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Abstract
In this study, we consider a class of multiple-drawing opposite-reinforcing urns with time-dependent replacement
rules. The class has the symmetric property of a Friedman-type urn. We divide the class into a small-increment
regime and a large-increment regime. For small-increment schemes, we prove almost-sure convergence and a
central limit theorem for the proportion of white balls by stochastic approximation. For large-increment schemes,
by assuming the affinity condition, we show almost-sure convergence of the proportion of white balls by martingale
theory and present a way to identify the limit distribution of the proportion of white balls.

1. Introduction

Urn models, as classic examples of stochastic processes with reinforcement, can be used to describe the
underlying mathematical mechanisms in various evolutionary processes in fields such as epidemiology,
networks, economics, and physics. The classic urn models deal with urns containing balls of two colors,
and at each discrete step, one ball is sampled and reinserted, and balls are added into the urn based
on the observed color. The asymptotic composition for this type of urn processes is well studied and a
comprehensive overview can be found in [15]. Many directions of generalizations have been developed,
including considering urns with more than two colors (e.g., [8,9,14]), allowing deleting balls (e.g.,
[6,10,12]), taking samples of size 𝑠 ≥ 1 at each step (e.g., [11,13,14]), and allowing the replacement
rules to be time-dependent and random (e.g., [2,3,5,16]).

A time-dependent version of Pólya urn was proposed in [16]. In a classic Pólya urn, the urn process
initially starts with 𝑊0 white and 𝐵0 blue balls. At each discrete time unit, one ball is sampled and
put back, and an integer number 𝑐 > 0 balls are reinforced for the same color as the drawn sample.
It is known in [4] that the proportion of white balls converges almost surely to beta distribution with
parameters 𝑊0/𝑐 and 𝐵0/𝑐. A time-dependent generalization is studied in [16], where 𝑐 is replaced by
a dynamic function 𝐹 (𝑛). Necessary and sufficient conditions on the sequence {𝐹 (𝑛)} are given for
the proportion of white balls to converge to a Bernoulli distribution with parameter𝑊0/(𝑊0 + 𝐵0). The
condition for the limit distribution to have atoms and the locations of the atoms have also been discussed.
The Bernoulli limit has also been obtained via a distributional equation in [5]. For this two-color single-
drawing time-dependent Pólya urn process, a study on conditions for domination and monopoly can be
found in [19]. A generalization to multiple-drawing Pólya-type urns is considered in [2].

In this study, we consider an analogue of the class dealt with in Chen [2] and Pemantle [16] to a class of
multiple-drawing Friedman-type urns. We start with a two-color (say white and blue) multiple-drawing

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

Probability in the Engineering and Informational Sciences (2024), 38:1 115–129

https://doi.org/10.1017/S0269964822000535 Published online by Cambridge University Press

https://orcid.org/0000-0003-0281-7746
mailto:gshuyang@gwu.edu
mailto:raguech@ksu.edu.sa
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0269964822000535


urn and sample 𝑠 ≥ 1 balls at each discrete unit of time. We assume that the samples are taken with
replacement. The results under sampling without replacement can be obtained through a similar manner.
At each step, we examine the composition of the sample, reinsert the drawn balls into the urn and execute
the replacement matrix. We specify a class of multiple-drawing dynamic Friedman urn with opposite-
reinforcement by assuming that the replacement matrix has the symmetric reinforcement feature of a
classic Friedman urn and the replacement matrix is changing over time. While keeping the urn to be
balanced, we allow the replacement entries to be random variables (with some restriction for large-
increment regime), so the symmetric reinforcement is in the mean sense. We further define that the class
is opposite-reinforcing in the mean sense by assuming the color with lower appearance in the sample gets
supported stronger in the mean sense. A special case of this class with a fixed replacement matrix that
is constant over time has been studied in [13]. In their study, a sample of size 𝑠 is taken at each step, and
for every white ball in the sample, a positive integer 𝐶 blue balls are added, and vice versa. In the class
studied in [13], the reinforcement is opposite and affine in the sense that the lower the appearance of a
color, the stronger that color gets reinforced, and the number of increments of each color is a multiple
of the number of that color in the drawn sample. Later, we see that affinity is a condition we need if we
seek a martingale theory-based proof of convergence. Another special case with a random replacement
matrix where the distributions of the replacement entries stay constant over time can be found in [7].

For the class we consider, we assume the urn to be balanced with balance factor 𝐾 𝑓 (𝑛), for integer
𝐾 > 0, and for some positive function 𝑓 (𝑛) ≥ 1 nondecreasing in 𝑛, and the total addition is separated
into white and blue based on the composition of the sample and an extra layer of randomness from a
random variable on the interval [0, 𝐾). The addition rules are represented by a replacement matrix, the
rows of which are indexed by the composition of the sample, and the columns are indexed by the colors
in the scheme, namely white and blue. We consider a matrix representation where the 𝑖th row is the
number of white and blue balls (respectively) that are added to the urn when the sample contains 𝑖 − 1
blue balls. For a multiple-drawing dynamic Friedman urn with opposite-reinforcement, the replacement
matrix is given by

M𝑛 = 𝑓 (𝑛)

��������

𝑋𝑛,0 𝐾 − 𝑋𝑛,0
𝑋𝑛,1 𝐾 − 𝑋𝑛,1
...

...
𝑋𝑛,𝑠−1 𝐾 − 𝑋𝑛,𝑠−1
𝑋𝑛,𝑠 𝐾 − 𝑋𝑛,𝑠

��������
, (1.1)

for integer 𝐾 > 0, and for some positive function 𝑓 (𝑛) ≥ 1 nondecreasing in 𝑛, where 𝑋𝑛,𝑖
′𝑠 are

distributed as independent random variables on the support [0, 𝐾), for 0 ≤ 𝑖 ≤ 𝑠. Since we are focusing
on opposite-reinforcement schemes, we exclude Pólya-type schemes by keeping out 𝐾 in the admissible
support to avoid the realization that all 𝑋𝑛,𝑖

′𝑠 in the upper half of the replacement matrix are equal to 𝐾
(this class is studied in [2]). Let F𝑛 be the sigma field generated by the first 𝑛 draws, we assume 𝑋𝑛,𝑖 and
the 𝑛th round of drawing are conditionally independent, given F𝑛−1, for all 𝑖, and 𝑋𝑛,𝑖

′𝑠 are independent
and identically distributed as {𝑋0, 𝑋1, 𝑋2, . . . , 𝑋𝑠} for all 𝑛. As discussed in [1], the replacement entries
can be scaled and the same results hold, so we do not have integer value assumptions on 𝑓 (𝑛) and 𝑋𝑛,𝑖 .
Proper scaling can be found for the process to make sense in terms of balls and urns. For the proposed
class, we require

E[M𝑛] = 𝑓 (𝑛)

��������

𝜑0 𝐾 − 𝜑0
𝜑1 𝐾 − 𝜑1
...

