary layer at a short distance downstream of
the EC (as seen in figure 17c), both the separation bubble and the pressure/heating loads
will be reduced. Chew (1979) advised the designer to set the shock impingement about
3δ–4δ downstream of the expansion corner. Therefore, the bump’s control mechanism
for the case in figure 17(c) is the focus of subsequent study. The shock/expansion wave
interactions around the expansion ramp are shown in detail by inviscid theory. In addition,
the CR of the bump is simplified by a flat plate because LCR � LER, as shown in
figure 4(b).

As shown in figure 18(a), the inviscid method proposed by Yao, Li & Wu (2013) is
adopted to solve the shock wave/expansion wave interactions near the SCB. The PMEEC is
discretized into several Mach waves and interacts separately with the IS from the opposite
families. The transmitted shock (IS’) is bent towards the wall. The join-generated shock
(JS) is generated from the CC, where the bump and flat plate join. The flow field is
divided into several subzones according to the wave system. Two streamlines with different
distances from the wall are shown. The shock intensity and flow parameters of each
subzone are solved following the streamlines, and a pressure–deflection angle shock polar
is drawn to visualize the shock intensity (see figure 18b). The classical theory of wave
systems is listed in Appendix A.

Streamline-a from zone (0) crosses the IS with deflection angle θ1, which is known. The
shock angle β1 is related to the deflection angle θ1 by

S(Ma∞, β1, θ1) = 0. (3.12)
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Figure 18. (a) Shock structures near the ER and (b) pressure–deflection angle shock polar.

PMEEC’

PMEEC

IS

IS’

SL

(0)

(1)

(2)

(3a)

(3b)

β1

θ1

θ2

β3a

β3b

β2

θ3a

θ3b

a

b

Figure 19. Shock/Mach wave interaction of the IS and PMEEC.

The parameters of zone (1) can be solved using the oblique shock relation:

Ma2
1 = f (Ma∞, β1),

p1

p∞
= g(Ma∞, β1). (3.13a,b)

Streamline-b first passes through the PMEEC with deflection angle α, which is known. The
parameters of zone (2) can be solved by Prandtl–Meyer function:

υ(Ma∞)− υ(Ma2) = α,
p2

p∞
= χ(Ma∞,Ma2),

ρ
γ

2

ρ
γ
∞

= p2

p∞
. (3.14a,b)

The IS interacts with the PMEEC from the opposite families and penetrate each other to
become the transmitted shock IS’ and transmitted wave PMEEC’. To simplify the analysis,
the PMEEC is discretized into several Mach waves, and each Mach wave interacts with the
IS separately. Figure 19 is a schematic diagram of the interaction between a Mach wave
and IS. The flow parameters of zone (1) and zone (2) have been solved. Streamline-a from
zone (1) crosses PMEEC’ to zone (3a) with a deflection angle θ3a. The parameters of zone
(3a) can be solved by Prandtl–Meyer function:

υ(Ma1)− υ(Ma3a) = θ3a,
p3a

p1
= χ(Ma1,Ma3a). (3.15a,b)
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Subzone pi/ p0 Mai θ i (deg.) Ti/T∞

(0) 1 2.90 – 1
(1) 3.32 2.02 18.3 1.48
(2) 0.31 3.71 14 0.71
(3) 1.35 2.50 18.75 1.19
(4) 4.07 1.70 18.75 1.70
(5) 8.24 1.18 14 2.10

Table 8. Flow parameters of subzones.

Streamline-b from zone (2) crosses IS’ to zone (3b) with deflection angle θ3b. The
parameters of zone (3b) can be solved using the oblique shock relation:

Ma2
3b = f (Ma2, β3b),

p3b

p2
= g(Ma2, β3b), S(Ma2, β3b, θ3b) = 0. (3.16a–c)

A slipline divides zone (3a) and zone (3b). The following relations must hold:

p3a = p3b, θ1 + θ3a = θ2 + θ3b. (3.17)

By combining the equations (3.15), (3.16) and (3.17), the shock/expansion wave interaction
can be solved.

