FINITE NEAR-RINGS WITH TRIVIAL ANNIHILATORS

GEORGE SZETO

(Received 18 April 1972)

Communicated by G. E. Wall

1. Introduction

In [3] and [4], the near-rings R with no zero divisors are studied. In particular, a near-ring R is a near-field if it has a non-zero right distributive element ([4], Theorem 1.2.). Also, $(R,+$) is a nilpotent group if not all non-zero elements of R are left identities of $R([3]$, Theorem 2). The purpose of the present paper is to extend the above results to a class of near-rings with zero divisors; that is, the set of annihilators of an element x in $R, T(x)=\{g / x g=0\}$ is either $\{0\}$ or R. The examples of such near-rings are those R with $(R,+)$ simple groups and those R with no zero divisors as given in [1], [2], [3] and [4]. For this R, we can easily see that $R=A \cup S$ where $A=\{x / T(x)=R\}$ and $S=\{x / T(x)$ $=\{0\}\}$. Then the second part of this paper will give a structural theorem on the semi-group (S, \cdot), and more properties on R can be derived.

Throughout the present paper $(R,+, \cdot)$ is assumed a finite near-ring such that for each x in $R, T(x)=\{y / x y=0\}$ is either R or $\{0\}$. If $T(0)=\{0\}$ then each $0 a \neq 0$ for each $a \neq 0$ in R. But then $0 R=R$; and so $0 a$ is a left identity of R for each $a \neq 0$. From now on R is assumed not this kind just mentioned. So, R has the property that $T(0)=R$.

2

Section 1. Assume $T(x)$ is either R or $\{0\}$ for each x in R, we shall show that either the multiplication operation on R is trivial (that is, for $r \neq 0$ in R, $r g=0$ for all g in R or $r g=g$ for all g in R, or the additive group $(R,+)$ is nilpotent. This extends Theorem 2 in [3].

Lemma 1.1. Let $S=\{x / T(x)=\{0\}\}$ and let $A=\{x / T(x)=R\}$; then (1) $R=A \cup S$ such that $A \cap S$ is a void set and (2) $s S=S$ and $s A=A$ for each s in S, where $s A=\{s$ for a in $A\}$ and $s S=\{s t$ for t in $S\}$.

Prcof. For each x in $R T(x)$ is either R or $\{0\}$, so part (1) is trivial. Next for each a in $A s a R=s(a R)=s 0=0$, so $s A \subset A$. Let x be an element in S and r in R such that $s x r=0$. Then $s(x r)=0, x r=0$; and so $r=0$. Thus $s S \subset S$. On the other hand, for any r^{\prime} and $r^{\prime \prime}$ in R such that $s r^{\prime}=s r^{\prime \prime}$, we have $s\left(r^{\prime}-r^{\prime \prime}\right)=0$. Hence $r^{\prime}=r^{\prime \prime}$ because $T(s)=\{0\}$. Therefore $s A=A$ and $s S=S$.

Lemma 1.2. By keeping the notations of lemma 1.1, if $s t=t$ for some elements s and t in S, then $s r=r$ for each r in R.

Procf. Since $t S=S$ and $t A=A$ by lemma 1.1, $t R=R$; and so for each r in $R, r=t r^{\prime}$ for some r^{\prime} in R. Hence $s r=s\left(t r^{\prime}\right)=(s t) r^{\prime}=t r^{\prime}=r$.

Using similar idea to [3] we can show our main theorem in this section.
Theorem 1.3. By keeping the notations of Lemma 1.1, we have
(1) if $T(x)=R$ for each x in R then $R^{2}=\{0\}$;
(2) if $T(x)=\{0\}$ with some $x \neq 0$ and if A contains no non-zero subgroups of $(R,+)$; then either x is a left identity of R or $(R,+)$ is a nilpotent group.