...
𝜑𝑠−1 𝐾 − 𝜑𝑠−1
𝜑𝑠 𝐾 − 𝜑𝑠

��������
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= 𝑓 (𝑛)

��������

𝜑0 𝐾 − 𝜑0
𝜑1 𝐾 − 𝜑1
...

...
𝐾 − 𝜑1 𝜑1
𝐾 − 𝜑0 𝜑0

��������
, (1.2)

where 𝜑(𝑖) + 𝜑(𝑠 − 𝑖) = 𝐾 , for each 0 ≤ 𝑖 ≤ 𝑠, and 𝜑(𝑖) ≤ 𝐾/2, for 0 ≤ 𝑖 ≤ �𝑠/2� . We exclude the
uninteresting process where 𝜑(𝑖) = 𝐾/2 for all 𝑖, so that there is at least some 0 ≤ 𝑖 ≤ �𝑠/2�, such that
𝜑(𝑖) < 𝐾/2. The condition 𝜑(𝑖) +𝜑(𝑠− 𝑖) = 𝐾 ensures that the addition is symmetric in the mean sense.
By the condition 𝜑(𝑖) + 𝜑(𝑠 − 𝑖) = 𝐾 , we see that if 𝑠 is even and a tie appears in the sample, we have
𝜑(𝑠/2) = 𝐾/2.

In the case 𝐾 = 𝑠 and 𝜑(𝑖) = 𝑖, for each 0 ≤ 𝑖 ≤ 𝑠, we can set 𝑋𝑖 = 𝜑(𝑖) and have a sequences of
deterministic replacement matrices given by

M𝑛 =

��������

0 𝑠 𝑓 (𝑛)
𝑓 (𝑛) (𝑠 − 1) 𝑓 (𝑛)
...

...
(𝑠 − 1) 𝑓 (𝑛) 𝑓 (𝑛)
𝑠 𝑓 (𝑛) 0

��������
,

which is an extension to the class considered in [13], when 𝐶 is replaced by 𝑓 (𝑛).
An example for random addition is given by

M𝑛 = 𝑓 (𝑛)

��������

𝑠(1 − 𝐵𝑛 (𝑝)) 𝑠𝐵𝑛 (𝑝)
(𝑠 − 1) − (𝑠 − 2)𝐵𝑛 (𝑝) (𝑠 − 2)𝐵𝑛 (𝑝) + 1

...
...

(𝑠 − 2)𝐵𝑛 (𝑝) + 1 (𝑠 − 1) − (𝑠 − 2)𝐵𝑛 (𝑝)
𝑠𝐵𝑛 (𝑝) 𝑠(1 − 𝐵𝑛 (𝑝))

��������
,

for 𝑋𝑛,𝑖 = (𝑠 − 𝑖) − (𝑠 − 2𝑖)𝐵𝑛 (𝑝), where 𝐵𝑛 (𝑝)’s are distributed as independent Bernoulli(𝑝) random
variables, for 1

2 < 𝑝 < 1. We see that in the single-drawing case, the replacement matrix reduces to

M𝑛 = 𝑓 (𝑛)
(
1 − 𝐵𝑛 (𝑝) 𝐵𝑛 (𝑝)
𝐵𝑛 (𝑝) 1 − 𝐵𝑛 (𝑝)

)
,

for 1
2 < 𝑝 < 1.

Let𝑊𝑛 and 𝐵𝑛 be respectively the number of white and blue balls in the urn after 𝑛 draws. We assume
𝑊0 > 𝑠 and 𝐵0 > 𝑠 to ensure tenability. Let 𝑇𝑛 be the total number of balls in the urn after 𝑛 draws. We
have 𝑇𝑛 = 𝑊𝑛 + 𝐵𝑛 = 𝑇0 +

∑𝑛
𝑖=1 𝐾 𝑓 (𝑖). Since the total 𝑇𝑛 is deterministic, the study of one color implies

the results of the other. So our objective is to study the asymptotic behavior of the proportion of white
balls, which we define as 𝑄𝑛 = 𝑊𝑛/𝑇𝑛.

2. Classification

After some initial analysis, we find that the asymptotic behavior of 𝑄𝑛 can be characterized by

𝑔(𝑛) = 𝐾 𝑓 (𝑛)
𝑇𝑛

.

Along this line of discussion, we study the following regimes:

(1) lim𝑛→∞ (𝑛𝐾 𝑓 (𝑛))/𝑇𝑛 = 𝛼, for some positive real constant 𝑎.
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(2) lim𝑛→∞ (𝐾 𝑓 (𝑛))/𝑇𝑛 = 𝛽, for 𝛽 ∈ (0, 1).
(3) lim𝑛→∞ (𝐾 𝑓 (𝑛))/𝑇𝑛 = 1.

Remark 2.1. Regime (1) does not cover the entire spectrum, in which lim𝑛→∞ (𝐾 𝑓 (𝑛))/𝑇𝑛 = 0. Since
we rely on stochastic approximation to obtain the limit theorems for urns in this regime, the rate in
regime (1) is required. We shall work on the remaining spectrum in the future.

Example 2.1. For 𝑓 (𝑛) = 𝑎𝑛𝑏 + 𝑐, for nonnegative real constants 𝑎, 𝑏, and 𝑐, we have

lim
𝑛→∞

𝑛𝐾 𝑓 (𝑛)
𝑇𝑛

= 𝑏 + 1,

since 𝑇𝑛 ∼ 𝐾
∫ 𝑛

𝑥=0 𝑎𝑥
𝑏 𝑑𝑥 = (𝐾𝑎/(𝑏 + 1))𝑛𝑏+1.

Example 2.2. For 𝑓 (𝑛) = 𝑎𝑛 + 𝑐, for nonnegative real constant 𝑐 and real constant 𝑎 > 1, we have

lim
𝑛→∞

𝐾 𝑓 (𝑛)
𝑇𝑛

=
𝑎 − 1
𝑎

.

Example 2.3. For 𝑓 (𝑛) = 𝑎𝑎𝑛 + 𝑐, for nonnegative real constant 𝑐 and real constant 𝑎 > 1, we have

lim
𝑛→∞

𝐾 𝑓 (𝑛)
𝑇𝑛

= 1.

In view of the growth rate of the total 𝑇𝑛 for the three regimes, we observe that conditions (1)–(3)
can be interpreted as a relation between the increment and the total 𝑇𝑛:

(1) lim𝑛→∞ (𝑛𝐾 𝑓 (𝑛))/𝑇𝑛 = 𝛼 implies 𝑓 (𝑛) = 𝑜(𝑇𝑛−1),1 which we identify as small-increment urns.
(2) lim𝑛→∞ (𝐾 𝑓 (𝑛))/𝑇𝑛 = 𝛽, for 𝛽 ∈ (0, 1), implies 𝑓 (𝑛) = Θ(𝑇𝑛−1),2 which we identify as

large-increment urns.
(3) lim𝑛→∞ (𝐾 𝑓 (𝑛))/𝑇𝑛 = 1 implies 𝑓 (𝑛) = 𝜔(𝑇𝑛−1),3 which we also classify as large-increment urns.