Next, streamline-b from zone (3b) crosses the RS to zone (4) with deflection angle θ4.
As shown in figure 18(a), the flow directions of zone (2) and zone (4) are parallel to the
wall (ER). The following relation must hold:

θ3 = θ4. (3.18)

The parameters of zone (4) can be solved using the oblique shock relation:

Ma2
4 = f (Ma3b, β4),

p4

p3
= g(Ma3b, β4), S(Ma3b, β4, θ4) = 0. (3.19a–c)

Finally, streamline-b from zone (4) crosses the JS to zone (5) with deflection angle θ5,
which is the same as the turning angle of the CC. There is θ5 =α. The parameters of zone
(5) can be calculated using the oblique shock relation:

Ma2
5 = f (Ma4, β5),

p5

p4
= g(Ma4, β5), S(Ma4, β5, θ5) = 0. (3.20a–c)

The pressure–deflection angle shock polars Γ 2, Γ 3 and Γ 4 are plotted by the Mach
number of zone (2), zone (3) and zone (4), respectively. The shock intensities of the IS,
RS and JS are represented by their pressure jumps. The flow parameters of each subzone
are listed in table 8.

The inviscid theoretical analysis shows that the SCB splits the incident shock into a
multiwave system, but also has some adverse effects. On the one hand, although the
peak pressure ( p4) at the IS impingement is reduced, the local pressure jump ( p4/ p2)
is increased. This may cause a larger separation bubble in viscous flow. On the other hand,
the pressure ( p5) after the JS is higher, which may cause a new heating/pressure peak
downstream of the SCB. However, it should be noted that the PMEW from the wedge tail
was ignored in the above analysis to simplify the calculation. In fact, the PMEW will not
only weaken the intensity of incident shock but also induce a favourable pressure gradient
in the near wall region.
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Figure 20. Simulation results of the 2-D SCB: (a) inviscid pressure contour and (b) numerical schlieren.

3.3.2. Two-dimensional simulations of SCB
To quantitatively evaluate the control effect of the SCB with an incident shock, a 2-D
simulation is conducted using inviscid and viscous methods. The free stream parameters
are set by the inflow condition of the black box (the zone (4) parameters in table 5). The
computational domain is similar to the baseline black box (see figure 14), except the flat
plate at the bottom is replaced by an expansion/compression corner configuration (see
figure 4b). The coordinate origin is set on the EC. Both x and y are normalized by the
incoming boundary layer thickness δ.

Inviscid simulation is first conducted and the result is shown as a pressure contour in
figure 20(a). The IS first interacts with the PMEW from the same family, then interacts
with the PMEEC from the opposite families, and reflects on the ER at x = 3.81δ. Note that
the PMEW penetrates the RS and JS successively and causes a favourable pressure gradient
in the near-wall region.

The viscous simulation result is shown in numerical schlieren (see figure 20b) and a
sonic line is superimposed. Behind the EC, the sonic line significantly deviates from the
wall, indicating that the IS causes a strong SWBLI with flow separation. The SWBLI near
the CC is weaker because the JS is similar to the inviscid shock.

The p and q distributions on the SCB are shown in figure 21(a,b) and compared with
the values of the baseline case. The original single peak is split into double peaks by the
SCB, and the pressure/heating loads on the SCB are significantly reduced.

As shown in the schlieren (see figure 20b), the key feature of the flow around the SCB
is the SWBLI caused by the IS and JS. To further explore the SCB control mechanism
in viscous flow, details around the two SWBLI regions are shown with schlieren, Mach
contours and pressure contours in figure 22(a–h); moreover, the distribution of Cf and p
on the surface are also extracted and shown with lines in figure 22(e, f,i, j).

The IS-induced SWBLI region is analysed first. The schlieren (see figure 22a) shows that
supersonic flow above the sonic line passes through the PMEEC, SS, IS’, reflected PME
and RS from left to right. The subsonic separation bubble is located behind the EC, and
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Figure 21. (a) Pressure and (b) heat flux distributions at the bottom of the black box with/without the SCB.

the separation length is Lsep = 3.2δ (see figure 22e). Figures 22(g) and 22(i) show that the
wall pressure first decreases at the EC, then experiences two increasing steps, successively
caused by the SS and the RS, and reaches a maximum (pmax = 1.58p∞) downstream of
the reattachment point at x = 5.0δ. The SWBLI caused by the JS is relatively weaker.
The schlieren (see figure 22b) shows that the JS is converged by a series of compression
waves from the sonic line. The length of separation bubble is only 0.32δ (see figure 22 f ).
Figure 22( j) shows that there is no obvious plateau during the wall pressure rising. The
local pressure peak (p′

max = 1.56p∞) is located downstream of the CC at x = 15.2δ.
It should be noted that the weakening of the two pressure peaks is consistent with the

prediction in the inviscid analysis, and we refer to this control mechanism of the SCB as
the inviscid effect. However, the SWBLI-induced separation bubbles are also suppressed,
which is beyond expectation. Because the inviscid analysis shows that the IS’ causes a
higher pressure jump at the impingement, which may induce a larger separation bubble.
This result seems to contradict the viscous simulation results. In fact, the SWBLI-induced
separation depends not only on the shock intensity but also on the state of incoming
boundary layer (Pirozzoli & Grasso 2006). This means that the SCB may have affected
the boundary layer upstream of the SWBLI regions.