Proof. Part (1) is trivial by the definition of $T(x)$. Next, since $T(x)=\{0\}$ with some $x \neq 0$ in R, x is in S; and so $x R=R$ by lemma 1.1. Suppose x is not a left identity of R. Then $x^{2} \neq x$. For otherwise $x r=r$ for each r in R by lemma 1.2. This contradicts that x is not a left identity. Hence we can have the identity x^{n} of the cyclic group generated by x under multiplication with $n>1$; that is $x^{n} x=x x^{n}$ with a minimal integer n. Again since $x R=R, x^{n}(x r)$ is equal to $x r$ for each $x r$ in $x R$; so x^{n} is a left identity of R with $n>1$. Futhermore, it is not hard to show that α_{y} defined by $\alpha_{y}(r)=y r$ for each r in R is a group automorphism of $(R,+)$ if y is in S. Since $n>1, n=p m$ for some prime integer p and an integer m. Noting that the element x^{m} has order p, and that x^{m} is in S, we have that $\alpha_{\left(x^{m}\right)}$ is an automorphism of $(R,+)$ of order p. Also, $\alpha_{\left(x^{m}\right)}$ is a fixed point free automorphism. In fact, let $\alpha_{\left(x^{m}\right)}(r)=r$, that is, $x^{m} r=r$. Then there are two cases.

Case 1. r is in S. Then $r R=R$ by Lemma 1.2; and so x^{m} is a left identity of R. Thus $x^{m} x=x$, a contradiction to the minimal property of n such that $x^{n} x=x$. This implies that $\alpha_{\left(x^{m}\right)}$ is a fixed point free automorphism of order p. Therefore $(R,+)$ is a nilpotent group by [6].

Case 2. r is in A. Let $C=\left\{h / h\right.$ in R and $\left.x^{m} h=h\right\}$. Then 0 and r are in C. For each h^{\prime} and $h^{\prime \prime}$ is $C, x^{m}\left(h^{\prime}-h^{\prime \prime}\right)=x^{m} h^{\prime}-x^{m} h^{\prime \prime}=h^{\prime}-h^{\prime \prime}$. Hence $(C,+)$ is a subgroup of $(R,+)$. Noting that C can be assumed a subset of A. For otherwise there exists h in S such that $x^{m} h=h$; and so this leads to case 1 . But by hypothesis the set A has no non-zero subgroup of $(R,+)$, so $C=\{0\}$. Hence $r=0$. Thus $\alpha_{\left(x^{m}\right)}$ is a fixed point free automorphism of order p; and so $(R,+)$ is nilpotent.

A near-ring R is a near-integral domain if and only if $A=\{0\}$ and not all elements of R are left identities ([3], Def. Section 2). Then our theorem extends the Theorem 2 in [3].

Corollary 1.4. (Ligh) Let R be a finite near-integral domain. Then $(R,+)$ is nilpotent.

From $R=A \cup S$ with $A \cap S$ a void set, it can be shown that a trivial multiplication on A implies a trivial multiplication on R.

Proposition 1.5. If $(S \cup\{0\},+)$ is a proper subgroup of $(R,+)$ and if $s a=a$ for each a in A and some s in R (and so in S), then $s r=r$ for each r in R.

Proof. For any element t in $S, a+t$ is not in S because ($S \cup\{0\},+$) is a subgroup of $(R,+)$ and because a is not in $S \cup\{0\}$. Hence $s(a+t)=a+t$. But then $s a+s t=a+s t=a+t$, st $=t$ for each t in S. Thus $s r=r$ for each r in R.

Since for each s in S, α_{s} defined by $\alpha_{s}(r)=s r$ is a group automorphism of $(R,+)$. Hence from Proposition 1.5 we have:

Corollary 1.6. If $(S \cup\{0\},+)$ is a subgroup of $(R,+)$ and if the automorphism α_{s} has at least two non-zero fixed points in a same coset of $(S \cup\{0\},+)$; then α_{s} is an identity automorphism.