After some preliminary analysis, we find that the small-increment regime and the large-increment
regime have different asymptotic behaviors. We study the small-increment regime using the method of
stochastic approximation and the large-increment regime using the convergence of supermartingales.
The combination of these two methods reveals the dynamics of the urn composition as the rate of the
function 𝑓 (𝑛) increases.

3. Small-increment urns

It is easy to verify that a scheme with a constant, logarithmic, linear, or polynomial 𝑓 (𝑛) with any positive
integer initial composition to start the first draw and some 𝑠 ≥ 1 is in the class of small-increment urns.
For example, the classic Friedman urn with replacement matrix

( 0 𝑐
𝑐 0

)
has 𝛼 = 1.

3.1. Model assumptions

For an urn scheme to fall in the class of small-increment dynamic Friedman urns with opposite-
reinforcement, we require the following assumptions on the replacement rules:

(i) The replacement matrix and its mean are specified by Eqs. (1.1) and (1.2).
(ii) The rate of the dynamic function 𝑓 (𝑛) satisfies lim𝑛→∞ (𝑛𝐾 𝑓 (𝑛))/𝑇𝑛 = 𝛼, for some positive real

constant 𝑎.

1By saying a function 𝑓 (𝑛) is 𝑜 (𝑔 (𝑛)) , we mean that lim𝑛→∞ 𝑓 (𝑛)/𝑔 (𝑛) = 0.
2By saying a function 𝑓 (𝑛) is Θ(𝑔 (𝑛)) , we mean that there exist positive constants 𝑐1 and 𝑐2, and a positive integer 𝑛0, such that 𝑐1 |𝑔 (𝑛) | ≤

| 𝑓 (𝑛) | ≤ 𝑐2 |𝑔 (𝑛) |, for all 𝑛 ≥ 𝑛0.
3By saying a function 𝑓 (𝑛) is 𝜔 (𝑔 (𝑛)) , we mean that lim𝑛→∞ 𝑔 (𝑛)/ 𝑓 (𝑛) = 0.
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3.2. Stochastic approximation algorithm

We first show that in a small-increment dynamic Friedman urn, the proportion of white balls sat-
isfies a stochastic approximation algorithm, and then we apply the limit theorems for the stochastic
approximation algorithms. We start by introducing the definition of stochastic approximation.

Definition 3.1 (Stochastic approximation algorithm). A stochastic approximation algorithm {𝑄𝑛}𝑛≥0
is a stochastic process taking values in [0, 1], adapted to the filtration F𝑛, that satisfies

𝑄𝑛 −𝑄𝑛−1 = 𝛾𝑛 (ℎ(𝑄𝑛−1) +𝑈𝑛),

where 𝛾𝑛,𝑈𝑛 are random variables measurable in F𝑛, ℎ : [0, 1] → R and the following conditions hold
almost surely:

(𝑖) 𝑐ℓ
𝑛

≤ 𝛾𝑛 ≤ 𝑐ℎ
𝑛
, (𝑖𝑖) |ℎ(𝑄𝑛) | ≤ 𝑐 𝑓 , (𝑖𝑖𝑖) |𝑈𝑛 | ≤ 𝑐𝑢 , (𝑖𝑣) |E[𝛾𝑛𝑈𝑛 | F𝑛−1] | ≤ 𝑐𝑒𝛾2

𝑛−1,

for 𝑛 ≥ 1, and for positive real constants 𝑐ℓ , 𝑐ℎ, 𝑐 𝑓 , 𝑐𝑢 , and 𝑐𝑒.

Proposition 3.1. For a small-increment dynamic Friedman urn with lim𝑛→∞ (𝑛𝐾 𝑓 (𝑛))/𝑇𝑛 = 𝛼, for
some positive real constant 𝛼, the proportion of white balls 𝑄𝑛 satisfies a stochastic approximation
algorithm.

Proof. We have

𝑄𝑛 −𝑄𝑛−1 =
1
𝑇𝑛

(
−𝐾 𝑓 (𝑛)𝑄𝑛−1 +

𝑠∑
𝑖=0

𝑓 (𝑛)𝑋𝑛,𝑖 I
(𝑖)
𝑛

)
=
𝑓 (𝑛)
𝑇𝑛

(
−𝐾𝑄𝑛−1 +

𝑠∑
𝑖=0

𝑋𝑛,𝑖 I
(𝑖)
𝑛

)
=: 𝛾𝑛𝑀𝑛,

where I(𝑖)𝑛 is the indicator that there are 𝑖 blue balls in the 𝑛th sample drawn from the urn, and
𝛾𝑛 = 𝑓 (𝑛)/𝑇𝑛. Let us define ℎ(𝑄𝑛−1) = E[𝑀𝑛 | F𝑛−1], hence, we get 𝑈𝑛 = 𝑀𝑛 − ℎ(𝑄𝑛−1). With this
setup, we check the conditions of a stochastic approximation algorithm:

(i) For small-increment urn schemes, we have lim𝑛→∞ (𝑛𝐾 𝑓 (𝑛))/𝑇𝑛 = 𝛼, so for every 𝜖 > 0, there
exists some 𝑁0, such that for every 𝑛 > 𝑁0, we have (𝛼 − 𝜖)/𝑛 ≤ 𝐾 𝑓 (𝑛)/𝑇𝑛 ≤ (𝛼 + 𝜖)/𝑛. For
𝑗 ≤ 𝑁0, set 𝐻 = max( 𝑗 𝑓 ( 𝑗)/𝑇𝑗 ) and 𝐿 = min( 𝑗 𝑓 ( 𝑗)/𝑇𝑗 ). We then define
𝑐ℎ = max(𝐻, (𝛼 + 𝜖)/𝐾) and 𝑐ℓ = min(𝐿, (𝛼 − 𝜖)/𝐾), then we have 𝑐ℓ/𝑛 ≤ 𝑓 (𝑛)/𝑇𝑛 ≤ 𝑐ℎ/𝑛.

(ii) For ℎ(𝑄𝑛−1), we get

ℎ(𝑄𝑛−1) = E[𝑀𝑛 | F𝑛−1]

= −𝐾𝑄𝑛−1 +
𝑠∑
𝑖=0
E[𝑋𝑛,𝑖 | F𝑛−1] E[I(𝑖)𝑛 | F𝑛−1]

= −𝐾𝑄𝑛−1 +
𝑠∑
𝑖=0

𝜑(𝑖)
(
𝑠

𝑖

)
𝑄𝑠−𝑖

𝑛−1 (1 −𝑄𝑛−1)𝑖 .

Thus, we have

|ℎ(𝑄𝑛−1) | = |E[𝑀𝑛 | F𝑛−1] | ≤ 2𝐾 =: 𝑐 𝑓 .

