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Abstract

The main result of this paper is an upper bound for the number of maximal subgroups in finite solvable
groups. Our result improves an earlier one of Cook, Wiegold and Williamson [1]. At the end, we use our
bound to deduce an estimation for the total number of subgroups in finite solvable groups.

1991 Mathematics subject classification (Amer. Math. Soc): 20 D 10.

1. Complements of minimal normal subgroups

To obtain our bound for the number of maximal subgroups in finite solvable groups,
we refer to a result of Gaschiitz [2], and introduce some notation. Let U be a
complemented minimal normal subgroup of a finite solvable group G. By a Jordan-
Holder type theorem (see [3]), the multiplicity of the isomorphism type of U as a
complemented chief-factor does not depend on the given chief series of G. We shall
denote this number by Ic(U). Furthermore, we use CG(U) to denote the number of
conjugacy classes of complements of U in G.

THEOREM 1.1 (Gaschiitz [1]). Let U be a complemented minimal normal subgroup
of a finite solvable group G. Let E = EndG(£/) be its endomorphism ring and
I =lc(U). Then

For our purposes, we only need the following easy consequence of Theorem 1.1.
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COROLLARY 1.2. Let U be a complemented minimal normal p-subgroup of a finite
solvable group G. Set I = lc(U), letcG(U) denote the number of complements of U
in G and let\G\P be the p-part of\G\. Then

(a) cG(U) < \U\' < \G\P;and
(b) ifG is nilpotent, then cG{U) < (1/p) • \G\P.

PROOF, (a) The second inequality is trivial. For the first one, observe that E =
EndG(£/) is a finite field, and we can consider U as an £-vector space of dimension
d, say. Now \U\ = \E\d > \E\, and since cG(U)<\U\ -c3(U), Assertion (a) follows
from Theorem 1.1

(b) Since G is assumed to be nilpotent, we have U < Z(G) and so |£ | = \U\ = p.
By Theorem 1.1 we obtain

cc(l/) = CSV) = \U\'~l < (1/p) • \G\P.

2. Counting maximal subgroups

We now apply the results of Section 1 to obtain an upper bound for the number
tn(G) of maximal subgroups in a finite solvable group G. The proof of Theorem 2.1
turns out to be rather technical.

THEOREM 2.1. Let G be a finite solvable group with Frattini subgroup <J>. We
denote by p the largest prime divisor and by q the smallest prime divisor of \G\. Then

m(G)<(p\G/<t>\-q)/(q(p-l)).

PROOF. We proceed by induction on | G \, reducing in turn to the situations described
in Steps 1-5.

Step 1. <D = 1.
Proof. Since G> is contained in every maximal subgroup of G, we have m(G) =

tn(G/<I>). As n(G) = 7r(G/4>), p and q are still the largest and the smallest prime
divisors (respectively) of |G/<J>|. Now <fr(G/<I>) = 1, and if $ ^ 1, induction yields

m(G) = m(G/<D) < (p|G/<D| - q)/{q(p - 1)),

the asserted inequality.
In the following, we fix a minimal normal subgroup U of G. Then every maximal

subgroup H of G satisfies either U < H, or G = UH and U D H = 1. We shall
therefore freely use that

m(G)=m(G/( / ) + cG(£/).
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Step 2. \G\ is no prime power.
Proof. Otherwise p = q, and \U\ = p. We apply both induction and Corollary

1.2(b) to deduce

m(G) = m(G/U) + cG(f7) < (\G/U\ - l)/(p - 1) 4- \G\/p = (\G\ - l)/(p - 1).

Since by Step 1, $ = 1, this is the desired bound.
Step 3. \G\^pq.
Proof. Suppose that \G\ = pq. Since p > <7, we may assume that \U\ = p. Then

m(G) = m(G/U) + CG(C/) < 1 + p = (p\G\ - q)/(q(p - 1)), and the conclusion
of the theorem holds.

Let | U | be an r-power for some prime r, and recall that q < r < p.
Step 4. \G/U\ is not a prime power.
Proof. Suppose first that \G/U\ is a ly-group. Then r = p > q,by Step 2. We

start considering the subcase where \U\ > p2. It then follows from Corollary 1.2(a)
and induction that

q(p - 1) • tn(G) = q(p - 1) • m(G/U) +q(p - 1) • CG(f/)

< q(p - l)(\G\q - l)/(q - 1) + q{p - \)\G\P.

