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Abstract

A common problem in analytical scanning electron microscopy (SEM) using electron backscatter diffraction (EBSD) is the differentiation of
phases with distinct chemistry but the same or very similar crystal structure. X-ray energy dispersive spectroscopy (EDS) is useful to help
differentiate these phases of similar crystal structures but different elemental makeups. However, open, automated, and unbiased methods of
differentiating phases of similar EBSD responses based on their EDS response are lacking. This paper describes a simple data analytics-based
method, using a combination of singular value decomposition and cluster analysis, to merge simultaneously acquired EDS + EBSD infor-
mation and automatically determine phases from both their crystal and elemental data. I use hexagonal TiB, ceramic contaminated with
multiple crystallographically ambiguous but chemically distinct cubic phases to illustrate the method. Code, in the form of a Python 3

Jupyter Notebook, and the necessary data to replicate the analysis are provided as Supplementary material.
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Introduction
Overview

One of the most frustrating issues in electron backscatter diffrac-
tion (EBSD) is the inability of the analysis to easily differentiate
between materials with the same or closely related crystal struc-
tures. For instance, nickel and copper are both Fm3m face-
centered cubic crystals, with essentially the same lattice parameter
(@i~ 352 pm, and aS" ~ 361 pm). Different methods already
exist to differentiate phases in EBSD that cannot be differentiated
by the simple Hough-based methods. For instance, dynamical
pattern simulation followed by dictionary comparison (Chen
et al,, 2015) provides very high fidelity in indexing, but is compu-
tationally expensive and has significant start-up effort involved.
Detector vendors have vendor-specific methods for merging the
EBSD and energy dispersive spectroscopy (EDS) data to find
the different phases. However, these methods can involve a certain
amount of black box software and are also not transferrable from
one vendor’s system to another. These methods based on EDS ele-
mental analysis (Nowell & Wright, 2004; Wright & Nowell, 2006;
Nowell et al.,, 2011; Dietrich et al., 2014; Chiu et al., 2019) are
effective, but they are ad hoc, dependent upon manually selected
parameters, and are specific to the vendor of the detectors used in
the experiment. Other methods (i.e., Bilsland et al. 2021) are very
powerful, but solve more specific problems.
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In this paper, I suggest an extension of the EDS-specific cluster
analysis method of Stork & Keenan (2010) that merges the
EDS-derived elemental information with the EBSD-derived crys-
tallographic information. This provides an automated phase label
for each pixel, with a minimum number of human-tuned param-
eters entering the analysis algorithm. It is also open-source and
vendor-independent, only requiring the vendor to provide an
open format export of the EDS and EBSD data [such as might
be read by open-source packages like Hyperspy (de la Pefia
et al. 2017)].

Data Analytics in X-ray Spectrum Imaging

In an X-ray spectrum image (XSI), spatially resolved spectroscopic
data is recorded such that a large number N of spectra are
recorded at N discrete pixels, and each spectrum has M channels
or data elements, leading to a large datacube of size (x pixels) x (y
pixels) x M. To populate this datacube (Fig. 1), a beam is scanned
across a sample [Fig. 1(a)], and the signal (such as X-rays) is col-
lected by a detector, processed [Fig. 1(b)], and stored into com-
puter memory as elements of a datacube [Fig. 1(c)]. Then,
traditional X-ray maps can be extracted from the datacube as
slices of energy space [Fig. 1(d)].

To analyze this datacube, the methods refined by Keenan et al.
are used (Kotula et al.,, 2003; Keenan, 2007; Smentkowski et al.,
2009). The XSI datacube is unfolded into a matrix D of size
N x M and then analyzed [Fig. 1(e)]. Singular value decomposition
(SVD) and its close cousin, principal component analysis (PCA),
are methods of rank reduction and form the underlying mathe-
matical framework to much of data science, and in the present
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Fig. 1. Schematic of EDS + EBSD acquisition and analysis. (a) The EDS and EBSD data are acquired. (b) EDS pulses are converted and (c) stored into a datacube.
(d) The traditional X-ray mapping functionality is extracted from this data. (e) The datacube is unfolded into a matrix and analyzed by singular value decompo-
sition. (f) EBSD patterns are indexed to (g) build a phase map. This phase map is unfolded into a matrix and, when combined with the SVD information, can yield a

combined chemical + crystallographic map (i).

context, form the backbone of data analytics methods used to
analyze the matrix D of the XSIs.