119Probability in the Engineering and Informational Sciences

https://doi.org/10.1017/S0269964822000535 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000535


(iii) |𝑈𝑛 | is also uniformly bounded, since we have

|𝑈𝑛 | ≤ |𝑀𝑛 | + |ℎ(𝑄𝑛−1) | ≤ 2𝐾 + 𝑐 𝑓 =: 𝑐𝑢 .

(iv) The urn is balanced with balance factor 𝐾 𝑓 (𝑛), leading to

|E[𝛾𝑛𝑈𝑛 | F𝑛−1] | =
���� 𝑓 (𝑛)𝑇𝑛

E[𝑀𝑛 − E(𝑀𝑛 | F𝑛−1) | F𝑛−1)]
���� = 0 =: 𝑐𝑒 .

�

3.3. Limit theorems

Since we have verified that {𝑄𝑛}𝑛≥0 is a stochastic approximation algorithm, we can apply the limit
theorems of stochastic approximation. The almost-sure convergence of a stochastic approximation
algorithm is guaranteed when the process has a unique stable point.

Definition 3.2. We call 𝑟 ∈ 𝑆 𝑓 = {𝑥 : ℎ(𝑥) = 0} a stable point, if ℎ(𝑥)(𝑥 − 𝑟) < 0, whenever 𝑥 ≠ 𝑟 and
𝑥 is close enough to 𝑟 (in the sense of the existence of a neighborhood). For a Lipschitz function ℎ, this
is equivalent to ℎ′(𝑟) < 0.

We apply the limit theorems in [17,18], which we state below.

Theorem 3.1 (Renlund [17]). If 𝑓 is continuous, then lim𝑛→∞𝑄𝑛 exists almost surely, and is in 𝑆 𝑓 . If
𝑝 is a stable point, then we have P(lim𝑛→∞𝑄𝑛 = 𝑝) > 0.

Theorem 3.2 (Renlund [18]). The asymptotic behavior of the sequence {𝑄𝑛}𝑛≥0 depends on the value
of �̂� = lim𝑛→∞ 𝛾𝑛. If the function ℎ(𝑥) is Lipschitz, then lim𝑛→∞ 𝛾𝑛 = −ℎ′(𝑟) lim𝑛→∞ 𝑛𝛾𝑛. If �̂� > 1

2 and
𝜎2 > 0, then

√
𝑛(𝑄𝑛 −𝑄∗) D−→ N

(
0,

𝜎2

2(�̂� − 1
2 )

)
,

where 𝜎2 = lim𝑛→∞ E[�̂�2
𝑛 | F𝑛−1] (�̂�𝑛 = 𝑛𝛾𝑛𝑈𝑛), and 𝑄∗ is the almost-sure limit in Theorem 3.1.

By Theorem 3.1, we have the following proposition for schemes in the small-increment regime.

Proposition 3.2. For a small-increment dynamic Friedman urn with lim𝑛→∞ (𝑛𝐾 𝑓 (𝑛))/𝑇𝑛 = 𝛼, for
some positive real constant 𝛼, the proportion of white balls 𝑄𝑛 converges almost surely to 1

2 .

Proof. The function ℎ is defined by, ∀ 𝑥 ∈ [0, 1],

ℎ(𝑥) = −𝐾𝑥 +
𝑠∑
𝑖=0

(
𝑠

𝑖

)
𝜑(𝑖)𝑥𝑠−𝑖 (1 − 𝑥)𝑖 .
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For all 𝑥 ∈ [0, 1], we have ℎ(1 − 𝑥) = −ℎ(𝑥), since

ℎ(1 − 𝑥) = −𝐾 (1 − 𝑥) +
𝑠∑
𝑖=0

(
𝑠

𝑖

)
𝜑(𝑖)(1 − 𝑥)𝑠−𝑖𝑥𝑖

= −𝐾 (1 − 𝑥) +
𝑠∑
𝑖=0

(
𝑠

𝑖

)
(𝐾 − 𝜑(𝑠 − 𝑖))(1 − 𝑥)𝑠−𝑖𝑥𝑖

= −𝐾 (1 − 𝑥) + 𝐾
𝑠∑
𝑖=0

(
𝑠

𝑖

)
(1 − 𝑥)𝑠−𝑖𝑥𝑖 −

𝑠∑
𝑖=0

𝜑(𝑠 − 𝑖)
(
𝑠

𝑖

)
(1 − 𝑥)𝑠−𝑖𝑥𝑖

= 𝐾𝑥 −
𝑠∑
𝑖=0

𝜑(𝑖)
(
𝑠

𝑖

)
𝑥𝑠−𝑖 (1 − 𝑥)𝑖

= −ℎ(𝑥).

In particular, we conclude that ℎ( 1
2 ) = 0. And for all 𝑥 > 1

2 , we have

ℎ(𝑥) = −𝐾𝑥 +
�𝑠/2�∑
𝑖=0

(
𝑠

𝑖

)
(𝜑(𝑖)𝑥𝑠−𝑖 (1 − 𝑥)𝑖 + (𝐾 − 𝜑(𝑖))𝑥𝑖 (1 − 𝑥)𝑠−𝑖)

− 𝜑
( 𝑠
2

) (
𝑠
𝑠
2

)
(𝑥(1 − 𝑥))𝑠/2I{𝑠 is even}

< −𝐾𝑥 + 𝐾
2

�𝑠/2�∑
𝑖=0

(
𝑠

𝑖

)
(𝑥𝑠−𝑖 (1 − 𝑥)𝑖 + 𝑥𝑖 (1 − 𝑥)𝑠−𝑖)

− 𝐾

2

(
𝑠
𝑠
2

)
(𝑥(1 − 𝑥))𝑠/2I{𝑠 is even}

= 𝐾

(
1
2
− 𝑥

)
< 0.

By a similar argument, we can verify that ℎ(𝑥) > 0, for 𝑥 < 1
2 . So the only zero of ℎ in [0, 1] is 1

2 .
We further have that

ℎ′(𝑥) = −𝐾 +
𝑠∑
𝑖=0

𝜑(𝑖)
(
𝑠

𝑖

)
((𝑠 − 𝑖)𝑥𝑠−𝑖−1 (1 − 𝑥)𝑖 − 𝑖𝑥𝑠−𝑖 (1 − 𝑥)𝑖−1),

so that

ℎ′
(
1
2

)
= −𝐾 +

𝑠∑
𝑖=0

𝜑(𝑖)
(
𝑠

𝑖

) (
1
2

) 𝑠−1

(𝑠 − 2𝑖).