The flow field is refocused. In the schlieren (see figure 22a), the sonic line seems to be
closer to the surface at the EC. The Mach contour (see figure 22c) at the bottom of the
boundary layer is also changed by the EC. In addition, upstream of both SWBLI regions,
Cf has a higher level than the incoming boundary layer (see figures 22e and 22 f ).

Studies (Giepman, Schrijer & van Oudheusden 2014) show that the SWBLI-induced
separation bubble is sensitive to the low-momentum gas at the bottom of the incoming
boundary layer. Therefore, the near-wall region (y< 0.1δ) Mach profiles upstream of the
IS impingement (at x = 0) and the JS impingement (at x = 12δ) are extracted and shown
in figure 23(a,b). For comparison, the Mach profile of the undisturbed incoming boundary
layer (at x = −δ) is superimposed. The positions of the three stations are marked by
dashed lines in figure 20(b). Moreover, the sonic line height (yMa = 1), the boundary layer
incompressible shape factor (Hi) and the separation length are listed in table 9. The Hi is
defined by

Hi = δ∗i
θi
, (3.21)
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Figure 22. Simulation results of the SWBLI regions: (a,b) numerical schlieren; (c,d) Mach contours;
(e, f ) wall friction coefficient; (g,h) pressure contours; (i, j) wall pressure distributions.

where δi* is the incompressible displacement thickness and θ i is the momentum thickness.
They are defined by

δ∗i =
∫ δ

0

(
1 − u

ue

)
dy, θi =

∫ δ

0

u
ue

(
1 − u

ue

)
dy. (3.22a,b)
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Figure 23. Mach profiles of different stations.

Station Hi yMa=1/δ Lsep/δ

x =−1 (w/o SCB) 1.37 0.086 6.20
x = 0 (near the IS) 1.13 0.038 3.21
x = 12 (near the JS) 1.21 0.053 0.32

Table 9. Comparison of boundary layer state between different stations.

Figure 23(a,b) and table 9 show that both the stations of x = 0 and x = 12δ have fuller Mach
profiles, thinner subsonic layers and lower shape factors than the reference boundary layer.
This change in the boundary layer can be explained from figure 22(g). The local favourable
pressure gradient induced by the PMEEC propagates forwards along the subsonic layer.
The low-momentum gas at the bottom of the boundary layer accelerates in front of the EC,
which induces a higher wall shear stress and a thinner subsonic layer.

This change in the boundary layer may have two effects on the SWBLI regions. On
the one hand, the higher-momentum gas in the near-wall region has a stronger ability to
resist separation. On the other hand, the thinner subsonic layers hinder the propagation of
the downstream adverse pressure gradient. Therefore, although the local pressure jump is
higher, the separation bubble is smaller (see table 9). We call this SCB control mechanism
the viscous effect.

3.4. Simulation of the VSBLE with SCBs
The preliminary design of the SCB in the section above is completed in the black box
using a 2-D method. However, in practical applications, the SCB may be under off-design
conditions due to the swept shock or crossing flow. In this section, the SCB is placed on
the VSBLE to examine its actual performance. The schematic of the VSBLE with SCBs
have been shown in figure 4(c). The position of the EC is determined by the incident shock
TS2, ensuring that the shock impingement is approximately 3δ–4δ downstream of the EC.

A 3-D simulation for the VSBLE with SCBs is conducted with an incoming flow
condition the same as the baseline VSBLE (see table 4). Mach contour and numerical
schlieren of crotch area are shown in figures 24(a) and 24(c), and the wall is coloured by
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Figure 24. Simulation results of VSBLE with SCBs: (a) Mach contour and (c) numerical schlieren of the
crotch area; (b) heat flux and (d) pressure distribution along the centreline. The red solid lines represent the
VSBLE with SCBs and the blue dash–dotted lines represent the baseline VSBLE.

heat flux contour. The heat flux and pressure distributions along the centreline are shown
in figures 24(b) and 24(d). The main flow structures in the crotch area, including the MS,
CVP and supersonic jets are similar to the structures of the baseline VSBLE. It should
be noted that the outermost heat flux peak is reduced by 66 %, and the pressure peak is
reduced by 58 %. This indicates that the SCB plays a good control role and does not change
the main flow structures.