Simultaneously to recording the XSI, the EBSD patterns are
analyzed to find the crystal structure [Fig. 1(f)]. The array of
EBSD pixels is combined into the phase map [Fig. 1(g)].

To perform SVD of X-ray SIs, it is important to use the insight
of Keenan and Kotula (Kotula et al., 2003; Keenan et al., 2004a,
2004b), specifically that the count data D must be scaled to
account for Poisson noise; this is because the noise between
X-ray peaks and background are very different (heteroscedastic)
and confound algorithms that assume uniform noise (homosce-
dastic). This is accomplished as described by Keenan and
Kotula, specifically that the data matrix D is converted to scaled
data D via:

D = GDH

This D is the “Poisson-scaled data matrix.” As explained else-
where (Keenan, 2007), G is a matrix of size N x N with the inverse
square root of the mean image of D on the diagonal, and H is a
matrix of size M x M with the inverse square root of the mean
spectrum of D on the diagonal. This has the effect of making D
very nearly homoscedastic, and therefore more amenable to anal-
ysis by SVD or PCA. Once scaled, the SVD is:

D =UuzVv!
The columns of U are the left singular vectors, the columns of
V are the right singular vectors, superscript T denotes matrix

transpose, and the diagonal of X carries the singular values.
Importantly to the present discussion: (1) the columns of V are
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the chemical endmembers, and (2) the columns of U are, once
refolded, the abundance maps associated with the chemical end-
members. The values of X are the relative strengths associated
with each component. SVD requires that any two columns of U
be mutually orthonormal, and similarly for columns of V, and
the singular values are sorted in descending order. As described
elsewhere (Kotula et al., 2003; Burke et al., 2006; Watanabe
et al., 2009; Parish, 2011), a “scree plot” of eigenvalues (singular
values squared) can be plotted, and a knee or slope-break in
the plot used to find the number of components to retain.
Inverse transformation by G™' and H™' return the abundance
maps and endmembers into real space from Poisson-scaled
space (Keenan & Kotula, 20044, 2004b), and post-processing tools
such as varimax rotations (Keenan, 2005, 2009; Smentkowski
et al, 2009) or independent component analysis (Hyvarinen,
1999; Windig & Keenan, 2015) are commonly applied to find
more interpretable results.

Stork & Keenan (2010) and Keenan (2007) pointed out some
disadvantages of the above-described matrix-decomposition
methods. First, SVD and its ilk suffer a “parsimony restriction,”
in the terminology of Stork and Keenan. This means that the
rank of the model cannot exceed the chemical rank of the sample.
For instance, if only two chemical elements Fe and Cr are present,
then the SVD model will have rank-2. However, if the material
consists of, for example, elemental regions of Fe and Cr and an
intermetallic compound FeCr, the rank-2-constrained SVD
model cannot describe this three-region sample with a rank-3
model. This means that the FeCr region will be described by,
for example, the Fe and Cr endmembers with roughly 50-50
abundances in the region of the compound. This requires the ana-
lyst to interpret this 50-50 mixture correctly, and the analyst will
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not be presented with a clear FeCr endmember. The second issue
with these methods is that “crisp” phase maps might not be
achieved. PCA with varimax rotation to spatial simplicity
(VRSS; Keenan 2009), ICA, etc., will provide realistic-looking
endmembers, but give negative values in abundance maps (neces-
sarily: if the average of a region’s abundance map is to be zero,
and there is noise, then some of the pixels must be <0).
MCR-ALS (multivariate curve resolution-alternating least
squares; Smentkowski et al., 2009) under non-negativity con-
straints, NNMF (non-negative matrix factorization), etc., can
remove negative counts, but in turn result in errors in the end-
member reconstructions, such as non-physical dips below the
Bremsstrahlung in an endmember at the energy locations of
peaks strongly present in other endmembers (e.g., Keenan
2009). Other methods, such as NFIND-R (Winter, 1999), are
also in the early stages of exploration to apply to EDS.