Then, we can write

ℎ′
(
1
2

)
= −𝐾 +

�𝑠/2�∑
𝑖=0

𝜑(𝑖)
(
𝑠

𝑖

) (
1
2

) 𝑠−1

(𝑠 − 2𝑖) +
𝑠∑

𝑖= �𝑠/2�+1

𝜑(𝑖)
(
𝑠

𝑖

) (
1
2

) 𝑠−1

(𝑠 − 2𝑖)

= −𝐾 +
�𝑠/2�∑
𝑖=0

𝜑(𝑖)
(
𝑠

𝑖

) (
1
2

) 𝑠−1

(𝑠 − 2𝑖) +
�𝑠/2�∑
𝑖=0

(𝐾 − 𝜑(𝑖))
(
𝑠

𝑖

) (
1
2

) 𝑠−1

(𝑠 − 2(𝑠 − 𝑖))

= −𝐾 +
�𝑠/2�∑
𝑖=0

(2𝜑(𝑖) − 𝐾)
(
𝑠

𝑖

) (
1
2

) 𝑠−1

(𝑠 − 2𝑖),
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and we conclude that ℎ′( 1
2 ) < 0 is guaranteed if we have 𝜑(𝑖) ≤ 𝐾/2, for 0 ≤ 𝑖 ≤ �𝑠/2�, which is the

class of opposite-reinforcing matrices. Since 1
2 is the unique zero and the derivative of ℎ(𝑥) at this point

is negative, we verify that 1
2 is a stable point and the process converges to it almost surely. �

Remark 3.1. Since we have

ℎ′
(
1
2

)
=

�𝑠/2�∑
𝑖=0

(
𝑠

𝑖

) (
1
2

) 𝑠−1

((2𝜑(𝑖) − 𝐾)(𝑠 − 2𝑖) − 𝐾),

to guarantee that ℎ′( 1
2 ) < 0, it suffices to have that ∀𝑖 ≤ 𝑠/2,

(2𝜑(𝑖) − 𝐾)(𝑠 − 2𝑖) ≤ 𝐾, (3.1)

with the strict inequality holding for at least one index. This condition, which specifies a class that is
broader than the class of opposite-reinforcing matrices, is sufficient but not necessary. For example, we
can have

M𝑛 = 𝑓 (𝑛)
(
1 − 𝐵𝑛 (𝑝) 𝐵𝑛 (𝑝)
𝐵𝑛 (𝑝) 1 − 𝐵𝑛 (𝑝)

)
,

with 𝑓 (𝑛) = 𝑛, and 𝑝 = 1
3 . We get 𝜑(0) = 2

3 and 𝜑(1) = 1
3 , so the matrix is self-reinforcing, but we can

check that condition given by Eq. (3.1) holds, so the process {𝑄𝑛}𝑛≥0 converges to 1
2 almost surely.

From the known results in stochastic approximation as in [18] (Theorem 3.2), the asymptotic distribu-
tion of {𝑄𝑛}𝑛≥0 is characterized by an index �̂� which is defined as �̂� = lim𝑛→∞ 𝛾𝑛 = −ℎ′(𝑟) lim𝑛→∞ 𝑛𝛾𝑛,
if the function ℎ(𝑥) is Lipschitz. For the class of small-increment dynamic Friedman urn with
opposite-reinforcement, we get

�̂� = −ℎ′(𝑟) lim
𝑛→∞

𝑛𝛾𝑛

=
𝛼

𝐾

(
𝐾 −

(
1
2

) 𝑠−1 𝑠∑
𝑖=0

𝜑(𝑖)
(
𝑠

𝑖

) (
1
2

) 𝑠−1

(𝑠 − 2𝑖)
)

=
𝛼

𝐾

(
𝐾 −

�𝑠/2�∑
𝑖=0

(2𝜑(𝑖) − 𝐾)
(
𝑠

𝑖

) (
1
2

) 𝑠−1

(𝑠 − 2𝑖)
)

≥ 𝛼.

We know that by definition, we have 𝛼 = lim𝑛→∞ (𝑛𝐾 𝑓 (𝑛))/𝑇𝑛. Since we take 𝑓 (𝑛) ≥ 1 and
nondecreasing in 𝑛, the lowest rate of addition occurs when we apply a constant function 𝑓 (𝑛) = 𝑐, for
some positive real constant 𝑐. Hence, for the class of small-increment urns, we have 1 ≤ 𝛼 ≤ �̂�.

With this range of �̂�, we have central limit theorems as from [18] (Theorem 3.2). The variance of the
asymptotic distribution includes a parameter defined as 𝜎2 = lim𝑛→∞ E[�̂�2

𝑛 | F𝑛−1], where �̂�𝑛 = 𝑛𝛾𝑛𝑈𝑛.

Proposition 3.3. For a dynamic Friedman small-increment urn with lim𝑛→∞ (𝑛𝐾 𝑓 (𝑛))/𝑇𝑛 = 𝛼, for
some positive real constant 𝛼, we have

√
𝑛

(
𝑄𝑛 − 1

2

)
D−→ N

(
0,

𝜎2

2(�̂� − 1
2 )

)
.

where

�̂� =
𝛼

𝐾

(
𝐾 −

�𝑠/2�∑
𝑖=0

(2𝜑(𝑖) − 𝐾)
(
𝑠

𝑖

) (
1
2

) 𝑠−1

(𝑠 − 2𝑖)
)
,

and 𝜎2 is given as in Eq. (3.2).
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Proof. Define 𝑝𝑛, 𝑗 as the conditional probability that we get 𝑗 white balls in the 𝑛th sample given F𝑛−1.
By definition, we get the following for �̂�𝑛:

�̂�𝑛 =
𝑛 𝑓 (𝑛)
𝑇𝑛

(
−𝐾𝑄𝑛−1 +

𝑠∑
𝑖=0

𝑋𝑛,𝑖 I
(𝑖)
𝑛 − ℎ(𝑄𝑛−1)

)
.

Then, we get

𝜎2 = lim
𝑛→∞
E[�̂�2

𝑛 | F𝑛−1]

=
𝛼2

𝐾2 lim
𝑛→∞

(
𝑠∑
𝑖=0

(𝜇2,𝑖 𝑝𝑛,𝑠−𝑖 − 𝜑(𝑖)2𝑝2
𝑛,𝑠−𝑖) −

∑
𝑖≠ 𝑗

∑
𝑖≠ 𝑗

𝜑(𝑖)𝜑( 𝑗)𝑝𝑛,𝑠−𝑖 𝑝𝑛,𝑠− 𝑗

)
=
𝛼2

𝐾2

(
𝑠∑
𝑖=0

(
𝜇2,𝑖

(
𝑠

𝑖

)
2−𝑠 − 𝜑(𝑖)2

(
𝑠

𝑖

)2

2−2𝑠

)
−

∑
𝑖≠ 𝑗

∑
𝑖≠ 𝑗

𝜑(𝑖)𝜑( 𝑗)
(
𝑠

𝑖

) (
𝑠

𝑗

)
2−2𝑠

)
, (3.2)

where 𝜇2,𝑖 is the second moment of 𝑋𝑖 . The result follows by applying Theorem 3.2. �

4. Large-increment urns

We used stochastic approximation to prove limit theorems for small-increment urns. Stochastic approx-
imation is applicable for small-increment urns since the step-size is diminishing with respect to time.
Namely, we have 𝑐ℓ/𝑛 ≤ 𝑓 (𝑛)/𝑇𝑛 ≤ 𝑐ℎ/𝑛. This rate of step-size is key to convergence of the stochastic
approximation algorithm. For the large-increment urns, when formulated as a stochastic approximation
algorithm, the step-size is of linear rate, and the convergence of the algorithm is not guaranteed.