Proof. Let a^{\prime} and $a^{\prime \prime}$ be two non-zero fixed points of α_{s} in a same coset of $\left(S \cup\{0\},+\right.$) in R. Then $a^{\prime}=a^{\prime \prime}+r$ for some r in S such that $\alpha_{s}\left(a^{\prime}\right)=a^{\prime}$ and $\alpha_{s}\left(a^{\prime \prime}\right)=a^{\prime \prime}$; and so

$$
\alpha_{s}\left(a^{\prime}\right)=\alpha_{s}\left(a^{\prime \prime}+r\right)=a^{\prime \prime}+r
$$

But $\alpha_{s}\left(a^{\prime \prime}+r\right)=\alpha_{s}\left(a^{\prime \prime}\right)+\alpha_{s}(r)$ then $\alpha_{s}\left(a^{\prime \prime}+r\right)=a^{\prime \prime}+\alpha_{s}(r)=a^{\prime \prime}+r$. Hence $\alpha_{s}(r)=r$; that is, $s r=r$. This implies that $s t=t$ for all t in R by Lemma 1.2. Thus α_{s} is the identity automorphism of $(R,+)$.
(3) Section 2. By Lemma $1.1, R=A \cup S$, so, in case S is a void set, we have $R^{2}=\{0\}$, and in case $A=\{0\}$, we have a near-integral domain. In this section, S is always assumed non-void. We shall give the following structural theorem on the semi-group (S, \cdot): S is partitioned as isomorphism multiplicative groups. Consequently, some of the results of [4] can be extended.

Lemma 2.1. For each element s in S, it has a unique right identity s^{\prime} which is also a left identity of R.

Proof. Since $T(s)=\{0\}$ and since R is finite, there is a multiplicative group generated by s of order n,

$$
\left\{s=s^{n+1}, s^{2}, \cdots, s^{n}\right\}
$$

Hence s^{n} is a right identity of s. Suppose t is also a right identity of s. Then $s t=s s^{n}$; and so $s\left(t-s^{n}\right)=0$. Thus $t=s^{n}=s^{\prime}$ because $T(s)=\{0\}$ again. This implies that s^{\prime} is unique. Moreover, noting that $s^{\prime} s=s^{n} s=s$ and that $s R=R$ we conclude that $s^{\prime}=s^{n}$ is a left identity of R by Lemma 1.2.

Definition. For any x and y in S, we call x equivalent to y if and only if the identity of $x=$ the identity of y.

THEOREM 2.2. (a) The relation " \sim " defined above on S is an equivalence relation;
(b) Each equivalence class of " \sim ", $R_{x}=\{y /$ the identity of $y=$ the identity of x, is a multiplicative group;
(c) Any two equivalence classes, R_{x} and R_{y}, for x and y in S, are isomorphic.

Proof. Part (a) is obvious. For part (b), let a and b be in R_{x} with the right identity x^{n}. Then $(a b) x^{n}=a\left(b x^{n}\right)=a b$. Also, $a a^{k-1}=a^{k}=x^{n}$, where k is the order of a, so $a^{k-1}=a^{-1}$. Hence R_{x} is a multiplicative group with the identity x^{n}. Finally for part (c), let R_{x} and R_{y} be any two equivalence classes with the right identities x^{\prime} and y^{\prime} respectively. Define a map β from R_{x} to R_{y} by $\beta\left(r x^{\prime}\right)$ $=\left(r x^{\prime}\right) y^{\prime}$ for each $r x^{\prime}$ in R_{x} (for $R_{x}=S_{x}{ }^{\prime}$). Since x^{\prime} is also a left identity of R by Lemma 2.1,

$$
\beta\left(r x^{\prime}\right)=\left(r x^{\prime}\right) y^{\prime}=r\left(x^{\prime} y^{\prime}\right)=r y^{\prime}
$$

We claim that β is a group isomorphism from R_{x} onto R_{y}. In fact, for any $a x^{\prime}$ and $b x^{\prime}$ in R_{x},

$$
\begin{aligned}
\beta\left(a x^{\prime} b x^{\prime}\right)= & \left.\beta\left(a b x^{\prime}\right)=\left(a b y^{\prime}\right)=(a b) y^{\prime}=\left(a y^{\prime}\right)\left(b y^{\prime}\right)\right)= \\
& \left(a x^{\prime} y^{\prime}\right)\left(b x^{\prime} y^{\prime}\right)=\beta\left(a x^{\prime}\right) \beta\left(b x^{\prime}\right)
\end{aligned}
$$