It was the innovation of Stork & Keenan (2010), then, to sug-
gest cluster analysis of EDS-SI data. K-means clustering is the
classical example (Jain, 2010). In K-means, individual objects (pix-
els in an SI) are clustered based on their similarity; in this case, the
similarity of their point spectra. An a priori number of clusters, K, is
assigned by the analyst. K-means has the advantage that the cluster
centers, which are the spectral endmembers, are very physical in
appearance, without artifacts such as non-physical dips below the
Bremsstrahlung. Furthermore, because the clusters need not be lin-
early independent, the parsimony restriction is lifted (Stork &
Keenan, 2010). Highly efficient K-means packages are readily avail-
able (e.g., Python’s scikit-learn.cluster; Pedregosa et al
2011). However, K-means provides a hard assignment to individual
pixels: a pixel is either in one cluster or another. Stork and Keenan
suggested applying fuzzy C-means clustering (FCM), in which each
pixel’s assignment sums to 1.0, and a pixel can be shared among
multiple clusters. This is vital, e.g., to describe mixed pixels at a
phase boundary. Efficient and easy-to-use fuzzy C-means algorithms
are available in Python as scikit-fuzzy (Warner et al, 2021).

Most importantly, Stork and Keenan found that clustering on
the reduced left-side L of the Poisson-scaled SVD, where L =UX
from SVD of data D such that D = UXV', is computationally
very efficient. I illustrate this schematically in Figure le, which
shows the unzipped matrix of spatial abundances (each row is a
single pixel) and the spectral endmembers, for a rank p=3
model. Furthermore, the final abundances’ cluster centers (end-
members) are easily recovered from the reduced centers by pre-
multiplication. The net result is to perform clustering on the
small Nxp matrix L instead of the large Nx M matrix D.
Because p<<M, this saves significant computational time.
Clustering on the SVD reconstruction instead of the raw data
also allows much improved analysis, because of SVD’s noise filter-
ing effects. Overall, the paper of Stork &Keenan (2010) should be
read carefully for the details.

Application to EBSD

With those foundations laid, let’s now discuss what is new in this
paper. Specifically, let’s define the hypothesis I will test:

Hypothesis: Combining EDS and EBSD information into a single
matrix will allow efficient cluster analysis to separate crystallo-
graphically indistinguishable but chemically distinct phases.

I will take this one part at a time. First, scanning electron
microscopy (SEM)-EDS by itself is known to be nicely amenable
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to cluster analysis, as discussed above in section “Data analytics in
X-ray spectrum imaging,” specifically by clustering on the
reduced-rank SVD left-hand-side L.

The next—and more difficult—question is how to merge EDS
and EBSD data into a format amenable to cluster analysis. Each
pixel contains a spectrum of EDS data, but each pixel can contain
one and only one crystallographic assignment. Therefore, I need a
representation that can easily accommodate each pixel but multi-
ple different crystallographic assignments. An initial thought
might be to use an N x I single-column matrix and assign each
element in the matrix an integer value: 0 for unindexed, 1 for hex-
agonal, 2 for cubic, etc. However, cluster analysis can be sensitive
to the absolute magnitude of different attributes (columns) of the
matrix to be clustered. Which is to say, if a large number of crystals
were present (10, perhaps), the clustering might give more “weight”
to that column and less to the chemically derived columns of L.

