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MICHA�L RAMS3 AND PABLO SHMERKIN4∗

1Department of Mathematics and Statistics, University of Jyväskylä, PO Box 35,
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Abstract We study dimensional properties of visible parts of fractal percolation in the plane. Provided
that the dimension of the fractal percolation is at least 1, we show that, conditioned on non-extinction,
almost surely all visible parts from lines are one dimensional. Furthermore, almost all of them have
positive and finite Hausdorff measure. We also verify analogous results for visible parts from points.
These results are motivated by an open problem on the dimensions of visible parts.
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1. Introduction, notation and results

1.1. Visible parts

The visible part of a compact set E ⊂ R
2 from an affine line � consists of those points

x ∈ E where one first hits the set E when looking perpendicularly from �. More precisely,
we have the following.

Definition 1.1. Let E ⊂ R
2 be compact and let � be an affine line not meeting E.

The visible part V�(E) of E from � is

V�(E) = {a ∈ E : [a, Π�(a)] ∩ E = {a}},
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where Π�(a) is the projection of a onto � and [a, Π�(a)] is the closed line segment joining
a to Π�(a). Moreover, the visible part Vx(E) of E from a point x ∈ R

2 \ E is

Vx(E) = {a ∈ E : [a, x] ∩ E = {a}}.

In this paper we restrict our consideration to the planar case. Clearly, Definition 1.1
can be extended in a natural way to higher dimensions [9]. For a measure theoretic
definition of visibility and related topics, see [4,11].

The question of how the Hausdorff dimension, dimH, of visible parts depends on that
of the original set has been considered in [5,9,12]. In general, only ‘almost all’ type of
results are possible, since there may be exceptional directions, for example, in the case
of fractal graphs [9]. Let Ln be the Lebesgue measure on R

n. There is a natural Radon
measure Γ on the space A of affine lines in the plane, that is, for all A ⊂ A,

Γ (A) =
∫

L1({a ∈ L⊥ : L + a ∈ A}) dγ(L),

where L is a line that goes through the origin, L⊥ is the orthogonal complement of L

and γ is the natural Radon measure on the space of all lines that go through the origin.
Since every line through the origin can be parametrized by the angle which it makes with
the positive x-axis, the Lebesgue measure L1 on the half open interval [0, π) induces γ.

Let E ⊂ R
2 be a compact set. The results in [9] for dimensional properties of visible

parts resemble the Marstrand–Kaufman–Mattila-type projection results, according to
which

dimH ΠL(E) = min{dimH E, 1} (1.1)

for γ-almost all lines L that go through the origin [10]. For visible parts we have that if
dimH E � 1, then

dimH V�(E) = dimH E and dimH Vx(E) = dimH E (1.2)

for Γ -almost all affine lines � not meeting E and for L2-almost all x ∈ R
2 \ E. On the

other hand, if dimH E > 1, then

1 � dimH V�(E) and 1 � dimH Vx(E) (1.3)

for Γ -almost all affine lines � not meeting E and for L2-almost all x ∈ R
2 \ E. These

results can be extended to higher dimensions by replacing 1 with n − 1 [9].
The methods used in [9] for proving (1.2) and (1.3) are based on the generalized

projection formalism for parametrized families of transversal mappings due to Peres and
Schlag [13]. The asymmetry between (1.1) and (1.3) in the case dimH E > 1 is due to the
following: in (1.1) the upper bound dimH ΠL(E) � 1 is trivial since ΠL(E) is a subset of
a line. However, V�(E) does not have this restriction and a priori its dimension could be
as large as the dimension of E (and indeed this is the case, at least for exceptional lines,
as in the already mentioned example of fractal graphs.)

The validity of the reverse inequality of (1.3) in general is an open problem. In [9] it
was verified for some concrete examples, including quasi-circles and certain self-similar
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sets. In the planar case a partial answer was given by O’Neil in [12]. Using energies, he
showed that if a compact connected plane set E has Hausdorff dimension strictly larger
than 1, then visible parts from almost all points have Hausdorff dimension strictly less
than the Hausdorff dimension of E. In fact, for L2-almost all x ∈ R

2 \ E,

dimH Vx(E) � 1
2 +

√
dimH E − 3

4 .

It is easy to see that 1 is the only possible universal value for Hausdorff dimension of
typical visible parts of sets E with dimH E > 1. More precisely, if for all compact sets
E ⊂ R

2 with dimH E > 1 there exists a constant c such that dimH V�(E) = c for almost
all �, then c = 1 [9]. We verify that this constancy result holds, in a strong form, for
typical random sets in fractal percolation.

1.2. Fractal percolation

Fractal percolation is a natural model of fractal sets that display stochastic self-
similarity. Much is known about its geometric properties (see [2, 7] and the references
therein). We address the question of studying dimensional properties of visible parts
of fractal percolation in the plane. It turns out that the reverse inequality in (1.3)
holds for all lines almost surely conditioned on non-extinction, in a strong quantita-
tive form. Moreover, the visible parts from almost every line have positive and finite
one-dimensional Hausdorff measure. We underline that the methods we use are differ-
ent from those in [9,12]. Before stating the results, we recall the construction of fractal
percolation and discuss some of its basic properties.

Fix 0 < p < 1. We construct a random compact set as follows: let Q0 = [0, 1]× [0, 1] ⊂
R

2 be the unit square. Divide Q0 into four subsquares of equal size, each of which is
chosen with probability p and dropped with probability 1 − p, independently of each
other. Denote by C1 the collection of all chosen subsquares. For each Q ∈ C1, we continue
the same process by dividing Q into four subsquares of equal size. Again each of these
subsquares is chosen with probability p and dropped with probability 1−p, independently
of each other. The set of all chosen squares at the second level is denoted by C2. Repeating
this process inductively gives the limiting random set E, defined as

E =
∞⋂

n=1

⋃
{Q : Q ∈ Cn}.

The probability space Ω is the space of all constructions and the natural probability
measure on Ω induced by this procedure is denoted by ‘P’.