by Lemma 2.1. again. Next let $\beta\left(a x^{\prime}\right)=y^{\prime}$ for an element $a x^{\prime}$ in R_{x}, then $\left(a x^{\prime}\right) y^{\prime}$ $=y^{\prime}$. Since $y^{\prime} R=R, a x^{\prime}$ is a left identity of R; and so $a x^{\prime}$ is the identity of the multiplicative group R_{x}. Hence $a x^{\prime}=x^{\prime}$. Thus β is one to one. Furthermore, let $a y^{\prime}$ be an element in R_{y}, then $a x^{\prime}$ is in R_{x} such that

$$
\beta\left(a x^{\prime}\right)=\left(a x^{\prime}\right) y^{\prime}=a y^{\prime}
$$

This implies that β is onto and therefore the theorem is proved.
The following consequences are immediate.
Corollary 2.3. The number of elements in $S=\left(\right.$ order of $\left.R_{x}\right)$ times (the number of equivalence classes of "~").

Corollary 2.4. The following statements are equivalent:
(a) $R_{x} \cup\{0\}$ is a subnear-ring of $(R,+, \cdot)$;
(b) $R_{x} \cup\{0\}$ is a near-field;
(c) $\left(R_{x} \cup\{0\},+\right)$ is a subgroup of $(R,+)$.

Proof. Since R_{x} is a multiplicative group, the proof is trivial.
In theorem 1.3, we assumed that the set A contains no non-zero subgroups of R under addition ([1], 2-3, example 6). But if R has a non-zero right distributive element, then this assumption does not hold.

Theorem 2.5. If R has a non-zero right distributive element, then $(A,+)$ is a normal subgroup of $(R,+)$.

Proof, Let x be a non-zero right distributive element in R. Then for any elements a and b in $A(a+b) x=a x+b x=0$; and so $a+b$ is in A. Hence $(A,+)$ is a subgroup of $(R,+)$. Moreover, for each c in $R,(-c+a+c) x$ $=(-c) x+a x+c x=-(c x)+0+c x=0$ because x in a right distributive element. Thus $(A,+)$ is normal in $(R,+)$.

Remark 1. The near-ring R under consideration is $S \cup A$ by Lemma 1.1. From the definitions of A and S, we know that $A-\{0\}$ is the set of left zero divisors of R and that S is the set of elements without right zero divisors. Hence if R has a right distributive non-zero elements, then the number of elements of R is less than n^{2} where $n+1$ is the order of the normal subgroup $(A,+)$ in Theorem 2.5 ([4], Th. 2.3).

Remark 2. If R has a right distributive element in S with $S \cup 0$ a group under + then S has only one equivalence class in the sense of Theorem 2.2. S is equal to the class, so it is a multiplicative group. $S \cup\{0\}$ is a near-ring, for $(S \cup\{0\},+$) is a subgroup of $(R,+)$. This implies that $R=S \cup\{0\}$ because. the complement of $S,(A,+)$, is also a subgroup of $(R,+)$ by Theorem 2.5. Thus this leads to Theorem 1.2. of [4]; and so R is a near-field. After this paper had been submitted, the author learned that Theorem 2.2 for planar integral domains had been proved by J. Clay.

References

[1] J. Clay, 'The near-rings on groups of low order', Math. Z. 104 (1968), 364-371.
[2] A. Fröhlich,' The near-ring generated by the inner automorphisms of a finite simple group', J. London Math. Soc. 33 (1958), 95-107.
[3] S. Ligh, 'On the additive groups of finite near-integral-domains and simple D. G. nearrings', Monatsh. Math. 16 (1972), 317-322.
[4] S. Ligh and J. Malone, 'Zero divisors and finite near-rings', J. Austral. Math. Soc., Vol. 11 (1970), 374-378.
[5] J. Malone and C. Lyons, 'Endomorphism near-rings', Proc. Edinburgh Math. Soc. 17 (1970), 71-78.
[6] J. Thompson, 'Finite groups with fixed-point-free automorphisms of prime order', Proc. Natl. Acad. Sci., U. S. A. 45 (1959), 578-581.

Mathematics Department
Bradley University
Peoria, Illinois 61606
U. S. A.