Since p > q and \G\, this gives

- 1) • m(G) < ^(p - l)|G|/(p2(<? - 1)) - q(p - l)/(q - 1) + (p -

as required.
By Step 3, it is sufficient to handle secondly the subcase where \U\ = p and

\G/U\ > q2. Again we obtain by Corollary 1.2(a) and induction that

q{p - 1) • m(G) < q(p - 1) • m(G/U) +q(p - 1) • CG(U)

< q{p - \){\G\q - l)/(<7 - 1) +q(p - 1)|G|,

< q(p - l)\G\/(p(q - 1)) - q(p - l)/(q - 1) + (p - \)\G\/q

< (q2 + p(q - l))(p - l)\G\/(pq(q - 1)) - q.

Observe now that

+ q-2 = (q+ 2)(q - 1) < (p + 1)(? - D and

(2p + l)(p - 1) < (qp + l)(p - 1) < qp2.
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Combining these inequalities with the estimate above, we get

q(p-l)-m(G)<p\G\-q.

To finish Step 4, we still have to consider the case where \G/U\ is a p-power. Then
r = q < p and

q(p - 1) • m(G) < q{p - 1) • m(G/t/) + q{p - 1) • CG{U)

< q(p - l)(\G\P - \)/{p - l)+q(p - 1)|G|,

<\G\-q + q(p-l)\G\/p

<p\G\-q.

This completes Step 4.
From now on, we denote by p0 and q0 the largest and smallest prime divisors

(respectively) of | G/U \.
Step 5. We have r = q.
Proof. Assume first that q < r < p. Then certainly p0 = p, q0 = q and

\G\r < \G\lpq. We thus obtain via Corollary 1.2(a) and induction

q(p - 1) • m(G) < q(p - 1) • m(G/U) + q(p - 1) • CG(U)

< q(p - D(p\G/U\ - q)/(q(p - 1)) + q(p - l)\G\r

<p\G\/q-q+q(p-l)\G\/(pq)

<p\G\-q,

as required.
Assume secondly that q < r = p. If p0 = p, then

q(p - 1) • m(G) < q(p - 1) • m(G/U) + q(p - 1) • cG(f7)

<p\G\/p-q+q(p-l)\G\/q

= p\G\-q.

We are therefore left with the case where p0 < p. Since by Step 4, \G/U\ is not a
prime power, we actually have 2 < q = q0 < p0 < p = r. Now \G\P < \G\/(poq),
and arguing as above, we find

q(p - 1) • m(G) < q(p - 1) • m(G/U) + q(p - 1)

< q(p - 1) • (po\G\/p - q)/(q(p0 - D) + q(p -

= ((P ~ l)Po/((A> - 1)P) + (P ~ l)/Po)|G| - (p - l)q/(po -

<p\G\-q.
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We have thus finished step 5 .
Step 6 . Conclusion.
Proof. By Step 5, we still have to deal with the case q = r.
Suppose first that q0 > q, whence by Step 4, r = q < q0 < p0 — p. Since

\G\q < \G\/(qop), again Corollary 1.2(a) and induction yield

q(p - 1) • m(G) < q{p - 1) • m(G/U) + q(p - 1) • CG([7)

< q(p - l)(p\G\/q - qo)/(qo(p - 1)) + q(p - \)\G\lifhp)

<p\G\/qo-q + \G\

<(p/3+l)\G\-q

<p\G\-q.

For the rest of the proof, we may assume that r = q = q0 < po — P- Again
Corollary 1.2(a) and induction imply

q(p - 1) • m(G) < q(p - 1) • m(G/U) + q(p - 1) • CG(U)

<p\G\/q-q+q(p-l)\G\/p

<p\G\-q.

To prove the last inequality, we need only show that p2 + q2(p — 1) < p2q. This
is equivalent to p2 — q2 < pq(p — q), or p + q < pq, or q < p{q — 1), which is
certainly true. The proof is complete.

Cook, Wiegold and Williamson [1] obtained the bound

m(G) < (|G| - \)/{q - 1),

where as above q denotes the smallest prime divisor of | G \. It is achieved if and only
if G is an elementary abelian q -group. Our bound is better if G is not elementary
abelian, as we shall see below at the end of this section. In fact it is achieved for
certain {p, ^}-groups.

EXAMPLE 2.2. (a) Let p and q be prime numbers such that q \p — 1. Let Q = Zq,
and Pi = Zp for i = 1 , . . . , n. Suppose that Q acts fixed-point-freely in the same
way on each Pt, and consider the semidirect product G — {P\ x • • • y. Pn)Q with
respect to this action. Then the Fitting subgroup Pi x •• • x Pn is elementary abelian
and homogeneous.