In [3] Chayes et al . verified that there is a critical probability 0 < pc < 1 such that
if p < pc, then with probability 1 E is totally disconnected, whereas the opposing sides
of Q0 are connected with positive probability provided that p > pc. This phenomenon is
commonly referred to as fractal percolation. Thus, it would be natural to use the word
‘percolation’ only in the case p > pc. However, it seems to be widely used in the literature
for all parameter values.
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We review some of the most basic facts on fractal percolation, and refer the reader
to [2,7] for further background. Clearly, if p < 1, then there is a positive probability that
the limit set E is empty. A more subtle question is for which values of p the set E is
empty almost surely. It turns out that

P(E = ∅) = 1 if and only if p � 1
4 .

Moreover, conditioned on non-extinction, that is E �= ∅, we have

dimH E =
log(4p)
log 2

almost surely. This implies that, conditioned on non-extinction, dimH E > 1 almost surely
provided that p > 1

2 . In particular, when considering dimensional properties of visible
parts of E, we may restrict our consideration to the case p > 1

2 , as the case 1
4 < p � 1

2
is covered by the general equation (1.2).

Remark 1.2. Instead of working with base 2 in the definition of fractal percolation
one could work with base M for M � 2, i.e. divide each square into M2 subsquares of
equal size and choose each of them with probability p and dropped with probability 1−p,
independently of each other. It is straightforward to see that all the results of this paper
remain true also in this case (with the threshold p = 1/2 replaced by p = 1/M). For
notational simplicity we restrict our consideration to the case M = 2.

1.3. Statement of results

For a positive integer k, let Nk(A) be the number of dyadic squares of side length 2−k

that intersect a set A ⊂ R
2. Recall that the upper box dimension of a compact set A is

given by

dimBA = lim sup
k→∞

log Nk(A)
log 2k

.

Likewise one defines the lower box dimension, and one says that the box dimension
exists, and is denoted by dimB A, if the lower and upper versions coincide. We denote
the one-dimensional Hausdorff measure by H1. We now state our main results.

Theorem 1.3. Let p > 1
2 . Conditioned on non-extinction, almost surely

dimH V�(E) = dimB V�(E) = 1

for all lines � not meeting E. Moreover, for any sequence ak such that ak/k → ∞, one
has almost surely that

Nk(V�(E)) � ak2k (1.4)

simultaneously for all lines � not meeting E for all k � K. Here K depends on E, � and
the sequence ak.

Remark 1.4. For any closed D ⊂ S1 with D ∩ {(±1, 0), (0,±1)} = ∅ one can choose
uniform K in (1.4) for all � with �∩Q0 = ∅ and θ(�) ∈ D, where θ(�) is the angle between
�⊥ and the x-axis.
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We are also able to show that visible parts from a given line typically have positive
and finite length.

Theorem 1.5. Let � be any fixed line. Assume that p > 1
2 . Then

0 < H1(V�(E)) < ∞

almost surely conditioned on non-extinction and E ∩ � = ∅.

As an immediate consequence of Theorem 1.5 we have the following.

Corollary 1.6. Let p > 1
2 . Conditioned on non-extinction, almost surely

0 < H1(V�(E)) < ∞

for almost all lines � which do not meet the unit square.

We do not know whether the exceptional set {E : H1(V�(E)) = ∞} in Theorem 1.5
depends on �.

The above results concern visible parts from lines. Similar results are available for
visible parts from points (see Theorems 4.2 and 4.3).

1.4. Notation and organization

We fix p ∈ ( 1
2 , 1) here and throughout the paper. We shall use the O(·), Ω(·) notation:

if x, y are two positive quantities, by x = O(y) we mean that x � Cy for some constant
C, and by x = Ω(y) we mean y = O(x). The implicit constant may depend only on p.
In particular, if the quantities x, y are related to a stage n of the construction of fractal
percolation, then the implicit constant is independent of n.

The paper is organized as follows: in the next section we verify crucial technical lemmas,
in § 3 we prove our main theorems concerning visible parts from lines and in the last
section we study visible parts from points.

2. Technical lemmas

In this section we verify some lemmas needed in the proof of our main theorems. We
start by showing that in Theorems 1.3 and 1.5 it is enough to consider lines that do not
meet the closed unit square Q0. For all positive integers n, we shall denote the set of all
dyadic subsquares of Q0 of side length 2−n by Qn. Recall that Cn is the random subset
of Qn consisting of the chosen squares of side length 2−n. Throughout the paper, by a
square we mean a closed dyadic square with sides parallel to the axes.

Lemma 2.1. In Theorem 1.3, it is enough to prove the statement for all lines not
meeting Q0. Likewise, in Theorem 1.5 one may assume that � ∩ Q0 = ∅ (in which case
� ∩ E = ∅ automatically and one does not need to condition on this).

Proof. We present the argument for Theorem 1.3; for Theorem 1.5 it is analogous.
Assume that (1.4) holds for all lines not meeting Q0 and fix a sequence ak with ak/k →

∞. Given a dyadic square Q ∈ Qn, let AQ be the event ‘for every line � not meeting Q, the
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visible part V�(E ∩ Q) can be covered by 4−nak2k dyadic squares of side-length 2−k, for
all sufficiently large k’. By our assumption for the sequence 4−nak and the self-similarity
of E, each AQ has full probability, and so does the event

A =
∞⋂

n=1

⋂
Q∈Qn

AQ.

On the other hand, a line � does not meet E if and only if there exists n such that �

does not meet any square in Cn. Clearly, if � is such a line, then

V�(E) ⊂
⋃

Q∈Cn

V�(Q ∩ E).

This inclusion shows that (1.4) holds whenever A holds, and thus it is an almost sure
event.

The assertions on the Hausdorff and box dimensions follow easily from (1.4); see the
proof of Theorem 1.3. �

In the light of the previous lemma, we may assume that the line � does not meet Q0.
Horizontal and vertical lines are exceptional, and are easier to handle; see [8] for the proof
of Theorem 1.5 in this case (a slightly weaker version of Theorem 1.3 is also proved there;
the full version follows using the large deviation ideas used herein). Therefore, from now
on we shall focus on the transversal case. We assume that � is of the form y = −tx − a,
where t, a > 0, since the other cases follow by symmetry. Such a line will be fixed for the
rest of this section.

