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Abstract

We present a sufficient condition for a pair of finite integer sequences to be degree sequences of a bipartite
graph, based only on the lengths of the sequences and their largest and smallest elements.
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1. Introduction

For natural numbers a, b, c, d,m, n, S , let P(a, b, c, d,m, n, S ) denote the set of pairs
(e, f ) of integer sequences of length m, n, respectively, each having sum S , with
max(e) = a,min(e) = b,max( f ) = c,min( f ) = d. We consider the following problem:
when is it the case that for all pairs (e, f ) ∈ P(a, b, c, d,m, n, S ), there exists a bipartite
graph whose degree sequences are e and f ? In this case, the pair (e, f ) is said to be
bipartite graphic.

Before presenting our main result, we remark that for the symmetric case where
e = f , a sufficient condition was given in [1] and a sharp bound was given in [5]. See
also [3, 8]. For the analogous problem of the graphicality of a single sequence, a
sufficient condition was given in [10], improvements were given in [2, 4] and a sharp
bound was given in [6] (note that [4] was written before but appeared after [6]).

Theorem 1.1. For natural numbers a, b, c, d,m, n, S such that n ≥ a ≥ b,m ≥ c ≥ d and
max(mb, nd) ≤ S ≤ min(ma, nc), the following conditions are equivalent.

(a) All pairs (e, f ) ∈ P(a, b, c, d,m, n, S ) are bipartite graphic.
(b) a = b or c = d or, when a > b and c > d,

ar + cs ≤ S + rs + min{r − p − d, s − q − b, r + s − p − q − b − d + 1, 0}, (1.1)

where r = b(S − mb)/(a − b)c, s = b(S − nd)/(c − d)c, p = S − cs − d(n − s) and
q = S − ar − b(m − r).
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Remark 1.2. The hypotheses a ≥ b, c ≥ d and max(mb, nd) ≤ S ≤ min(ma, nc) of the
above theorem are just the obvious conditions under which P(a, b, c, d,m, n, S ) is
nonempty. The hypotheses n ≥ a,m ≥ c are obvious necessary conditions for a pair
to be bipartite graphic.

Remark 1.3. The dependence on S of the criteria in the above theorem can be removed
by imposing (1.1) for each of the finite number of possible values of S , that is, all S
with max(mb, nd) ≤ S ≤ min(ma, nc).

The paper is organised as follows. In Section 2, we prove the key fact that it suffices
to consider sequences with at most three different entries. The proof of Theorem 1.1
is completed in Section 3. Finally, in Section 4, we employ Theorem 1.1 in the case of
bipartite graphs whose degree sequences e, f are equal; this gives an alternative proof
of the main result of [5].

2. Pairs with at most three different entries

Consider natural numbers a, b, c, d,m, n, S such that n ≥ a > b,m ≥ c > d and
max(mb, nd) ≤ S ≤ min(ma, nc). Let r = b(S − mb)/(a − b)c, s = b(S − nd)/(c − d)c,
p = S − cs − d(n − s) and q = S − ar − b(m − r). Note that 1 ≤ r < n, 1 ≤ s < m,
0 ≤ q < a − b and 0 ≤ p < c − d. Consider the sequences

E = (ar, b + q, bm−r−1), F = (cs, d + p, dn−s−1). (2.1)

Here and throughout this paper, the superscripts indicate the number of repetitions
of the entry. By construction, E and F both have sum S = ra + b(m − r) + q =

c + d(n − s) + p. So, (E, F) ∈ P(a, b, c, d,m, n, S ). The following lemma shows that
the bipartite graphicality need only be checked for such pairs of sequences.

Lemma 2.1. The following conditions are equivalent.

(a) All pairs (e, f ) ∈ P(a, b, c, d,m, n, S ) are bipartite graphic.
(b) The pair (E, F) is bipartite graphic.

Proof. (a) =⇒ (b) is obvious. To prove the converse, recall that by the Gale–
Ryser theorem [7, 9], a pair of decreasing integer sequences e = (e1, e2, . . . , em−1, em),
f = ( f1, f2, . . . , fn−1, fn) is bipartite graphic if and only if they have the same sum and,
for all k = 1, . . . ,m, the inequality

k∑
i=1

ei ≤

n∑
i=1

min(k, fi)

is satisfied. (Here, and throughout the paper, decreasing is be understood in the
nonstrict sense.) So, by the Gale–Ryser theorem, (b) =⇒ (a) follows from the
following two claims.
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(i) If e = (e1 = a, e2, . . . , em−1, em = b) is a decreasing sequence with the sum S and
E is given by (2.1), then, for all k = 1, . . . ,m,

k∑
i=1

ei ≤

k∑
i=1

Ei.