Hence, we resort to the convergence of supermartingale for limit theorems. In order to build a
supermartingale, we need the affinity condition to break the dependence on higher moments, so that
the conditional expectation of 𝑄𝑛 depends only on 𝑄𝑛−1, not on 𝑄𝑚

𝑛−1, for 𝑚 > 1. For this reason, we
impose the affinity condition (Eqs. (4.1) and (4.2)) and consider a smaller class with fixed replacement
entries for large-increment urns. The affinity condition is developed in [11]. It has been shown in [11]
that for a balanced urn scheme with replacement matrix (sample size is 𝑠)

M𝑛 =

��������

𝑎0 𝑏0
𝑎1 𝑏1
...

...
𝑎𝑠−1 𝑏𝑠−1
𝑎𝑠 𝑏𝑠

��������
, (4.1)

if the replacement entries satisfy

𝑎𝑘 = (𝑠 − 𝑘)𝑎𝑠−1 − (𝑠 − 𝑘 − 1)𝑎𝑠, (4.2)

for 0 ≤ 𝑘 ≤ 𝑠, then we have

E[𝑊𝑛 | F𝑛−1] = 𝛼𝑛𝑊𝑛−1 + 𝛽𝑛, (4.3)

for deterministic 𝛼𝑛 and 𝛽𝑛. This condition essentially requires that for a given pair of 𝑎𝑠−1 and 𝑎𝑠, the
rest of the entries of the first column of the replacement matrix have to be filled in such that the distance
of every adjacent pair is the same as the distance between 𝑎𝑠−1 and 𝑎𝑠 . Upon checking, we find that
this relation holds when the matrix is multiplied by the dynamic function 𝑓 (𝑛). For a dynamic urn with
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replacement matrix

M𝑛 = 𝑓 (𝑛)

��������

𝑎0 𝑏0
𝑎1 𝑏1
...

...
𝑎𝑠−1 𝑏𝑠−1
𝑎𝑠 𝑏𝑠

��������
, (4.4)

the affinity condition given by Eq. (4.2) ensures that Eq. (4.3) holds. For a simpler representation, we
take the balance factor to be 𝑠 𝑓 (𝑛). The result can easily generalize to arbitrary balance factor 𝐾 𝑓 (𝑛).
For a dynamic urn with balance factor 𝑠 𝑓 (𝑛), the replacement matrix is given by

M𝑛 = 𝑓 (𝑛)

��������

(1 − 𝑝)𝑠 𝑝𝑠
(1 − 𝑝)(𝑠 − 1) + 𝑝 (1 − 𝑝) + 𝑝(𝑠 − 1)

...
...

(1 − 𝑝) + 𝑝(𝑠 − 1) (1 − 𝑝)(𝑠 − 1) + 𝑝
𝑝𝑠 (1 − 𝑝)𝑠

��������
, (4.5)

where 1
2 < 𝑝 ≤ 1. For each 0 ≤ 𝑖 ≤ 𝑠, we have 𝑎𝑖 = 𝑖𝑝 + (𝑠− 𝑖)(1− 𝑝). Compared with the class treated

in Section 3, this is a subclass by requiring the replacement entries to satisfy the affinity condition and
take fixed values. Shrinking to this subclass allows us to formulate a supermartingale. We summarize
the model assumptions for the large-increment regime in the following subsection.

4.1. Model assumptions

For an urn scheme to fall in the class of large-increment dynamic Friedman urns with opposite-
reinforcement, we require the following assumptions on the replacement rules:

(i) The replacement matrix is specified by Eq. (4.5), with 1
2 < 𝑝 ≤ 1.

(ii) The rate of the dynamic function 𝑓 (𝑛) satisfies lim𝑛→∞ (𝐾 𝑓 (𝑛))/𝑇𝑛 = 𝛽, for 𝛽 ∈ (0, 1].
(iii) The sequence { 𝑓 (𝑛)/𝑇𝑛} is monotonically increasing.

Next, we formulate a supermartingale to prove almost-sure convergence of the proportion of white balls
under the model assumptions.

4.2. Supermartingalization

The proof strategy is similar to the one used in Section 5.2 in [11]. Aiming at a simpler representation,
we construct the random variable �̃�𝑛 = 𝑄𝑛 − 1

2 . By the stochastic recurrence

𝑄𝑛 =
1
𝑇𝑛

(
𝑇𝑛−1𝑄𝑛−1 +

𝑠∑
𝑖=0

𝑓 (𝑛)𝑎𝑖 I(𝑖)𝑛

)
, (4.6)

where I(𝑖)𝑛 is the indicator that there are 𝑖 blue balls in the 𝑛th sample, we have the following conditional
expectation:

E[𝑄𝑛 | F𝑛−1] = 𝑇𝑛−1

𝑇𝑛
𝑄𝑛−1 + 𝑠 𝑓 (𝑛)

𝑇𝑛
(𝑝 − (2𝑝 − 1)𝑄𝑛−1)

=
𝑇𝑛−1 + 𝑠(1 − 2𝑝) 𝑓 (𝑛)

𝑇𝑛
𝑄𝑛−1 + 𝑠𝑝 𝑓 (𝑛)

𝑇𝑛
. (4.7)
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By Eq. (4.7), we have

E[�̃�𝑛 | F𝑛−1] = 𝑇𝑛−1 + 𝑠(1 − 2𝑝) 𝑓 (𝑛)
𝑇𝑛

𝑄𝑛−1 + 𝑠𝑝 𝑓 (𝑛)
𝑇𝑛

− 1
2

=
𝑇𝑛−1 + 𝑠(1 − 2𝑝) 𝑓 (𝑛)

𝑇𝑛
�̃�𝑛−1 + 𝑇𝑛−1 + 𝑠 𝑓 (𝑛)

2𝑇𝑛
− 1

2

=
𝑇𝑛−1 + 𝑠(1 − 2𝑝) 𝑓 (𝑛)

𝑇𝑛
�̃�𝑛−1. (4.8)

Proposition 4.1. For the class of affine opposite-reinforcing dynamic Friedman urns with large-
increment, we have that

M𝑛 = �̃�2
𝑛 +

𝑇𝑛
𝑓 (𝑛) (4.9)

is a supermartingale, if the sequence { 𝑓 (𝑛)/𝑇𝑛} is monotonically increasing.4

Proof. Taking the square of Eq. (4.6), and with the result from Eq. (4.8), we verify that