Given 0 < ε < 1
2 , we associate a set Q(ε) to each square Q of side length a as follows:

Q(ε) is obtained by removing from Q the half-open squares of side length εa from the
upper left and the lower right corners; see Figure 3. (For lines of positive slope, one would
need to remove the lower left and the upper right corners.)

The following theorem from [14] will play a crucial role in our study. Recall that Q0

denotes the closed unit square.

Theorem 2.2. Let D ⊂ S1 be a closed connected arc such that

D ∩ {(±1, 0), (0,±1)} = ∅.

Then for any 0 < ε < 1
2 there exists qε > 0 such that

P(Π�(E) ⊃ Π�(Q0(ε)) for all � with θ(�) ∈ D) = qε.

Here θ(�) is the angle between �⊥ and the x-axis.

Proof. This is proved in [14]. For the convenience of the reader, a proof is also
sketched in the proof of Lemma 4.5. �
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Given Q ∈ Qn, where n � 3, let Q̃ ∈ Qn−2 be the unique dyadic square which contains
Q. We say that a square Q is a corner if the relative position of Q within Q̃ is either the
upper left corner or the lower right one.

Let 0 < ε < 1
3 and let n � 3 be an integer. Denote the centre of a square Q by z(Q).

Given an interval I ⊂ Π�(Q0) of length ε2−n, we consider the collections

QI = {Q ∈ Qn : Π�(z(Q)) ∈ I}

and
CI = QI ∩ Cn.

The interval I will be fixed for the moment. Write

QI = {Q1, . . . , QM},

where dist(z(Qi), �) < dist(z(Qi+1), �) for i = 1, . . . , M − 1. Here

dist(x, A) = inf{|x − a| : a ∈ A}

is the distance between a point x and a set A. Likewise, set

CI = {C1, . . . , CN},

where dist(z(Ci), �) < dist(z(Ci+1), �) for i = 1, . . . , N − 1. Both Ci and N are random
variables, while Qi and M are deterministic but depend on the interval I.

Let Zi be the indicator function for the event ‘Ci is a corner’, with the interpretation
that Zi = 0 if i > N . Define

Xm =
m∑

i=1

Zi.

Furthermore, let Xm be the algebra generated by X1, . . . , Xm (or by Z1, . . . , Zm). The
following technical lemma will be a crucial tool in the proofs. It asserts that, regardless
of the distribution of corners and non-corners among C1, . . . , Cm−1, there is a uniformly
positive probability that the next chosen square Cm (if defined) is not a corner.

Lemma 2.3. There exists ζ < 1 depending only on p (and not on n, m or the
interval I) such that

P(Zm = 1 | Xm−1) � ζ. (2.1)

We start by establishing three claims that will be useful in the proof of the lemma.

Claim 2.4. For any i ∈ {1, . . . , M − 2}, at least one of the successive squares
Qi, Qi+1, Qi+2 ∈ QI is not a corner.

Proof of Claim 2.4. Suppose that Qi, Qi+1, Qi+2 are all corners. Then there are
j < j′ ∈ {i, i + 1, i + 2} such that Qj and Qj′ are corners of the same type, i.e. both of
them are either upper left or lower right corners. By definition of QI , z(Qj) and z(Qj′)
both lie in the stripe S of lines through I orthogonal to �; see Figure 1. Let J denote the
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Qj

Qj'

Figure 1. The proof of Claim 2.4: the solid segment joining the centres of Qj and Qj′ is J and
the parallel dashed lines represent the boundary of the stripe S. A square is in QI if its centre
lies on this stripe. If Qj , Qj′ are in QI and are both corners of the same type, then we can find
three other squares between them with centres in J , which are therefore also in QI .

segment that joins z(Qj) and z(Qj′), and denote its length by |J |. By elementary algebra,
the points on J at distance 1

4 |J |, 1
2 |J | and 3

4 |J | from z(Qj) are all centres of squares in
Qn. Since J is contained in S, this implies that these three squares are in fact in QI .
Hence, j′ − j � 4, which is a contradiction since we had assumed that j′ − j ∈ {1, 2}. �

Claim 2.5. Let Q, Q̂ ∈ QI be successive squares with dist(z(Q), �) < dist(z(Q̂), �).
Then

P(Q̂ = C1) � (1 − p)P(Q = C1).

Proof of Claim 2.5. Let R be the smallest dyadic square containing both Q and Q̂,
and let RQ and RQ̂ be the largest dyadic proper subsquares of R containing Q and Q̂,
respectively. Then RQ �= RQ̂. Denote by A the event ‘R is chosen and there are no chosen
squares in QI which are closer to � than those inside R’. As ‘Q = C1’ and ‘Q̂ = C1’ are
subevents of A, it is enough to prove that

P(Q̂ = C1 | A) � (1 − p)P(Q = C1 | A).

Since Q = C1 in particular implies that Q is chosen, we have

P(Q = C1 | A) � P(Q ∈ CI | A) = P(Q̂ ∈ CI | A).

Conditioned on A, the event ‘Q̂ ∈ CI and RQ is not chosen’ is a subevent of ‘Q̂ = C1’,
and moreover, the events ‘Q̂ ∈ CI ’ and ‘RQ is not chosen’ are independent conditioned
on R being chosen. This implies

P(Q̂ = C1 | A) � P(Q̂ ∈ CI and RQ is not chosen | A)

= P(Q̂ ∈ CI | A)P(RQ is not chosen | A)

� (1 − p)P(Q = C1 | A).

�
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Claim 2.6. Suppose that at least one square in Qn is not a corner. Then

P(Z1 = 0 | CI �= ∅) = Ω(1). (2.2)

Proof of Claim 2.6. Denote the collection of corners by Cor. We may write Cor =
Cor1 ∪ Cor2 ∪ Cor3, where, for i � M − 2, the square Qi ∈ Cor1 if Qi+1 /∈ Cor and
Qi ∈ Cor2 provided that Qi+1 ∈ Cor, and Cor3 = Cor ∩{QM−1, QM}.