To test my hypothesis, I therefore created a “one hot” matrix
(Géron, 2019), so-called because each pixel has only a single non-
zero (“hot”) value. Specifically, I created a matrix, call it Q, where
in its zeroth column, a “1” is assigned to each row (pixel) if the
pixel is unindexed by EBSD; assigned a “1” in the first column of
the pixel is indexed as hexagonal by EBSD; and assigned a “1” in
the second column if the pixel is indexed as cubic (Fig. 1h). I use
the convention that the first row, column, etc, is “zeroth” and
counts up from zero, to be consistent with Python’s array indexing.
So, for N pixels and z number of crystallographic phases (in which
the inevitable “unindexed” pixels are considered a distinct phase), Q
is of size N x Z. Because L is of size N x p, then, a combined matrix
Y of size N x (p + z) can be constructed as ¥ = [Lyy,Qnx]; this con-
catenation is easily accomplished in Python via numpy.hstack.
To account for the difference in absolute magnitudes of the values
between L and Q, I divide L by the absolute value of the largest
magnitude element in the matrix L, which reduces the maximum
value of L to either +1 or —1, nicely matched to the one-hot values
of exactly 1 in the matrix Q. To maintain the same model, V should
then be multiplied by this same constant value. This yields, essen-
tially, an arbitrary orthogonal factor model LR where R is this mul-
tiplied and then transposed V. My hypothesis, then, is that this
combined matrix can be analyzed via clustering to provide a final
chemistry and crystallography result that will differentiate chemically
distinct but crystallographically indistinguishable phases (Fig. 1i).

In this paper, I will use example data of EDS + EBSD from a
complex ceramic with crystallographically ambiguous phases to
test this hypothesis.

Materials and Methods
Experimental

The material used was a TiB, ultra-high temperature ceramic,
provided by the Missouri University of Science and Technology.
The sample was prepared as described elsewhere (Bhattacharya
et al,, 2019). A small (several millimeters) piece was cut and pol-
ished to a mirror finish, with a final polishing step of 50 nm col-
loidal silica. This provided excellent EBSD patterns.
Simultaneous EDS and EBSD were acquired on a Tescan
MIRA3 GMH field-emission SEM equipped with Oxford
Instruments Symmetry CMOS-based EBSD detector and
Oxford Instruments Ultim Max 170 mm” silicon-drift detector
EDS. Data was acquired using Oxford Instruments AZtec 4.0 soft-
ware. Data was acquired at 20 keV, 70° tilt, and ~1 nA probe cur-
rent. An 80 x 60 pixel, 40 x 30 um map (500 nm pixel pitch) was
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acquired. EBSD indexing was performed using TiB,, space group
191 P6/mmm, and TiC, space group 225 Fm3m, crystal cards.
Importantly, TiO, TiC, TiN, and their alloy Ti(CNO) are entirely
isostructural (with a rocksalt crystal structure) and indistinguish-
able crystallographically. The EDS data was exported in the
Oxford .RAW (binary) / RPL (text header) format, and the
EBSD data exported in the Oxford .CTF (text) format.

In Figure 2, I show the EDS X-ray maps, EBSD phase and
band contrast maps, and the forward-scattered electron image
of the general region. X-ray maps are integrated net intensity win-
dows whose full width is the estimated detector resolution at the
energy E of the marked line, calculated by shifting 130 eV approx-
imate resolution at Mn Ko (5,893 eV) via Width(E) = (2.5
(E-5,893) + (130°)]"* (Goldstein et al., 1992).
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Analysis

Anaconda Python 3 was used for all calculations. First, a custom
script was used to read the EDS data from the .RAW/.RPL into
memory, in which the X-ray point spectra and associated meta-
data were stored into numerical arrays. The CTF file containing
the EBSD results listed each pixel’s phase as “0” (unindexed), “1”
(TiB, hexagonal), or “2” (TiC cubic). This was read into memory
and converted into a NumPy array. This NumPy array was also
converted into a “one-hot” matrix using Scikit-learn’s
OneHotEncoder. The OneHotEncoder produced a SciPy sparse
matrix, and I then used its todense() method to convert the
matrix from a sparse SciPy array to a dense NumPy array. This
array’s size was 4,800 x 3, for 4,800 pixels and 3 phases.