(ii) If f = ( f1 = c, f2, . . . , fn−1, fn = d) is a decreasing sequence with the sum S and
F is given by (2.1), then, for all k = 1, . . . ,m,

n∑
i=1

min(k, Fi) ≤
n∑

i=1

min(k, fi).

To prove (i), we first note that the required inequality is satisfied for all k = 1, . . . , r
as, for such k, ei ≤ Ei = a. For k = r + 1, we need to show that

∑r+1
i=1 ei ≤ ar + b + q,

which is equivalent to
∑m

i=r+2 ei ≥ S − (ar + b + q) = b(m − r − 1), which is true as
ei ≥ b. Now, for k = r + 2, . . . ,m, define φk =

∑k
i=1(Ei − ei). We have φm = 0.

Moreover, φk+1 − φk = Ek+1 − ek+1 = b − ek+1 ≤ 0, so the sequence φk is decreasing.
Hence, φk ≥ 0 for all k = r + 2, . . . ,m.

The proof of (ii) can be deduced from the symmetry (we can interchange the
sequences e and f ). It is cleaner however to give an independent proof. So, suppose
that f = ( f1 = c, f2, . . . , fn−1, fn = d) is a decreasing sequence with the sum S . Let
C be the maximal subscript such that fC = c and let D be the minimal subscript such
that fD = d. Clearly, C < D. If C + 1 = D or if C + 2 = D, then f = F (as the sum is
fixed, so that fC+1 is uniquely determined). Otherwise, consider the sequence f ′ such
that f ′C+1 = fC+1 + 1, f ′D−1 = fD−1 − 1 and f ′i = fi for i , C + 1,D − 1. The sequence
f ′ is decreasing, with the same sum S as f . Furthermore, the sums

∑n
i=1 min(k, fi)

and
∑n

i=1 min(k, f ′i ) may only differ in the terms with i = C + 1,D − 1, and an easy
check shows that

∑
i∈{C+1,D−1}min(k, f ′i ) ≤

∑
i∈{C+1,D−1}min(k, fi) for all k = 1, . . . ,m,

so
∑n

i=1 min(k, f ′i ) ≤
∑n

i=1 min(k, fi) for all k = 1, . . . ,m. Repeating this argument, we
will eventually arrive at F, which proves (ii). �

3. Proof of Theorem 1.1

Recall that using the notion of strong indices, Zverovich and Zverovich gave the
following refinement of the Gale–Ryser theorem.

Theorem 3.1 [10, Theorem 8]. Let x = (x1, . . . , xm) and y = (y1, . . . , yn) be decreasing
sequences of natural numbers with equal sum S , and suppose that x has the form
x = (zl1

1 , z
l2
2 , . . . , z

lt
t ), where z1 > z2 > · · · > zt. The pair (x, y) is bipartite graphic if and

only if for all k ∈ {l1, l1 + l2, . . . , l1 + · · · + lt}, one has

k∑
i=1

xi ≤

n∑
i=1

min{k, yi}. (3.1)
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Remark 3.2. Let m = l1 + · · · + lt. For k = m, the inequality (3.1) is just S ≤∑n
i=1 min{m, yi}. Notice that this inequality holds if and only if y1 ≤ m, because of

the assumption that the sequences each have sum S .

Proof of Theorem 1.1. Let a, b, c, d,m, n, S be as in the statement of Theorem 1.1.
First we treat the case where a = b or c = d. Without loss of generality, suppose
that a = b. So, if (e, f ) ∈ P(a, b, c, d,m, n, S ), then e = (am). By Theorem 3.1 with
x = e, y = f , the pair (e, f ) is bipartite graphic if (3.1) holds for k = m, which is the
case by Remark 3.2 since d ≤ m by hypothesis. So, we may assume that a > b and
c > d.

Applying Theorem 3.1 and Remark 3.2 to the pair (E, F) of Section 2, we have that
(E, F) is bipartite graphic if and only if the following two inequalities hold:

ar ≤
n∑

i=1

min{r, Fi}, (3.2)

ar + b + q ≤
n∑

i=1

min{r + 1, Fi}. (3.3)

When r < d, since n ≥ a, we have
∑n

i=1 min{r, Fi} = nr ≥ ar and
n∑

i=1

min{r + 1, Fi} = n(r + 1) ≥ ar + a ≥ ar + b + q,

so (3.2) and (3.3) both hold. Similarly, if c ≤ r,
∑n

i=1 min{r, Fi} =
∑n

i=1 Fi = S ≥ ar and
n∑

i=1

min{r + 1, Fi} =

n∑
i=1

Fi = S ≥ ar + b + q,

so (3.2) and (3.3) again both hold. Thus, we may assume that d ≤ r < c. Hence,
n∑

i=1

min{r, Fi} = rs + min{r, d + p} + d(n − s − 1),

n∑
i=1

min{r + 1, Fi} = rs + s + min{r + 1, d + p} + d(n − s − 1).