According to Claim 2.4, for j = 1, 2 we may attach to any square Qi ∈ Corj the square
Qi+j /∈ Cor. Thus, for any Qi ∈ Corj (j = 1, 2) the events ‘Qi = C1’ and ‘Qi+j = C1’
are subevents of ‘CI �= ∅ and C1 /∈ Cor3’. Write A for the latter event. By Claim 2.5 we
obtain that

P(Qi+j = C1 | A) � (1 − p)j
P(Qi = C1 | A).

Hence, using that C1 /∈ Cor3,

1 =
( ∑

Q∈Cor1

+
∑

Q∈Cor2

+
∑

Q/∈Cor

)
P(Q = C1 | A)

�
(

1
(1 − p)2

+
1

1 − p
+ 1

) ∑
Q/∈Cor

P(Q = C1 | A),

implying that P(Z1 = 0 | A) = Ω(1).
Since every Q ∈ QI has the same probability of being chosen, we have P(Q1 = C1) �

P(Qi = C1) for all i = 2, . . . , M , giving P(CI �= ∅) � 3P(A). Hence,

P(Z1 = 0 | CI �= ∅) � P(Z1 = 0 and C1 /∈ Cor3 | CI �= ∅)

� 1
3P(Z1 = 0 | A) = Ω(1).

This gives (2.2). �

Now we are ready to prove Lemma 2.3.

Proof of Lemma 2.3. Let Ym be the algebra generated by the random variables
C1, . . . , Cm∧N and the event ‘m � N ’. Note that this is a refinement of Xm. Hence, it is
enough to prove that

P(Zm = 1 | Ym−1) = 1 − Ω(1). (2.3)

We assume m � N ; otherwise there is nothing to prove. Let i0 be the index for which
Cm−1 = Qi0 . Note that i0 < M , since otherwise m − 1 = N .

We select a finite collection {Ri} of dyadic squares inductively in the following manner:
let R1 be the largest dyadic square which contains QM but does not contain Cm−1.
Assuming that dyadic squares R1, . . . , Ri have been selected, pick the largest index i0 <

j < M such that Qj is not contained in R1 ∪ · · · ∪ Ri. Let Ri+1 be the largest dyadic
square which contains Qj but does not contain Cm−1. The process stops when we have
a collection {R1, . . . , RL} such that for all i0 < j � M the square Qj belongs to Ri for
some unique i = 1, . . . , L (see Figure 2).
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R1

R2

R3

R4

Figure 2. Construction of the rectangles Ri: the black square represents Cm−1

and the grey squares are the remaining squares in QI after Cm−1.

By construction, Cm−1 belongs to the dyadic square containing Ri and having side
length twice of that of Ri (see Figure 2; these squares are represented by dashed lines).
Therefore, the side length of Ri+1 is at most that of Ri for all i = 1, . . . , L − 1, and each
Ri has probability p of being chosen, independently of each other.

Assume first that all the squares after Cm−1 in QI are corners. Then, by Claim 2.4,
there are at most two of them, which gives L � 2. Thus, the probability that neither of
the two corners in QI after Cm−1 is chosen is at least (1 − p)2, giving

P(Zm = 1 | Ym−1) � 1 − (1 − p)2.

Now assume that there exists Ri containing at least one square in QI which is not
in Cor. To see that (2.3) holds, divide the collection {R1, . . . , RL} into two parts, Pbad

and Pgood, as follows: we say that Ri ∈ Pbad if all squares that belong to QI and are
contained in Ri are corners, and Ri ∈ Pgood if Ri contains a square that belongs to QI

and is not a corner.
Since each Ri contains some square in QI , we may use Claim 2.4 as in the proof of

Claim 2.6 to find that we may attach to any Ri ∈ Pbad, i � L−2, a square Ri+j ∈ Pgood,
where j = 1, 2. The same argument of Claim 2.6 then gives

P(Cm ⊂ Ri for some Ri ∈ Pgood | Ym−1) = Ω(1).

(Recall that we are conditioning on Pgood being non-empty.) Hence, it remains to prove
that

P(Zm = 0 | Cm ⊂ Ri for some Ri ∈ Pgood,Ym−1) = Ω(1).
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I

Q2

Q1

Q1(1/8)
~

Figure 3. In this figure Q1, Q2 ∈ CI . The number ε (i.e. the length of I relative to the side length
of Q1 and Q2) is chosen so that the projection of Q2 onto � is contained in the projection of
Q̃1( 1

8 ) whenever Q1 is not a corner. When Q1 induces a block, the visible part of E from the
interval I cannot intersect Q2.

However, by conditioning on the index i for which Cm ⊂ Ri, we are exactly in the
situation of Claim 2.6 (applied to some n′ < n and a different interval I ′).

This completes the proof of the lemma. �

As a corollary, we obtain the following large deviation bound for Xm.

Lemma 2.7 (Azuma–Hoeffding inequality). Let ζ be as in Lemma 2.3 and choose
η > 0 such that ζ + η < 1. Then

P(Xm > (ζ + η)m) < e−η2m/2.

Proof. Define Yi = Zi − ζ and X̃m =
∑m

i=1 Yi. Then X̃m is a (discrete time) super-
martingale, i.e. E(X̃m | X̃1, . . . , X̃m−1) � X̃m−1. Applying the Azuma–Hoeffding
inequality [1, Theorem 7.2.1] to X̃m with λ = η

√
m gives the claim. Note that [1, Theo-

rem 7.2.1] is verified only for martingales but the same proof works for supermartingales
as well. �

3. Visible parts from lines

This section is dedicated to the proofs of Theorems 1.3 and 1.5, and Corollary 1.6. We
start with Theorem 1.5 for clarity of exposition, as the proof is somewhat easier than
that of Theorem 1.3.

