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Implications of the MSSM

In this chapter, we discuss various implications of the MSSM relevant to low energy

experiments in particle physics and to cosmology. We will postpone examination of

signals from direct production of sparticles at high energy colliders to later chapters.

In any theory (like the MSSM) with many scalar fields, there are potentially

new sources of flavor-changing neutral currents (FCNC). Experiment tells us that

such flavor-violating effects are strongly suppressed. Experimental constraints on

these restrict the form of soft SUSY breaking masses and couplings in the MSSM.

As we will discuss in more detail, viable models may be classified by the pattern

(universality, alignment or decoupling) of scalar mass matrices. We also discuss

constraints from potentially large C P-violating processes such as the electric dipole

moment of the electron and neutron.

We then proceed to study the effects of renormalization in the MSSM, which

differ from corresponding effects in the SM because of the presence of weak scale

superpartners. The prediction of gauge coupling unification in the MSSM – but not

in the SM – is the best known, and perhaps the most spectacular, of these differences.

It is possible to view the MSSM as a theory defined at the scale MSUSY ∼ Mweak,

but with > 100 additional parameters that have well-defined values at that scale.

However, since the MSSM is stable against radiative corrections, it may be valid

up to much larger energy scales, perhaps as high as those associated with grand

unification or string phenomena. New physics at these scales may provide an or-

ganizing principle that determines the multitude of weak scale SUSY parameters

in terms of a few more fundamental parameters. The renormalization group equa-

tions (RGEs) then provide a link between the parameters of the theory at these

ultra-high energy scales, and the weak scale, where superpartners are expected to

be observed. In particular, we show that the breakdown of electroweak symmetry

may be a derived consequence of the breakdown of supersymmetry, resulting from

the large top quark Yukawa coupling. This picture fits in neatly with the recent

discovery of the top quark with mt � 175 GeV. To avoid fine-tuning of SUSY

190

https://doi.org/10.1017/9781009289801.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289801.010


9.1 Low energy constraints on the MSSM 191

Figure 9.1 A SM box diagram contributing to the KL–KS mass difference.

parameters associated with electroweak symmetry breaking, a “naturalness” con-

straint suggests that SUSY particles that couple directly to the Higgs sector ought

to have masses below ∼1 TeV, and hence ought to be accessible to collider search

experiments in the near future.

Having set up the framework, we proceed to quantify how various observations

restrict the values of the soft SUSY breaking masses in the MSSM. These include

measurements of the rare decays b → sγ and Bs → μ+μ−, the anomalous mag-

netic moment aμ = (g − 2)μ/2 of the muon, and determination of the amount of

relic neutralino “dark matter” left over from the Big Bang. If R-parity is indeed

conserved (as we assume in the MSSM), then the lightest supersymmetric particle

(LSP) should be absolutely stable, and LSPs produced in the early Universe should

pervade all space, and could form the bulk of the dark matter that is required to ex-

ist by astrophysical measurements. If these cosmological relics are gravitationally

clumped in our galactic halo, they may be detectable by both direct and indirect

dark matter search experiments.

9.1 Low energy constraints on the MSSM

9.1.1 The SUSY flavor problem

Flavor-changing neutral current processes are forbidden at tree level in the SM

due to the GIM mechanism. However, non-zero FCNC rates do occur in the SM

at the loop level. A famous example occurs in the neutral K -meson system, where

the KL − KS mass difference can be calculated from box diagrams such as the one

listed in Fig. 9.1. The contribution from the charm quark dominates, and the SM

contribution to �mK is approximately given by

�mK � G F√
2

α

6π

f 2
K mK

sin2 θW

cos2 θC sin2 θC
m2

c

M2
W

, (9.1)

where fK is the kaon decay constant, θC is the Cabibbo mixing angle, and mc is

the charm quark mass. The kaon mass difference was, in fact, used to predict the

charm quark mass shortly before the discovery of charm.
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Figure 9.2 An MSSM box diagram contributing to the KL–KS mass difference.

In the MSSM, additional contributions from box diagrams involving squarks

and gluinos are also present, such as the one shown in Fig. 9.2. (Other diagrams

involving chargino and neutralino loops also contribute.) The cross in Fig. 9.2

represents an off-diagonal entry in the squark mass squared matrix

Lsoft � d̃†
L(m2

Q)12s̃L,

which naively is expected to be comparable to the corresponding diagonal entry:

100–1000 GeV. In this case, SUSY contributions to �mK violate limits from ex-

periment, and the model is excluded. This is an example of what is referred to as

the SUSY flavor problem. It occurs because the transformation that diagonalizes the

quark mass matrices does not simultaneously diagonalize the corresponding squark

mass squared matrices. It is up to theorists to devise models that restrict soft SUSY

breaking mass matrices in such a way that bounds from FCNC processes are not

violated.

Diagonalization of scalar mass matrices is always possible, but the large off-

diagonal mass matrix elements will then lead to non-degenerate squarks that all
couple via the gluino to both s and d quarks. If U denotes the unitary matrix that

diagonalizes the quark mass matrix, and Ũ the unitary matrix that diagonalizes the

squark mass matrix, the g̃ − q̃ − q interaction (in the mass basis for quarks and

squarks) will be proportional to UŨ †. A calculation of the complete box diagram

shows that the contribution to �mK is proportional to

∑

α,β=d̃L,s̃L,b̃L

(UŨ †)iα(UŨ †)∗jα(UŨ †)iβ(UŨ †)∗jβ f (m2
α, m2

β), (9.2)

where i and j label the external quarks, α and β label the internal squarks, and f is

some function of the left-squark mass eigenvalues. A necessary condition for flavor-

changing processes is that there are large off-diagonal entries in the UŨ † matrix.