o -
/ a“
“

Fig. 2. X-ray maps for Ti, Zr, Si, Al, O, C, and B. The EBSD maps for phases (Hex. = hexagonal) and band contrast. The bottom image is the forward-scatter image,

with the map region marked. All figures have the same scale.
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The EDS data was trimmed to —0.2 to 5.79 keV (the Oxford
electronics giving some empty channels at negative energies), con-
verted from a dense NumPy array into a compressed sparse column
SciPy array, and then scaled for Poisson noise as described above.
Because of the high beam current and long pixel dwell time needed
for EBSD, the EDS signal was strong and binning was not needed to
extract meaningful singular values. SVD was performed on the
Poisson-scaled sparse matrix using Python: scipy.sparse.linalg.svds
(Virtanen et al., 2020). The SVD yields the triplet D =U3VT,
and I then define L = UZX.. Recall that L is size N x p, where N is
the number of pixels (80 x 60 =4,800) and p is the rank of the
SVD, which is this case is p = 3.

Results and Discussion

EBSD finds two crystallographic phases, but EDS finds three
chemical phases. This is, of course, the crux of the problem I
wish to address. The phase map in Figure 2 labels these two crys-
tallographic phases as “Hex.” (Hexagonal, red) and “Cubic”
(blue). Unindexed pixels, essentially a third null phase, are black.

The PCA analysis, Figure 3, is the result of returning the noise-
scaled SVD analysis from the Poisson-scaled space back to the
original real space, and then re-orthogonalizing using Keenan’s
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“fPCA” method (Keenan, 2007). The first component (Fig. 3,
top row) is the mean spectrum and mean image. The second
component (Fig. 3, middle row) shows the differences between
the matrix and the precipitates. The Ti and B peaks are negative
in that endmember, which indicates the precipitates are weak in
these elements. These negative “counts” are indicative of the prob-
lem with simple SVD/PCA analyses: their difficult interpretability.
The third component (Fig. 3, bottom row) shows the differences
between the two precipitate populations.

A more interpretable approach is seen in Figure 4, which is the
“varimax rotation to spatial simplicty” (VRSS) (Keenan, 2009)
analysis. This shows that there are three distinct regions, specifi-
cally, TiB, matrix (top row); (Ti,Zr,Al,O,(Ca?))-oxide precipitates
(middle row); and Ti(C,N,O) precipitates (bottom row). Other
methods, such as varimax-rotated PCA, NNMF, and NFIND-R,
are certainly possible and give substantially similar results, but
VRSS provides a clear interpretation of the X-ray data here.

From this starting point, I begin the specific analysis of the
data to explore the use of combined elemental and crystallo-
graphic information via clustering.

First is K-means and fuzzy C-means analysis of the EDS data.
K-means cluster analysis of the left-side of the SVD, L, is shown in
Figure 5 and fuzzy C-means in Figure 6. These use the methodology

2000
1000
0
-1000
-2000

400
200

=200
=400

200
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Fig. 3. PCA of the XSI, returned from noise-scaled space to real space and re-orthogonalized. The first component (top row) describes the mean (primarily
Ti-Zr-Al-0-B). The second component describes the differences between the matrix and the precipitates. The third component (bottom row) describes the differ-

ences between the precipitates. Spectral endmembers are scaled to an integral of 1.0.
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Fig. 4. Varimax rotation to spatial simplicity analysis of the XSI. Three independent components are found: Ti-B (top); (Ti,Zr,Al,0,(Ca?)) (middle); Ti-(C,N,0) (bot-
tom). Spectral endmembers are scaled to an integral of 1.0. The arrow indicates a precipitate of interest in later analysis.
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Fig. 5. K-means clustering analysis on the SVD-reduced EDS data. Four clusters (phases) describe the data very well. Spectral endmembers are arbitrarily scaled
and offset vertically for visibility.
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Fig. 6. Fuzzy C-means clustering of the SVD-reduced EDS data. Four clusters (phases) describe the data very well. Spectral endmembers are arbitrarily scaled.