To further explore the 3-D flow details around the SCB, figure 25(a–c) shows the heat
flux contour and limiting streamlines on the SCB. As seen from the limiting streamlines,
the flow pattern on the bump changed significantly along the z direction. The heat flux peak
is located at approximately z/r = 1/2, not at the centreline. Furthermore, four typical slices
from z/r = 0 to z/r = 1/2 are extracted and shown as numerical schlieren (see figure 26a–d),
to evaluate the control effect of the SCB under various working conditions.

As seen from the limiting streamlines between z/r = 0 and z/r = 1/4 in figure 25(c), the
flow pattern is nominally two-dimensional. The SL is located a short distance downstream
of the EC. The RL is near and parallel to the SL. The SWBLI-induced separation bubble
is suppressed by the SCB around the centreline. The local heat flux is also kept at a lower
level. As seen from the schlieren, the shock structures at z/r = 0 (see figure 26a) and
z/r = 1/4 (see figure 26b) are consistent with the 2-D simulation result (see figure 20b),
indicating that the SCB is under the design condition. In addition, due to the incident
shock (TS2) sweeping back along the z-direction, the shock impingement in the z/r = 1/4
slice moves slightly downstream.
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Figure 25. Heat flux and limiting streamlines of the SCB: (a) a global view; (b,c) details near z/r = 1/2 and
z/r = 0. The SL is the separation line, the RL is the reattachment line, the pink dashed lines represent the EC
and CC contours of the SCB, and the green dash–dotted lines represent different z slices.
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Figure 26. Numerical schlieren of different z slices and wall heat flux.
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Figure 27. Comparison of (a) heat flux and (b) pressure distribution of different slices on the VSBLE with
SCBs and the baseline VSBLE.

qpeak/q0 ppeak/ p0

z/r = 0 3.1 4.2
z/r = 1/2 4.0 4.2
baseline 9.3 10.0

Table 10. Heating and pressure peaks of the VSBLE with SCBs and the baseline VSBLE.

However, the flow pattern changes significantly at z/r = 3/8. Figure 25(a) shows that the
RL deviates from the SL and is located on the CC. Furthermore, the heat flux downstream
of the CC shows an increasing trend. Schlieren of the slice z/r = 3/8 (see figure 26c)
shows that the TS2 impingement is close to the CC. The RS interacts with the JS to form
a λ structure above the CC. The global heat flux peak is located at the slice z/r = 1/2.
Figure 25(b) shows that the SL is still upstream of the CC, while the RL is downstream
of the CC. Schlieren of the slice z/r = 1/2 (see figure 26d) shows that the TS2 nominal
impingement is located at the CC, and there is a large separation bubble above the CC.
The JS is replaced by a stronger reattachment shock, which causes a new heat flux peak
downstream of the RL (see figure 25b). For the region z/r> 1/2, the limiting streamlines
(see figure 25a) show that the crossing flow becomes dominant. The TS2 intensity is
significantly weakened due to its sweeping back. The local heat flux also decreases.

To quantitatively evaluate the robustness of the SCB, q and p distributions on the SCB
at z/r = 0 and z/r = 1/2 are extracted and shown in figure 27(a,b), and the baseline VSBLE
values are superimposed as references. The q and p distributions at the slice z/r = 0 are
similar to the 2-D simulation results of the SCB in figure 21(a,b). The original single
peak is split by the SCB into double peaks, and both peaks are significantly weakened.
For the slice z/r = 1/2, the p experiences two increasing steps caused by the SS and RS
respectively, and the q first decreases with the flow separation and then increases with the
reattachment. Both the p and q peaks are located downstream of the CC. The peak values
are listed in table 10. The q peak of the slice z/r = 1/2 is higher than that of the slice z = 0
but is much lower than the baseline value.

In summary, the optimal control effect of the SCB is around the centreline
(0 ≤ z/r< 1/4). Both the separation length and the heat flux are suppressed at a lower level.
With the incident shock swept back, the SCB starts to deviate from the design condition
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at z/r = 3/8 and reaches the most unfavourable condition at z/r = 1/2. However, although
the SCB’s control effect under off-design conditions is weakened, both the heat flux and
pressure peaks are still significantly reduced compared to the baseline peaks.