Consequently, (3.2) and (3.3) both hold and hence (E, F) is bipartite graphic if and
only if

ar ≤ min
{ n∑

i=1

min{r, Fi},

n∑
i=1

min{r + 1, Fi} − b − q
}

= rs + d(n − s − 1) + min{min{r, d + p},min{r + 1, d + p} + s − b − q}.
Substituting d(n − s) = S − cs − p gives a more symmetrical, equivalent condition:

ar + cs ≤ S + rs − d − p + min{min{r, d + p},min{r + 1, d + p} + s − b − q}
= S + rs + min{min{r − p − d, 0},min{r + s − b − d − p − q + 1, s − b − q}}
= S + rs + min{r − p − d, s − q − b, r − p − d + s − q − b + 1, 0}.

So, Theorem 1.1 follows from Lemma 2.1. �
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4. Symmetric pairs

In [5], a sharp sufficient condition was given for a symmetric pair (e, e) to be
bipartite graphic: if e has length m, maximal element a and minimal element b, then
the condition is mb ≥ b 1

4 (a + b)2c. Notice that when a + b is odd, the condition is
mb ≥ 1

4 ((a + b)2 − 1) or equivalently 4mb ≥ (a + b)2 − 1. When a + b is even, the
condition is mb ≥ 1

4 (a + b)2 or equivalently 4mb ≥ (a + b)2. But, in this case, since
both sides are divisible by 4, this condition can also be written as 4mb ≥ (a + b)2 − 1.
So, we may reformulate the main result of [5] as follows.

Theorem 4.1. Consider natural numbers a, b,m such that m ≥ a ≥ b and 4mb ≥
(a + b)2 − 1. Then, for all S with mb ≤ S ≤ ma, all symmetric pairs (e, e) in
P(a, b, a, b,m,m, S ) are bipartite graphic.

We now employ Theorem 1.1 to give an alternative proof of Theorem 4.1.

Proof of Theorem 4.1. Suppose that m ≥ a ≥ b and 4mb ≥ (a + b)2 − 1. First note that
the required result holds if a = b by Theorem 1.1. So, we may assume that a ≥ b + 1.
Substituting c = a, d = b and n = m in Theorem 1.1(b), we have that if mb ≤ S ≤ ma,
then all symmetric pairs (e, e) ∈ P(a, b, a, b,m,m, S ) are bipartite graphic if

2ar ≤ S + r2 + min{2r − 2q − 2b + 1, 0}, (4.1)

where r = b(S − mb)/(a − b)c and q = S − ar − b(m − r). Using S = ar + b(m − r) + q
and rearranging, (4.1) can be written as R ≥ 0, where

R = r2 − (a + b)r + mb + q + min{2r − 2q − 2b + 1, 0}.

So, by Theorem 1.1, it remains to use 4mb ≥ (a + b)2 − 1 to show that R ≥ 0 holds for
all 1 ≤ r < m and 0 ≤ q < a − b.

If 2r − 2q − 2b + 1 ≤ 0, then R = r2 − (a + b − 2)r + b(m − 2) − q + 1, and it clearly
suffices to consider the case q = a − b − 1. In this case, R = r2 − (a + b − 2)r + bm −
a − b + 2, which we regard as a quadratic in r. The discriminant ∆ is (a + b − 2)2

− 4(bm − a − b + 2) = (a + b)2 − 4(bm + 1). Since 4mb ≥ (a + b)2 − 1, we have ∆ ≤

−3 < 0. Hence, R ≥ 0 for all r in this case.
If 2r − 2q − 2b + 1 > 0, then R = r2 − (a + b)r + mb + q, and it clearly suffices

to consider the case q = 0. The discriminant ∆ is then (a + b)2 − 4mb. Since
4mb ≥ (a + b)2 − 1,

∆ = (a + b)2 − 4mb ≤ 1.

If ∆ ≤ 0, then R ≥ 0 for all r, as required. If ∆ = 1, then a + b is necessarily odd. Thus,
as the minimum of the quadratic r2 − (a + b)r + mb is attained at 1

2 (a + b), the smallest
value of R for r an integer is attained at 1

2 (a + b ± 1). But these are the zeros of R, so
R ≥ 0 for all integers r in this case, as required. �
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