described for fuzzy C-means described by Stork & Keenan (2010).
K-means was calculated using scikit-learn (Pedregosa et al., 2011)
and fuzzy C-means using scikit-fuzzy (Warner et al. 2021). From
this starting point, I begin the specific analysis of the data to explore
the use of combined elemental and crystallographic information via
clustering. For both cluster analyses, I found that four clusters pro-
vided the most insightful analysis. With three clusters, the result
replicates the VRSS results. With four clusters, an additional compo-
nent not found in the VRSS result is discovered, providing new
insight. However, five clusters resulted in non-physical checker-
boarding in which the matrix (TiB, phase) was split into two differ-
ent clusters without any physical meaning.
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The reason that four clusters, instead of three, appears more
insightful can be explained by looking at the precipitate that is
arrowed in Figures 4-6. In either cluster analysis figure, the
“oxide 1” spectral endmember shows more B-K X-ray intensity
and less O-K X-ray intensity than “oxide 2”; oxide 1 looks like
a linear combination of the matrix and oxide 2, and this point
will come back later. In the VRSS analysis (Fig. 4), the same par-
ticle shows weaker “oxide” contribution than the large oxide par-
ticle, and more contribution from the matrix phase. This is likely
interpretable as the arrowed particle being very thin, and the
20kV electron beam exciting noticeable amounts of B, and
noticeably less O, at those points. This illustrates nicely Stork
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Fig. 7. Illustration of unzipping L and Q into a combined matrix Y for analysis. Note
that L is scaled to a maximum absolute value of 1.0.

and Keenan’s point that cluster analysis does not suffer the “par-
simony restriction” that factor analysis methods suffer (Stork &
Keenan, 2010).

So, now, the next question is, how can the chemical (EDS) and
crystallographic (EBSD) information be combined into a single
comprehensive analytical look at the sample? As noted above in
section “Application to EBSD,” I hypothesize that a cluster anal-
ysis applied to a combined matrix of chemical information and
crystallographic information will provide the desired differentia-
tion of crystallographically indistinguishable but chemically dis-
tinct phases.

At first, I can combine the SVD left-side L (scaled to a maxi-
mum absolute value of 1.0) and a matrix Q of the crystallographic
identifications into a single matrix Y. This is illustrated in
Figure 7. Then, K-means clustering of this matrix Y is performed.
K-means clustering, as in Figure 5, produces a phase assignment
map and spectral endmembers. The cluster centers of a K=5
analysis of the matrix in Figure 7 is given in Figure 8a.
Figure 8a shows the cluster centers directly derived from cluster-
ing Figure 7. Figure 8b shows the cluster assignment map.
Although Stork & Keenan (2010) give an equation that allows
the recovery of the (Poisson-space) endmembers, P, from the
SVD’s right-side endmembers, V) and the cluster centers P,
such that P = VP, and which can be returned to real-space by
dividing by the spectral Poisson-scaling vector H, here I found
the simply summing the point spectra under each cluster map
provides an identical result (xnumerical rounding after normali-
zation to highest peaks), and use the summed spectra under each
cluster assignment map, scaled to the number of pixels per phase
as that endmember (i.e., cluster centers). It is important to note
that the final three columns of the cluster centers are the crystal-
lographic assignments and should be truncated before applying
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that equation. The final cluster centers, in real (spectral) space,
are given in Figure 8c and a detailed view of the low energy
lines in Figure 8d.

Figures 8c and 8d show the insight gained from the proposed
method. Cluster #0 (red) is the matrix and shows Ti and B lines
clearly and was assigned to the hexagonal phase. So far, so good:
this is the TiB, matrix. Cluster #1 (blue) shows Ti and C and a
cubic assignment. This, also, makes sense given the X-ray maps
and EBSD maps in Figure 2; this is a carbon-rich Ti(C,N,0)
alloy and will be called TiC for simplicity. Cluster #2 (black) is
chemically indistinguishable from the matrix but is “unindexed”
phase assignment; these are matrix pixels with bad EBSD pat-
terns, mostly from grain boundaries that gave overlapped
Kikuchi bands. This phase could have been eliminated by clean-
ing the EBSD results (Brewer & Michael, 2010) but I decided not
to apply EBSD data cleaning on my data.