E[�̃�2
𝑛 | F𝑛−1] =

𝑇2
𝑛−1
𝑇2
𝑛

𝑄2
𝑛−1 +

𝑓 (𝑛)2

𝑇2
𝑛

𝑠∑
𝑖=0

(𝑖𝑝 + (𝑠 − 𝑖)(1 − 𝑝))2

×
(
𝑠

𝑖

)
𝑄𝑠−𝑖

𝑛−1 (1 −𝑄𝑛−1)𝑖

+ 2 𝑓 (𝑛)𝑇𝑛−1

𝑇𝑛

𝑠∑
𝑖=0

(𝑖𝑝 + (𝑠 − 𝑖)(1 − 𝑝))
(
𝑠

𝑖

)
𝑄𝑠−𝑖

𝑛−1 (1 −𝑄𝑛−1)𝑖

− 𝑇𝑛−1 + 𝑠(1 − 2𝑝) 𝑓 (𝑛)
𝑇𝑛

𝑄𝑛−1 − 𝑠𝑝 𝑓 (𝑛)
𝑇𝑛

+ 1
4

=

( (𝑇𝑛−1 + 𝑠(1 − 2𝑝) 𝑓 (𝑛))2

𝑇2
𝑛

− 𝑠(1 − 2𝑝)2 𝑓 2(𝑛)
𝑇2
𝑛

)
�̃�2

𝑛−1

+ 𝑠(1 − 2𝑝)2 𝑓 (𝑛)2

4𝑇2
𝑛

≤
(
𝑇𝑛−1 + 𝑠(1 − 2𝑝) 𝑓 (𝑛)

𝑇𝑛

)2

�̃�2
𝑛−1 + 𝑐0. (4.10)

The existence of such positive 𝑐0 is guaranteed by having lim𝑛→∞ (𝑠 𝑓 (𝑛))/𝑇𝑛 = 𝛽, for 𝛽 ∈ (0, 1], and
1
2 < 𝑝 ≤ 1. Rearranging, we get, for some positive 𝑐1, that

E

[
�̃�2

𝑛 +
𝑐1𝑇𝑛
𝑓 (𝑛)

����F𝑛−1

]
≤

(
𝑇𝑛−1 + 𝑠(1 − 2𝑝) 𝑓 (𝑛)

𝑇𝑛

)2

�̃�2
𝑛−1 +

𝑐1𝑇𝑛
𝑓 (𝑛) + 𝑐0

≤
(
𝑇𝑛−1 + 𝑠(1 − 2𝑝) 𝑓 (𝑛)

𝑇𝑛

)2

�̃�2
𝑛−1 +

𝑐1𝑇𝑛−1

𝑓 (𝑛 − 1) ,

by assigning 𝑐1𝑇𝑛/ 𝑓 (𝑛) + 𝑐0 ≤ 𝑐1𝑇𝑛−1/ 𝑓 (𝑛 − 1). The existence of such 𝑐1 is guaranteed when we have
that the sequence { 𝑓 (𝑛)/𝑇𝑛}𝑛 is monotonically increasing. Since we assume opposite-reinforcement,
we have 1

2 < 𝑝 ≤ 1, hence, we get

−1 <
𝑇𝑛−1 + 𝑠(1 − 2𝑝) 𝑓 (𝑛)

𝑇𝑛
< 1.

4This condition is usually met when the rate of 𝑓 (𝑛) is large.
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For 1
2 < 𝑝 ≤ 1, we have

E

[
�̃�2

𝑛 +
𝑐1𝑇𝑛
𝑓 (𝑛)

����F𝑛−1

]
≤ �̃�2

𝑛−1 +
𝑐1𝑇𝑛−1

𝑓 (𝑛 − 1) ,

verifying �̃�2
𝑛 + 𝑐1𝑇𝑛/ 𝑓 (𝑛) is a positive supermartingale, thus converges almost surely by Williams [20].

This implies that𝑄𝑛 converges almost surely, to some limit 𝐿, by the continuous mapping theorem. �

In next section, we will show a method to identify the almost-sure limit.

4.3. Limit theorems

The almost-sure limit can be obtained by a distributional equation, similar as in [5]. For the single-
drawing dynamic Pólya urn considered in [5], the distributional equation can be solved explicitly to get
the limit distribution, which is not always the case for multiple-drawing urns.

Theorem 4.1. For a large-increment affine opposite-reinforcing dynamic Friedman urn, we have

𝑄𝑛
a.s.−→ 𝑎𝑇

𝑠
,

where𝑇 is a random variable taking values in {0, 1, . . . , 𝑠} and 𝑎𝑖 is the 𝑖th entry of the first column of the
replacement matrix given by Eq. (4.5). The distribution of 𝑇 is given by P[𝑇 = 𝑖] = lim𝑛→∞ P[I(𝑖)𝑛 = 1],
which satisfies Eq. (4.12),

Proof. We start with a distributional equation

𝑄𝑛
a.s.
=

1
𝑇𝑛

(
𝑇𝑛−1𝑄𝑛−1 + 𝑓 (𝑛)

𝑠∑
𝑖=0

(𝑠(1 − 𝑝) − (1 − 2𝑝)𝑖) I(𝑖)𝑛

)
,

where I(𝑖)𝑛 is the indicator for the event that we have 𝑖 blue balls in 𝑛th sample. By the almost-sure
convergence of 𝑄𝑛, taking limit on both sides, we get

lim
𝑛→∞

𝑄𝑛
a.s.
= lim

𝑛→∞
𝑇𝑛−1

𝑇𝑛
lim
𝑛→∞

𝑄𝑛−1 + lim
𝑛→∞

𝑓 (𝑛)
𝑇𝑛

𝑠∑
𝑖=0

(𝑠(1 − 𝑝) − (1 − 2𝑝)𝑖) I(𝑖)𝑛 .

Given that lim𝑛→∞ (𝑠 𝑓 (𝑛))/𝑇𝑛 = 𝛽 ∈ (0, 1] and 𝑄𝑛
a.s.−→ 𝐿, we get

𝐿
a.s.
= (1 − 𝛽)𝐿 + 𝛽

𝑠
lim
𝑛→∞

𝑠∑
𝑖=0

(𝑠(1 − 𝑝) − (1 − 2𝑝)𝑖) I(𝑖)𝑛 ,

which is equivalent to

𝐿
a.s.
=

1
𝑠

lim
𝑛→∞

𝑠∑
𝑖=0

(𝑠(1 − 𝑝) − (1 − 2𝑝)𝑖) I(𝑖)𝑛

a.s.
= (1 − 𝑝) + 2𝑝 − 1

𝑠

𝑠∑
𝑖=0
𝑖 lim
𝑛→∞
I
(𝑖)
𝑛 . (4.11)

126 S. Gao and R. Aguech

https://doi.org/10.1017/S0269964822000535 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000535