Proof of Theorem 1.5. As remarked in the previous section, it is enough to prove
the theorem for a fixed line � = −tx − a with t, a > 0. By Theorem 2.2, H1(V�(E)) > 0
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almost surely conditioned on non-extinction, and therefore we only need to prove that

H1(V�(E)) < ∞

almost surely.
Denote by θ the angle between �⊥ and the positive x-axis, and let ε < 1

2 sin θ cos θ.
(The factor sin θ is needed when θ is close to 0 and the factor cos θ is essential when
θ is close to 1

2π.) Given a positive integer n, let N(n) be the smallest integer such
that N(n)ε2−n �

√
2. Then N(n) � 2ε−12n. Divide Π�(Q0) into disjoint line segments

of length ε2−n (except for the last one, which may be smaller), and denote them by
In,1, . . . , In,N(n). For all 1 � j � N(n), set Qn,j = QIn,j

.
We say that Q ∈ Qn,j induces a block if Q is not a corner and the unique square

Q̃ ∈ Qn−2 which contains Q is a block, meaning that

Π�(Q̃( 1
8 )) ⊂ Π�(Q̃ ∩ E).

If Q is not a corner and Q̃ is not a block, we say that Q̃ is a window and Q induces a
window. By Theorem 2.2 and independence, every chosen square Q ∈ Qn,j which is not
a corner has the same probability q > 0 of inducing a block. Moreover, if Q̃1 and Q̃2 are
chosen and different, then the events ‘Q̃1 is a block’ and ‘Q̃2 is a block’ are independent.

The geometric significance of blocks is depicted in Figure 3: let Q1, Q2 ∈ Qn,j be
squares such that Q1 is closer to � than Q2 and Q̃1 �= Q̃2. Suppose that Q1 induces a
block. Then by the choice of ε we have

Π�(Q2) ⊂ Π�(Q̃1( 1
8 )) ⊂ Π�(Q̃1 ∩ E),

giving Q2 ∩V�(E) = ∅. In particular, if QB ∈ Qn,j is the first square in Qn,j that induces
a block, then we can cover the visible part of E from In,j by all chosen squares in Qn,j

up to QB , plus the squares Q such that Q̃ = Q̃B . Thus, estimates on the position of the
first square in Qn,j that induces a block will yield estimates on the size of V�(E).

Letting ζ and η be as in Lemma 2.7, define γ1 = 1 − (ζ + η) and γ2 = e−η2/2. Denote
by Yn,j the number of chosen squares in Qn,j before the first square inducing a block,
plus 4. Assume that Yn,j = i + 4. Now there are two possibilities: the number of corners
among the first i chosen squares in Qn,j is either at least (ζ + η)i or less than (ζ + η)i.

By Lemma 2.7, the first event has probability at most γi
2 of occurring. In the latter

case the number of squares that induce a window among the first i squares is at least
γ1i. Observe also that for given Q ∈ Qn,j there are at most four Q′ ∈ Qn,j (including Q)
such that Q̃′ = Q̃. Hence, the probability of the second event is at most (1 − q)γ1i/4. We
deduce that

P(Yn,j = i + 4) � (1 − q)γ1i/4 + γi
2 � 2γi

3,

where γ3 = max{(1 − q)γ1/4, γ2} < 1. This in turn implies that E(Yn,j) = O(1). Writing
Sn =

∑N(n)
j=1 Yn,j , we therefore have

E(Sn) = O(ε−12n).
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By definition, we can cover V�(E) by Sn squares of side length 2−n, whence we obtain

H1(V�(E)) � lim inf
n→∞

√
2 · 2−nSn.

Since Sn in measurable (see Lemma 3.1, below), Fatou’s Lemma implies

E(H1(V�(E))) � lim inf
n→∞

√
2 · 2−nE(Sn) = O(ε−1) < ∞.

This shows that H1(V�(E)) < ∞ almost surely, as desired. �

Proof of Corollary 1.6. The claim follows from Theorem 1.5 combined with Fubini’s
Theorem. For the purpose of applying Fubini’s Theorem we need to prove that the
set {(E, �) : 0 < H1(V�(E)) < ∞} is measurable. This is an immediate consequence of
Lemma 3.1, in which we prove that it contains a Borel set with full measure. �

In the next lemma we prove that the function Sn = Sn(E, �) introduced in the proof
of Theorem 1.5 is Borel measurable. In the space of constructions we use the natural
topology induced by the open cylinder sets [F ] = {E : Em =

⋃
Q∈F Q}, where F ⊂ Qm

and Em is the union of all chosen squares of side length 2−m in the construction of E,
that is, E =

⋂∞
m=1 Em.

Lemma 3.1. The function (E, �) �→ S̃n(E, �) is a Borel function for all positive inte-
gers n.

Proof. Since the property of being a corner is independent of E and � we may consider
only blocks and windows. Let N be a positive integer. The set {(E, �) : S̃n(E, �) � N}
is a finite union of finite intersections of sets of the form {(E, �) : Q is a block} and
{(E, �) : Q is a window}, where Q ∈ Qn−2. Since the latter set is the complement of the
former, it suffices to verify that the former is a Borel set.

From the definition of a block we get

{(E, �) : Q is a block} = {(E, �) : Π�(Q ∩ E) ⊃ Π�(Q( 1
8 ))}

=
∞⋂

m=1

{(E, �) : Π�(Q ∩ Em) ⊃ Π�(Q( 1
8 ))},

where the last equality follows from the fact that if y ∈ Π�(Q( 1
8 )) and Π�(Q( 1

8 )) ⊂ Π�(Q∩
Em) for all m, then the sets Π−1

� (y) ∩ Q ∩ Em form a decreasing sequence of non-empty
compact sets, and therefore there exists x ∈ Π−1

� (y) ∩ E ∩ Q, giving y ∈ Π�(Q ∩ E).
Given m, the set Qm has a finite number of subsets, say F1, . . . , FM . Now

{(E, �) : Π�(Q ∩ Em) ⊃ Π�(Q( 1
8 ))} =

M⋃
i=1

(
[Fi] ×

{
� : Π�

(
Q ∩

⋃
Q′∈Fi

Q′
)

⊃ Π�(Q( 1
8 ))

})

is a Borel set, since for fixed i the set {� : Π�(Q ∩
⋃

Q′∈Fi
Q′) ⊃ Π�(Q( 1

8 ))} consists of
finitely many closed intervals. This finishes the proof. �
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In the last part of this section we prove Theorem 1.3.