It is for Cluster #3 (gold) where the benefit of this new tech-
nique becomes apparent. The EBSD map in Figure 2 showed
the triangular particle on the left-center of the map as cubic,
and indistinguishable from the carbides of Cluster #2. However,
here, the chemistry seen in the spectral endmember is entirely dif-
ferent—AlLZr,Ti,0(,Ca)—compared to the TiC chemistry of
Cluster #2 and despite the cubic phase assignment that, by
EBSD alone, was indistinguishable from the TiC. Thus, the
hypothesis in section “Application to EBSD” is confirmed: com-
bined EDS + EBSD via cluster analysis has indeed differentiated
chemically distinct but crystallographically ambiguous phases.
Had I indexed with K =4, this would be a satisfying end to the
analysis. However, the K=5 clustering shows the fifth cluster,
Cluster #4 (gray), which is very surprising indeed. The Al and
Zr lines are intermediate between the AlZr,Ti,0(,Ca) (gold)
and TiB, (red) phases, as is the B line. The phase assignment
is, surprisingly, hexagonal. This phase, then, appears to identify
TiB, (hexagonal) pixels in which the blooming of the electron
beam underneath the surface excited X-rays from a region larger
than the small surface area sampled by EBSD. Cluster #4 (gray),
then, describes the different spatial resolutions between the EDS
and EBSD signals. Indeed, a Monte Carlo simulation using
CASINO (Hovington et al., 1997) shows ~1,000 nm beam broad-
ening of a 20 keV beam at 70° tilt onto TiB, of 4.5 g/cm”; com-
pares this roughly 1,000 nm to the 500 nm step size of the
experiment and the very small (<10 nm) size of the actual field
emission probe at a modest beam current of ~1 nA. Although
EBSD spatial resolution is difficult to estimate, it will be closer
to the probe size than the interaction volume; based on measure-
ments on other materials (Chen et al., 2011), around 100 nm
seems a reasonable guess here.

It is a well-known limitation of clustering methods that if dif-
ferent features being clustered on very different scales, the results
of the cluster analysis can be skewed; therefore, I will try the same
analysis, but instead of using L (where L = UX), what if only U is
used as the basis for the clustering? In this analysis, the trace of X
is [1,200.0, 118.2, 71.5]. Which is to say, the Oth column of L is
about 10x stronger than the 1st column, which is about twice
as strong as the 2nd column. U, conversely, is orthonormal
(each column is a unit vector), so the scales are much closer.
Figure 9a shows this matrix; a comparison of Figure 9a to
Figure 7 shows that the absolute values of the elements in col-
umns 0, 1, and 2 are much closer. It is therefore reasonable to
assume the clustering behavior will be more sensitive to smaller
features. The actual cluster centers in Figure 9b are not apprecia-
bly different from those in Figure 8a—note that the order in
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Fig. 8. (a) Cluster centers found by K =5 K-means of the matrix in Figure 7. (b) The associated cluster assignment map. (c) The cluster centers after conversion from

the reduced SVD space to real space. (d) A detailed view of the low-energy X-ray lines.

which clusters are assigned is arbitrary. It is, in Figure 9c, the clus-
ter assignment map, where this U-based analysis begins to differ
from the L-based analysis. The assignment is a bit noisier; speckle
is observed, which was absent from the L-based cluster assign-
ment map, Figure 8b. The ALZr,Ti,O(,Ca) cubic phase (gold),
the TiB, hexagonal matrix phase (red), and the unindexed TiB,
phase (black) are unchanged. Careful inspection of the carbide
cubic phase (blue) finds little or no difference between the
L-based and U-based assignment, but large differences appear
in the chemically mixed hexagonal phase (gray). First, gray edging
is seen around the carbides in the U-based which was not
observed in the L-based. These seem to indicate that the threshold
to assign the phase’s chemistry to the gray phase is lower in the
U-based assignment. This makes sense because the scale differ-
ence between the phases was removed and smaller effects in the
non-matrix should be visible. More interesting, additional entire
regions, such as the gray particle marked by the white arrow in
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Figure 9c, are discovered. Careful inspection of the X-ray maps
(Fig. 2) indicates that, indeed, a very weak O and C signal is
seen at that location. Given the hexagonal indexing and lack of
visible boundary at that site in the band contrast map, this may
be a shallowly buried oxycarbide excited by the penetrative
20 kV beam.