4. Conclusions

Hypersonic flow on the baseline VSBLE model with R/r = 3.25 at Mach 12 is numerically
investigated. Complex flow structures including the supersonic jet, Mach reflection, shock
interactions and SWBLI in the crotch area are found. In particular, the transmitted shock
impinging on the boundary layer causes extremely high heat flux peaks that can be up to
9.3qo. Based on the shock structures, a simplified model is proposed to isolate the SWBLI
region from the overall flow field by a control volume, which can be regarded as a black
box. Outside the black box, the shock interactions and flow parameters of each subzone
are solved by inviscid shock relations. For the black box, the SWBLI characteristics
and the pressure/heating peak can be predicted by 2-D simulation with high accuracy.
Additionally, the pressure peak and heat flux peak are correlated by classical formulae.
The model provides an idea for the simplified solution of complex shock interactions.

Furthermore, a local shock control strategy based on an SCB is discussed. The purpose
is to weaken the pressure peak by controlling the incident shock, thereby indirectly
reducing the heating loads. The relative positions between the SCB and the incident shock
are first analysed by inviscid theory, and it is found that when the incident shock impinges
3δ–4δ downstream of EC, the SCB is under the best-design condition. Moreover, the
control mechanism is studied by numerical simulations. The results show that the SCB has
two effects on the SWBLI regions. On the one hand, the SCB splits the incident shock into
a weaker multi-wave system and significantly reduces the pressure/heating loads on the
shock impingement by the inviscid effect. On the other hand, the SCB changes the Mach
profile of the incoming boundary layer and suppresses the SWBLI-induced separation
bubble by the viscous effect.

Finally, the VSBLE with SCBs is numerically investigated and compared with the
baseline VSBLE. The result shows that the SCB reduced the heat flux peak by 66 % and
suppressed the SWBLI-induced separation around the centreline. The SCB is less effective
at z/r = 1/2 due to the incident shock swept back; although there is only a small increase
in heating load, this heating load is far below the baseline peak heat flux. This provides
a direction for further SCB optimization, that is, if the shape of the SCB can be designed
according to the three-dimensional swept shock, its control effect may be better. In this
paper, the SCB is first applied to hypersonic flow as a thermal protection device, and its
great potential in heating reduction is demonstrated.
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Appendix A. Oblique shock wave and expansion wave relationships

The classical theory of wave systems is briefly listed (Yao et al. 2013). The parameters
upstream and downstream of the wave are represented by subscript ‘0’ and ‘1’. The
deflection angle of flow across the shock or expansion wave is θ . For flow across oblique
shocks,

Ma2
1 = f (Ma0, β1),

p1

p0
= g(Ma0, β1),

ρ1

ρ0
= h(Ma0, β1)

a1

a0
= A(Ma0, β1), S(Ma0, β1, θ1) = 0

⎫⎪⎬
⎪⎭ , (A1)

where

f (Ma, β) =
Ma2 + 2

γ − 1
2γ
γ − 1

Ma2sin2β − 1
+ Ma2cos2β

γ − 1
2

Ma2sin2β + 1
, (A2)

g(Ma, β) = 2γ
γ + 1

Ma2sin2β − γ − 1
γ + 1

, (A3)

h(Ma, β) = (γ + 1)Ma2sin2β

(γ − 1)Ma2sin2β + 2
, (A4)

A(Ma, β) = [(γ − 1)Ma2sin2β + 2]
1/2

[2γMa2sin2β − (γ − 1)]
1/2

(γ + 1)Ma sinβ
, (A5)

S(Ma, β, θ) = 2 cotβ
Ma2sin2β − 1

Ma2(γ + cos 2β)+ 2
− tan θ. (A6)

The relationship for the expansion wave is

υ(Ma0)− υ(Ma1) = θ,
p1

p0
= χ(Ma0,Ma1),

ρ
γ

1

ρ
γ

0
= p1

p0
, (A7)

here, the ν(M) is Prandtl–Meyer relationship:

υ(M) =
√
γ + 1
γ − 1

tan−1

√
γ + 1
γ − 1

(Ma2 − 1)− tan−1
√

Ma2 − 1. (A8)

Additionally,

χ(Ma0Ma1) =
(

2 + (γ − 1)Ma2
0

2 + (γ − 1)Ma2
1

)γ /(γ−1)

. (A9)
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