Proof of Theorem 1.3. By Theorem 2.2 (and the results of [6]) dimH V�(E) � 1
for all � almost surely. Since dimH A � dimB A � dimB A for any bounded set A, it is
enough to show that, given a sequence an with an/n → ∞, almost surely the following
holds: if � is a line not meeting Q0, then

Nn(V�(E)) � an2n for all sufficiently large n.

Indeed, by Lemma 2.1, it is enough to consider lines which do not meet the unit square,
and if the above holds, then clearly dimB V�(E) � 1 (taking, for example, an = n2).

Let D be a closed interval of directions which does not contain the vertical or horizontal
ones. Recall that the direction of a line � is parametrized by the angle between �⊥ and
the x-axis and is denoted by θ(�). It is enough to prove the claim for all lines with
directions in D simultaneously, since we can cover all directions by a countable union of
such intervals plus the horizontal and vertical directions. Observe that V�(E) = V�′(E) if
�′ is parallel to � and they are both on the same side of the unit square. By symmetry,
V�(E) and V�′(E) still have the same distribution if �′ and � are parallel but on different
sides of the unit square.

Choose ε > 0 such that ε < 1
2 sin θ cos θ for all θ ∈ D. Consider n ∈ N and a line � with

θ(�) ∈ D. Let I be a line segment of length ε2−n in Π�(Q0). We say that a square Q is
above I if its centre projects inside I under Π�. Such an interval I is good if either there
are fewer than an chosen squares above I or there is a chosen square among the first an

chosen squares above I which is not a corner and which induces a block for all θ ∈ D.
Intervals which are not good will be called bad.

Suppose there are at least an chosen squares above I. Letting ζ, η be as in Lemma 2.7
we may, as in the proof of Theorem 1.5, consider the cases in which the number of corners
among the first an chosen squares is at least (ζ + η)an or less than (ζ + η)an. Arguing
exactly as in the proof of Theorem 1.5, but using the full strength of Theorem 2.2, which
holds simultaneously for all directions in D, we obtain that, for any given interval I,

P(I is bad) < e−Ω(an).

Let 0 < ε′ < ε. Divide Π�(Q0) into line segments of length ε′2−n as in the proof of
Theorem 1.5. Let I ′

� be such a line segment and let I ⊃ I ′
� be a line segment of length ε2−n

having the same centre as I ′
�. Denote by SI the stripe generated by I, that is, SI = I×�⊥,

where � is the line containing I. Choose δ > 0 so small that SI′
�1

∩ Q0 ⊂ SI ∩ Q0 for all
�1 such that

|θ(�1) − θ(�)| < δ2−n, (3.1)

where I ′
�1

is the line segment of length ε′2−n in Π�1(Q0) which is closest to I ′
�. Observe

that if I is good, then the visible part from I ′
�1

is covered by the first an chosen squares
above I for all �1 satisfying (3.1) (or by all such chosen squares if there are fewer than
an of them).

Since for each � we need to consider less than 2ε′−12n intervals, the probability that
there is at least one interval I ′ such that we cannot cover the visible part above I ′ by at
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most an squares of side length 2n is less than 2ε′−12ne−Ω(an). By the above observation,
if we have this property for a set of lines {�i} such that the set of directions {θ(�i)} is
(δ2−n)-dense, then it is true for all directions in D. Therefore, the probability that there
is some interval I ′ ⊂ Π�′(Q0), for some �′ with θ(�′) ∈ D, such that we need more than
an squares to cover the visible part from I ′, is bounded above by

Pn := 4(δε′)−122ne−Ω(an).

By our assumption that an/n → ∞, the series
∑

n Pn converges. Hence, the Borel–
Cantelli Lemma implies that, almost surely for each � with θ(�) ∈ D, the visible part
V�(E) satisfies

Nn(V�(E)) � 2ε′−12nan for all sufficiently large n.

Replacing an by a′
n = 1

2anε′ we obtain the desired statement. �

4. Visible parts from points

In this section we consider visible parts from points. The same general ideas apply,
except that we need an analogue of Theorem 2.2 for radial projections. This is given by
the following proposition. For x ∈ R

2 \ Q0, we denote by Πx the radial projection onto
a circle S(x) centred at x and not intersecting Q0.

Proposition 4.1. Fix x0 ∈ R
2 \Q0 and let r0 = 1

10 min{1, dist(x0, Q0)}. Then for any
0 < ε < 1

2 there exists qε > 0 such that

P(Πx(E) ⊃ Πx(Q
¯ 0

(ε)) for all x ∈ B(x0, r0)) = qε.

Here Q
¯ 0

(ε) is the set obtained by removing half-open squares of side length ε from each
corner of the unit square.

The proof of this proposition will be given at the end of this section. We now state the
counterparts of Theorems 1.3 and 1.5 for visible parts from points.

Theorem 4.2. Let p > 1
2 . Conditioned on non-extinction, almost surely

dimH Vx(E) = dimB Vx(E) = 1

for all x ∈ R
2 \E. Moreover, if an is any sequence such that an/n2 → ∞ as n → ∞, then

almost surely
Nn(Vx(E)) � an2n

simultaneously for all x ∈ R
2 \ E for all n � K. Here K depends on E, x and the

sequence an.

Proof. The counterpart of Lemma 2.1 is also valid in this case, so we may assume
that x /∈ Q0. The proof is similar to the proof of Theorem 1.3 for those x = (x1, x2)
which satisfy x1 /∈ [0, 1] and x2 /∈ [0, 1]. In this case the direction of all the rays from x to
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Q0 is at a positive distance from the horizontal/vertical rays. Then for a fixed sufficiently
small ε > 0 we can divide Πx(Q0) into arcs of angular length (|x| + 1)−1ε2−n, and then
argue as in Theorem 1.3, using Proposition 4.1 instead of Theorem 2.2.

The remaining points induce horizontal or vertical rays. Let x be such a point. To deal
with the singularity, we cover the arc D = πx(Q0) by subarcs Dj of length c2−j , so that
the distance from Dj to the vertical/horizontal line is comparable to εj = 2−j .