By Theorem 1.1, we have c^CA) = pn~\ and since Q acts fixed-point-freely on
Pi, it follows that M A ) = p". Thus

tn(G) = m(G/P,) + cG(P,) =
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and G/P\ = (P2 x . . . x Pn)Q. Arguing by induction on n, we obtain

m(G) = l + p + p2 + . . . + p« = (p«+' - l)/(p - 1) = (p|G| - q)/(q(p - 1)).

(b) Specializing further, we consider the case q = 2 and p = 3. Then by (a),
m(G) = (3"+1 - l)/2 = (3|G| - 2)/4. Indeed, the following general estimation
holds.

COROLLARY 2.3. Let q be the smallest prime divisor of\G\. IfG is not an element-
ary abelian q-group, then

m(G) < (q + \)\G\/q2 < 3|G|/4.

PROOF. Suppose that G is a ^-group. Since G is not elementary abelian, we have
$ (G) ^ 1, and Theorem 2.1 implies

m(G) < (\G\/q - l)/(q - 1) < \G\/(q(q - 1)) < (q + \)\G\/q2 < 3|G|/4.

If on the other hand G is not a q -group, we denote by p the largest prime divisor of
|G|. Then p > q + 1, and consequently p/(p — 1) < (^ + l)/<7- It thus follows from
Theorem 2.1 that

m(G) < (p|G| - q)/(q(p - 1)) < p\G\/(q(p - 1)) < (<? + 1)|G|/^2 < 3|G|/4.

If G is not elementary abelian, then certainly |G| > q2 and then

Thus Corollary 2.3 improves the bound given in [1].

3. Counting subgroups

In this section, we deduce a (rather crude) bound for the total number of subgroups
in a finite solvable group G, using our estimations from Section 2 We shall actually
count subgroup chains in G which cannot be refined, and start with an analytical
lemma.

LEMMA 3.1. Let g e N and f : R - • R, defined by f(r) = gr/2rir-l)/2. Then f is
increasing on the interval (—oo, log2 g].
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PROOF. Calculating the derivative / ' of / , we obtain

f'(r) = (ln(g) • gr • 2r(r~l}/2 - gr • ln(2) • (2r -

= (g72r(r"1)/2) • (ln(g) - ln(2) • (2r -

If r < log2 g, it follows that

ln(g) - ln(2) • (2A- - l)/2 > ln(g) - ln(2) • (2 • log2 g -

= ln(2) • log2 g - ln(2) • log2 g

= ln(v^) > 0.

Therefore, f'(r) > 0 for r e (-oo, log2 g], and the claim holds.

THEOREM 3.2. Let G be a finite solvable group. Then the number f(G) of non-
refinable subgroup chains ofG satisfies

f(G) < (1/2) • |G|W+1)/2,

where d = log2 \G\.
In particular: The number of subgroups ofG is bounded by

PROOF. Since each subgroup of G is a member of a subgroup chain of G that cannot
be refined, and since each such chain contains at most d + 1 subgroups of G, the last
assertion follows immediately from the bound for f(G).

If \G\ < 3, then the theorem certainly holds. So suppose that |G| > 4 and let
1 = Gr < Gr-\ < • • • < G\ < Go = G be a non-refinable subgroup chain of
maximal length r. Then r < log2 \G\ = d and |G,| < |G|/2'. Once G, has been
chosen, there are exactly tn(G,) possibilities to choose Gi+1 in the next step. Since by
Corollary 2.3,

m(G,) < |G,-| < |G|/2;,

and since Gr = 1, it follows that

f(G) < tn(Go) • miG,) • -miG^) < \G\r-1 /2^mr-2)/2.

By Lemma 3.1, the function f(s) = |G|V2s(l"1)/2 is increasing on (—oo, d]. Hence

f(G) < \G\d-i/2«-w-2»2

= \G\/2 • \G\id-1)/2

= (1/2) • |

as required.

https://doi.org/10.1017/S1446788700038155 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038155


[8] On the number of subgroups in finite solvable groups 141

References

[1] R. J. Cook, J. Wiegold and A. G. Williamson, 'Enumerating subgroups', / . Austral. Math. Soc.
(Series A) 43 (1987), 220-223.

[2] W. Gaschutz, 'Die Eulersche Funktion endlicher auflosbarer Gruppen', Illinois J. Math. 3 (1959),
469-476.

[3] , 'Prafrattinigruppen', Arch. Math. 13 (1962), 418-426.

School of Mathematical Sciences IWR
Raymond and Beverly Sackler Faculty Universitat Heidelberg
of Exact Sciences D-6900 Heidelberg
Tel Aviv University Germany
Ramat Aviv, Tel Aviv and
Israel UCI

Utility Consultants International
D-6000 Frankfurt 71

Germany

https://doi.org/10.1017/S1446788700038155 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038155