For each 𝑖 ∈ {0, 1, 2, . . . , 𝑠}, we have

lim
𝑛→∞
P[I(𝑖)𝑛 = 1] = lim

𝑛→∞

∞∑
𝑚=0

(P[I(𝑖)𝑛 = 1] |𝑊𝑛−1 = 𝑚)P(𝑊𝑛−1 = 𝑚)

= lim
𝑛→∞

∞∑
𝑚=0

(
𝑠

𝑖

) (
1 − 𝑚

𝑇𝑛−1

) 𝑖 (
𝑚

𝑇𝑛−1

) 𝑠−𝑖
P(𝑊𝑛−1 = 𝑚)

= lim
𝑛→∞
E

[(
𝑠

𝑖

) (
1 − 𝑊𝑛−1

𝑇𝑛−1

) 𝑖 (
𝑊𝑛−1

𝑇𝑛−1

) 𝑠−𝑖]
= E

[(
𝑠

𝑖

)
lim
𝑛→∞

(
1 − 𝑊𝑛−1

𝑇𝑛−1

) 𝑖 (
𝑊𝑛−1

𝑇𝑛−1

) 𝑠−𝑖]
=

(
𝑠

𝑖

)
E[(1 − 𝐿)𝑖𝐿𝑠−𝑖], (4.12)

where the exchange of limit and integration is justified by the dominated convergence theorem.
Next, we verify that the claimed distribution satisfies Eqs. (4.11) and (4.12), proving the stated

result. Since we have shown that 𝑄𝑛 converges almost surely in the previous section, there is a unique
distribution that satisfies Eqs. (4.11) and (4.12). From Eq. (4.11), the limit of an indicator takes value
in {0, 1}. Hence, we have 𝐿 takes value in the set 𝑆 = {1− 𝑝, (1− 𝑝) + (2𝑝 − 1)/𝑠, . . . , 𝑝}, which is the
set formed by the entries of the first column of the replacement matrix divided by 𝑠. We have that 𝐿 is
distributed on the set 𝑆 with the probabilities governed by Eq. (4.12), proving the stated result. �

Remark 4.1. Using the following identities: for all real numbers 𝑎 and 𝑏,

𝑠∑
𝑖=0
𝑖

(
𝑠

𝑖

)
𝑎𝑖𝑏𝑠−𝑖 = 𝑠𝑎(𝑎 + 𝑏)𝑠−1,

𝑠∑
𝑖=0
𝑖2

(
𝑠

𝑖

)
𝑎𝑖𝑏𝑠−𝑖 = 𝑠𝑎(𝑎 + 𝑏)𝑠−1 + 𝑠(𝑠 − 1)𝑎2 (𝑎 + 𝑏)𝑠−2,

and Eqs. (4.11) and (4.12), we deduce easily that,

E[𝐿] = 1
2
,

V[𝐿] = 𝑠(1 − 𝑝)2 + 𝑠(1 − 𝑝)(2𝑝 − 1) + 1
2 (2𝑝 − 1)2

𝑠 − (𝑠 − 1)(2𝑝 − 1)2 − 1
4
.

Moreover, Eqs. (4.11) and (4.12) give recursively all the moment of 𝐿, and so characterize the
distribution.

Remark 4.2. From Eq. (4.12), the distribution of 𝐿 can be identified by solving the following system:
∀𝑖 ∈ {0, 1, . . . , 𝑠}, denote by 𝑝𝑖 := P[𝐿 = 1 − 𝑝 + ((2𝑝 − 1)/𝑠)𝑖], and we have

𝑝𝑖 =

(
𝑠

𝑖

) 𝑠∑
𝑗=0

(
1 − 𝑝 + 2𝑝 − 1

𝑠
𝑗

) 𝑠−𝑖 (
𝑝 − 2𝑝 − 1

𝑠
𝑗

) 𝑖
𝑝 𝑗 .

We illustrate how to identify the limit 𝐿 using Eq. (4.12) by one single-drawing example and one
multiple-drawing example.
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Example 4.1. For the single-drawing dynamic classic Friedman urn with replacement matrix
𝑓 (𝑛) ( 0 1

1 0
)
, we have that the class of small-increment schemes have the following limit law:

√
𝑛

(
𝑄𝑛 − 1

2

)
D−→ N

(
0,

𝛼2

4(4𝛼 − 1)

)
.

For the class of large-increment schemes, we have

𝐿
a.s.
= lim

𝑛→∞
I
(1)
𝑛 , (4.13)

By Eq. (4.12), we get

lim
𝑛→∞
P[I(1)𝑛 = 1] = E[1 − 𝐿] . (4.14)

It is easy to check that 𝑇 = Bernoulli( 1
2 ) satisfies Eqs. (4.13) and (4.14). We have 𝑎0 = 0 and 𝑎1 = 1,

hence, the limit distribution is Bernoulli( 1
2 ).

Example 4.2. For the affine dynamic Friedman urn with replacement matrix

𝑓 (𝑛) ���
1
2

3
2

1 1
3
2

1
2

��� ,
we have that the class of small-increment schemes have the following limit law:

√
𝑛

(
𝑄𝑛 − 1

2

)
D−→ N

(
0,

𝛼2

32(3𝛼 − 1)

)
.

For the class of large-increment schemes, we have

𝐿
a.s.
=

1
4
+ 1

4

2∑
𝑖=0
𝑖 lim
𝑛→∞
I
(𝑖)
𝑛 . (4.15)

By Theorem 4.1, we have that 𝐿 is distributed on 𝑆 = { 1
4 ,

1
2 ,

3
4 }, with probability {𝑝1, 𝑝2, 𝑝3}. From

Remark 4.1, we have E[𝐿] = 1
2 . By the symmetry in the replacement matrix, we have 𝑝3 = 𝑝1 = 𝑝 and

𝑝2 = 1 − 2𝑝. Then, by Eq (4.12), we have

𝑝 = E[𝐿2] = 𝑝( 1
4 )2 + (1 − 2𝑝)( 1

2 )2 + 𝑝( 3
4 )2,

which yields 𝑝 = 2
7 . Hence, we get 𝐿 is distributed on 𝑆 = { 1

4 ,
1
2 ,

3
4 }, with probability { 2

7 ,
3
7 ,

2
7 }.

For both the class of single-drawing dynamic Pólya urns [16], and the class of multiple-drawing
dynamic Pólya urns [2], the limit distribution of the proportion of white balls is a discrete random
variable when the increment is large. For small-increment dynamic Pólya urns, it has been shown in [2]
that the distribution of the proportion of white balls is absolutely continuous when 𝑓 (𝑛) is bounded, but
there is a regime between bounded-increment and large-increment that no conclusion has been made so
far.

For the class of dynamic Friedman urns with multiple-drawing and opposite-reinforcement, we
have a similar situation where we observe a change from continuous limit to discrete limit as we
increase the rate of increment. For the class of dynamic Friedman urns with multiple-drawing and
opposite-reinforcement, we are only able to treat the affine subclass for large-increment urns with fixed
replacement entries. This is the remaining task we will continue further in our future work.
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