Now fix a scale 2−n. The visible part from x along rays in Dj with j > n can be covered
using all squares in Qn intersecting such rays; there are O(2n) such squares. For each fixed
j � n, we can argue exactly as in the proof of Theorem 1.3 (using Proposition 4.1 instead
of Theorem 2.2) to find that the expected number of squares of side length 2−n needed to
cover the part of Vx(E) corresponding to Dj is O(2−jε−1

j 2n) = O(2n). Moreover, writing
bn = an/n, the probability that one needs more than bn2n squares is at most e−Ω(bn).
Therefore, with probability 1 − ne−Ω(bn) one can cover Vx(E) by nbn2n = an2n squares
in Qn.

This argument is for a fixed point x, but, analogously to the proof of Theorem 1.3,
a bound that works for x also works in a neighbourhood of x (at the cost of losing a
constant), and we can cover any bounded part of R

2 \ Q0 by exponentially many such
neighbourhoods. The proof then finishes in the same way as the proof of Theorem 1.3. �

Theorem 4.3. Let p > 1
2 . Define

D = {x = (x1, x2) : x1 /∈ [0, 1] and x2 /∈ [0, 1]}.

If x ∈ D, then Vx(E) has finite H1-measure almost surely. For any x /∈ E, the visible
part Vx(E) has σ-finite H1-measure almost surely. Furthermore, conditioned on non-
extinction, almost surely

0 < H1(Vx(E)) < ∞

for L2-almost all x ∈ D, and Vx(E) has positive and σ-finite H1-measure for L2-almost
all x ∈ R

2 \ E.

Proof. If x ∈ D, then the proof is similar to the proof of Theorem 1.5, with the main
modifications being the same as those in Theorem 4.2.

Now assume that x1 ∈ [0, 1] or x2 ∈ [0, 1]. The value of ε required becomes 0 at
the horizontal or vertical lines. Hence, we consider countably many subarcs covering all
directions but the horizontal/vertical. As before, the Hausdorff measure of the visible part
from each subarc is finite almost surely, so we obtain that Vx(E) has σ-finite measure
almost surely, as desired.

The latter assertion follows easily by Fubini’s Theorem. �

We finish the section with the proof of Proposition 4.1.

Proof of Proposition 4.1. Let us begin with two remarks. Firstly, it is enough to
prove this proposition for some fixed value of ε = ε0. Indeed, it will immediately imply
the assertion for any ε > ε0. On the other hand, with positive probability, all the four
first-level subsquares belong to C1. Therefore, if we know the assertion is satisfied for ε0
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for each of these subsquares with positive probability, we obtain the assertion for 1
2ε0.

(To see this, it is useful to note that for any ε < 1
2 , Q

¯ 0
(ε) contains a ‘plus sign’ formed

by lines parallel to the sides bisecting the square in two equal parts. Moreover, the union
of the projections of the plus signs in each square in Q1 contains the projection of the
plus sign in Q0.)

Secondly, we can freely assume that x0 is arbitrarily far away from Q0. Indeed, again
with positive probability all the four first-level subsquares belong to C1, and the relative
distance from x0 to each of them is already at least twice the relative distance from x0

to Q0, where the relative distance means the distance divided by the side length of the
square in question. Repeating this, we only need to know the assertion for x0 at very
large distance from Q0 to prove the assertion for all x0 ∈ R

2 \ Q0.
There are two cases: either x0 is in a direction approximately horizontal/vertical to

Q0, or x0 lies in a ‘diagonal’ direction. For notational simplicity we translate the picture
so that Q0 is centred at the origin. By symmetry, it is enough to consider the cases stated
in Lemmas 4.4 and 4.5, below, which completes the proof. �

Lemma 4.4. The assertion of Proposition 4.1 is satisfied for ε = 1
4 and x0 = (x1, x2)

such that x2 < 0, x1 < −N1 and x1/x2 > N1 for N1 large enough.

Proof. Let us introduce some notation. We shall call a line � passing through a square
Q if it intersects two parallel sides of Q. Note that, provided N1 is sufficiently large,
any line containing x ∈ B(x0, r0) and intersecting Q0( 1

4 ) is passing through one of the
16 second-level subsquares of Q0 (hitting their vertical sides). As each of those subsquares
has positive probability of belonging to C2, it is enough to prove that with positive
probability all the lines containing y ∈ B(y0, r0) and passing through Q0 intersect E,
where y0 = (y1, y2) satisfies y2 < 0, y1 < −4N1 and y1/y2 > N1/2.

Given k ∈ N and z ∈ Πy(Q0), let Vk(y, z) be the number of squares Q ∈ Ck passed by
the line �(y, z) going through y and z. We denote by Zy the subarc of Πy(Q0) determined
by the lines �(y, z) passing through Q0.

Let n be so large that
(2n − 1)pn > 2 (4.1)

and let N1 = 2n+1. This is the point where we use the condition that p > 1
2 . As is easy

to check, every line containing y and passing through Q0 intersects at most 2n +1 of the
nth-level subsquares of Q0, passing through at least 2n − 1 of them. Hence, by (4.1), for
each of those lines the expected number of squares in Cn passed by the line is greater
than 2.

We want to apply an appropriate large deviation theorem to show that, with positive
probability, for each y and z the function Vk(y, z) will actually increase exponentially
fast with k. This will in particular imply that �(y, z) has non-empty intersection with⋃

Ck
Q for all k, and thus also with E, which is precisely the statement we need.

We parametrize the space of lines L = {�(y, z) : y ∈ B(y0, r0), z ∈ Zy} by their
intersection point with the vertical line x1 = −5N1 and by the angle they make with
the x-axis. We call this parameter set P . (The particular parametrization chosen is not
important.)

https://doi.org/10.1017/S0013091509001680 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509001680


328 I. Arhosalo and others

By {w
(k)
i } we denote the set of corner points of all subsquares of Q0 of level k. For each i,

the condition w
(k)
i ∈ �(y, z) defines a smooth curve γi on P . These curves divide P into

components denoted by {C
(k)
j }. Each C

(k)
j is such that for any two lines �1, �2 ∈ C

(k)
j

the set of subsquares of Q0 of level k passed by �1 and by �2 is the same (and the
boundary lines of each C

(k)
j pass through the same subsquares as the other lines in C

(k)
j

pass through, plus possibly some additional ones). Hence, Vk(y, z) is constant on each
C

(k)
j (and can only increase at the boundary points).
We claim that the number of these components is at most 24k. Note that the compo-

nents are faces of the planar graph whose vertices are the intersection points of the curves
γi and edges are the pieces of γi between vertices. By Euler’s Theorem, the number of
faces is less than twice the number of vertices. Since there is at most one line going
through w

(k)
i and w

(k)
j for i �= j, γi and γj intersect at most once. Thus, the number of

vertices is at most 1
2N2, where N = (2k + 1)2 is the number of corner points. This yields

our claim.
For each k � 1, let {�(y(kn)

j , z
(kn)
j )} be a collection of representatives of the components

{C
(kn)
j }. Let Ak,j be the event

Vkn(y(kn)
j , z

(kn)
j ) � 2k.