Ultimately, the comparison between the U-based (Fig. 9) and
L-based (Fig. 8) analyses appears to be that the U-based is more
sensitive to both noise and small signals, so the choice of one over
the other might involve a decision toward sensitivity versus map
crispness; for these maps, the K-means computation times were
<55, so analyzing in both methods and comparing them are
resource-light and thorough.

For one last comparison, the fuzzy C-means results (Fig. 6)
were converted into an L-like matrix, where if a pixel was >0.8
in a single cluster, it was assigned 100% to that pixel, and the
same clustering performed. Initial results were grossly incorrect,
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in that with K =5, the TiC and Al,Zr,Ti,0(,Ca) cubic phases were
assigned to the same cluster. However, if analyzed with K = 6, this
FCM-based analysis provides a very similar result to the U-based
analysis, Figure 10. The TiB, (red), AlTi,Zr,0(,Ca) (gold), and
TiC (blue) phases are unchanged. The hexagonal edging-effect
phase (gray) is seen again, including at the “buried” feature
seen in Figure 9c arrowed, but a sixth assignment, very similar
to the gray assignment, green in Figure 10, shows a second edge-
effect hexagonal phase with perhaps very slightly less of an O-line
than the gray edge-effect phase. In other words, this provides per-
haps the cleanest look yet—the buried phase is found like in the
U-based but with less speckle—although at the cost of slightly
more complicated interpretation, owing to the sixth phase.
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Conclusions

The proposed cluster analysis method reliably and effectively
differentiated the two cubic phases, TiC and AlZr,Ti,O(,Ca),
in this tested sample. Different methods already exist to differ-
entiate phases in EBSD that cannot be differentiated by the sim-
ple Hough-based methods. For instance, dynamical pattern
simulation followed by dictionary comparison (Chen et al,
2015) provides very high fidelity in indexing, but is computa-
tionally expensive and has significant start-up effort involved.
Detector vendors have vendor-specific methods for merging
the EBSD and EDS data to find the different phases.
However, these methods can involve a certain amount of
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black-box software and are also not transferrable from one ven-
dor’s system to another.
The proposed method has several advantages:

1. The proposed method successfully differentiates chemically
different phases that had indexed identically using the
on-microscope Hough-based approach.

2. The proposed method is computationally cheap; for the 80 x
60 pixel dataset here, the full analysis is in the order of min-
utes, and the majority of that time is spent on the FCM clus-
tering (Fig. 6), because the FCM is repeated 512 times to help
ensure convergence to an optimum solution from the random
initializers.

3. This method is vendor agnostic, and only requires that the
EBSD phase assignments and the EDS pixel spectra be read-
able and tagged to the pixels.

4. This method is provided in the Supplementary material, sec-
tion 6, as open-source software and is freely available.

The primary disadvantages to the present technique are the
following:

1. The choice of the number of clusters to determine requires a
combination of domain knowledge and trial and error; how-
ever, the vendor-specific methods share this drawback.

2. Vendor-specific methods can be performed using the on-micro-
scope software and do not require any programming knowledge.

3. The choice of L-based, U-based, or FCM-based starting matrix
provides somewhat different results; however, the major phase
assignments are unchanged, and only the very small differ-
ences (such as tiny contributions of Al-Zr to the matrix spec-
tral component) are different.

Regardless, it seems that this method has potential as a
machine-learning approach to the differentiation of crystallo-
graphically ambiguous phases via combined EDS +EBSD.
Further development is promising as a simple and effective way
to identify such phases.
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