Further, let Ak =
⋂

j Ak,j . Because of the way the components C
(kn)
j were defined, it will

be enough to show that P(
⋂∞

k=1 Ak) = Ω(1).
There is a positive probability that Vn(y, z) � 2 for all �(y, z) ∈ P . Indeed, it is enough

that all squares of generation n are chosen. Thus, p0 := P(A1) > 0.
Now suppose that Ak holds, and consider a line

�j = �(y((k+1)n)
j , z

((k+1)n)
j ).

By assumption, �j passes through at least 2k squares in Ckn. By (4.1), if Q is one of these
squares, the expected number of squares in C(k+1)n that �j hits inside Q is strictly greater
than 2. Thus, conditioned on Ckn, V (y((k+1)n)

j , z
((k+1)n)
j ) is the sum of at least 2k indepen-

dent and identically distributed bounded random variables with expectation E > 2. Note
that the distribution of these random variables is independent of k. By standard large
deviation results (for example, one could use the Azuma–Hoeffding inequality [1, Theo-
rem 7.2.1] as in the proof of Lemma 2.7), we see that

P(V (y((k+1)n)
j , z

((k+1)n)
j ) � 2k+1) � 1 − γ2k

,

for some γ < 1 which does not depend on k or j. In other words, P(Ak+1,j) � 1 − γ2k

.
The events Ak,j are clearly increasing; hence we can apply the FKG inequality [7,

Theorem 2.4] to obtain

P(Ak) �
∏
j

P(Ak,j) � (1 − γ2k

)2
4(k+1)n

.
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Therefore,

P

( ∞⋂
k=1

Ak

)
= P(A1)

∞∏
k=1

P(Ak+1|Ak)

� p0

∞∏
k=1

(1 − γ2k

)2
4(k+1)n

.

Since γ2k

goes to 0 superexponentially fast while 24(k+1)n grows only exponentially fast,
the infinite product converges. This completes the proof. �

The second case was essentially proved in [14] and its proof is very similar to that of
Lemma 4.4, but for completeness we shall recall here the basic steps of the proof. At the
same time, since it is very similar, we give a sketch of the proof of Theorem 2.2.

Lemma 4.5. There exists N2 > 0 such that if x0 = (x1, x2) satisfies x1 < 0, x2 < 0,
1 � x1/x2 < N1 and x1 +x2 < −N2, then the assertion of Proposition 4.1 is satisfied for
x0 with ε = 1

4 .

Proof. We begin with some notation. Given Q, a subsquare of Q0, let I1(Q) and
I2(Q) be the squares with the same centre as Q and having side length λ1 and λ2 times
the side length of Q, respectively, where

0 < λ2 < λ1 < 1.

Note that I2(Q) is contained in the interior of I1(Q).
Given a line �, which is neither horizontal nor vertical, we define

V
(1)
k (z) = �{Q ∈ Ck : z ∈ Π�(I1(Q))}

and

V
(2)
k (z) = �{Q ∈ Ck : z ∈ Π�(I2(Q))},

where the number of elements in a set A is denoted by �A. Let Ṽ
(1,2)
k be the version of

the above where Π� is replaced by Πx.
An observation in [14] is that if p > 1

2 , then for each � one can choose λ1 and λ2 such
that for some n and for all z ∈ Π�(Q0) we have

E(V (2)
k+n(z)) > 2V

(1)
k (z).

A similar statement can be obtained for Ṽ
(i)
k , provided x is sufficiently far away from Q0.

(The necessary distance depends on the direction in which x lies, and blows up for
horizontal and vertical directions. Note that the near-horizontal and near-vertical cases
are dealt with in Lemma 4.4.)

Similarly to the proof of Lemma 4.4, we can then check that if, for some finite family
{z

(k+1)n
i } of cardinality K,

V
(1)
kn (z((k+1)n)

i ) > M, (4.2)
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then, with probability (1 − (1 − Ω(1))M )K ,

V
(2)
(k+1)n(z(k+1)n

i ) > 2M (4.3)

(and similarly for Ṽ
(1)
kn , Ṽ

(2)
(k+1)n). With positive probability (e.g. corresponding to the

probability that all squares of level n are chosen), the inequality (4.2) is satisfied for
k = 1 for all z ∈ Π�(Q0( 1

4 )) (respectively, z ∈ Πx(Q
¯ 0

( 1
4 )) for Ṽ

(1)
kn ).

As I2(Q) ⊂ I1(Q), whenever z belongs to the projection of I2(Q), all y close to z

belong to the projection of I1(Q). Hence, if the implication (4.2) =⇒ (4.3) holds for a
finite family {z

(k+1)n
i } (of size K increasing only exponentially fast with k), then

V
(1)
(k+1)n(z) > 2M (4.4)

for all z ∈ Π�(Q0( 1
4 )) (respectively, z ∈ Πx(Q

¯ 0
( 1
4 )) for Ṽ

(1)
(k+1)n). Note that the family

{z
(k+1)n
i } takes the place of the components in the proof of Lemma 4.4.
An inductive argument completely analogous to the proof of Lemma 4.4 then allows

us to conclude that

P(V (1)
kn (z) � 2k for all z ∈ Π�(Q0( 1

4 ))) > 0,

and likewise

P(Ṽ (1)
kn (z) � 2k for all z ∈ Π�(Q

¯ 0
( 1
4 ))) > 0.

This finishes the proof. �
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