Exercise Convince yourself that if the left-squark mass matrix has degenerate
eigenvalues so that f (m2

α, m2
β) is independent of the squark indices, the gluino
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Figure 9.3 Feynman diagram contributing to μ → eγ decay via a SUSY loop.

Figure 9.4 An MSSM contribution to the down quark self-energy.

contribution to �mK vanishes. The same argument clearly holds for the neutralino
contribution. Work out the corresponding argument for chargino contributions.

Flavor violation is not confined to the kaons. A large off-diagonal entry (m2
Q)23

or (m2
D)23 (or worse, (ad)23, discussed below) would result in large flavor-violating

gluino vertices, and an unacceptable rate for b → sγ decays via diagrams involving

squark and gluino loops, analogous to those in Fig. 9.3 with (s)leptons replaced by

s(quarks) and the neutralino by the gluino, or in Fig. 9.4 with a photon attached to

the squark line.

Eq. (9.2) then suggests three distinct mechanisms to avoid large FCNCs in the

MSSM, and thus to solve the SUSY flavor problem. The first two suppress the off-

diagonal entries in (9.2) while the third suppresses loop effects by making sparticles

very heavy.

1. Arrange for degeneracy amongst the masses of squarks with the same quantum

numbers.

2. Arrange the SUSY breaking mechanism so that squark and quark mass matrices

are diagonalized by the same unitary transformation, so that the matrix UŨ † � 1.

Squarks can be non-degenerate. In this case, the quark and squark mass matrices

are said to be aligned.1 Such an alignment can be arranged in models which

include so-called horizontal symmetries, linking the various generations.

1 Y. Nir and N. Seiberg, Phys. Lett. B309, 337 (1993).
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194 Implications of the MSSM

3. The third method to suppress FCNCs is to simply assume that the masses of

the squarks circulating in the box diagrams are so heavy that the diagram is

suppressed. This solution to the SUSY flavor problem is known as decoupling.

Detailed computations of the KL–KS mass difference including QCD corrections

indicate that first and second generation squark masses should be larger than ∼
40 TeV to adequately suppress FCNCs. At first sight, this seemingly contradicts

naturalness constraints that imply superpartner masses should lie at or below

the TeV scale. We should note though that these apply most directly to sparticles

that have substantial couplings to the Higgs boson sector, i.e. to charginos and

neutralinos and third generation sfermions. The first two generations of sfermions

which couple to Higgs bosons only via tiny Yukawa couplings or indirectly at

the two-loop level may be considerably more massive.

Additional constraints on squark masses and mixing matrices come from mea-

surements of B-B and D-D mass differences, and from lepton sector FCNC pro-

cesses such as μ → eγ (an example is given in Fig. 9.3), τ → μγ , and τ → eγ .2

The constraints that can be extracted vary in their severity, but all can be fulfilled

by implementing one or a combination of the solutions of degeneracy, alignment

or decoupling.

Constraints from FCNCs also restrict the form of the soft SUSY breaking trilinear

terms (au)i j , (ad)i j , and (ae)i j . For instance, when a Higgs field develops a VEV,

then off-diagonal mass terms such as

(ad)12 Q̃a
1 Hdad̃†

R2 → (ad)12vd d̃Ls̃†R (9.3a)

or flavor-diagonal masses such as

(ad)11 Q̃a
1 Hdad̃†

R1 → (ad)11vd d̃Ld̃†
R (9.3b)

will be induced. The first of these will again be restricted by processes such as K –K
mixing, so that we must require the off-diagonal entries of the a matrix to be small.

The second of these terms can make (flavor-conserving) contributions to fermion
masses, such as the down quark via gluino–squark loops (see Fig. 9.4). Requiring

these contributions to fermion masses to be smaller (in order of magnitude) than the

fermion masses themselves leads to tight constraints on the magnitudes of terms

such as (au)i i and (ad)i i and (ae)i i , for generations i = 1 and 2.

2 For a general analysis of FCNC and C P-violating effects, see F. Gabbiani, E. Gabrielli, A. Masiero and L.
Silvestrini, Nucl. Phys. B477, 321 (1996).
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Figure 9.5 A supersymmetric contribution to the electric dipole moment of the electron.

9.1.2 The SUSY C P violation problem

Since, as discussed in Chapter 8, soft SUSY breaking parameters are in general com-

plex, one should expect TeV scale imaginary components to these, which would

correspond to the presence of large C P-violating phases. Many constraints on these

imaginary components can also be extracted from low energy data. For instance,

SUSY contributions to the parameter εK = 1
2

Im〈K |He f f |K 〉
Re〈K |He f f |K 〉 can be used to set bounds

on the imaginary part of squark mass squared matrix elements. The flavor-violating

contributions have been parametrized by Gabbiani et al. as complex “mass inser-

tions” (�m2)ab
i j (i, j label the flavor and a, b = L, R the squark type), and the con-

straints are expressed as bounds on dimensionless quantities δab
i j = (�m2)ab

i j /m̃2.

Measurements of �mK and εK put constraints on the δab
12 , but further assumptions

are needed to extract these. For instance, assuming that the real parts of the δs dom-

inate their imaginary parts, and further that the real part is at its upper bound, one

can obtain an upper limit on the imaginary part. As an example: for mq̃ ∼ mg̃ = m̃,

the general analysis from Gabbiani et al. shows that for the down squark sector,
√

Im(�m2)L L
12 ≤ 0.01m̃.

Limits on the imaginary parts of the soft SUSY breaking a terms can be obtained

from experimental upper limits on the electric dipole moments (EDMs) of both

the electron and the neutron. These contributions come from diagrams such as

those depicted in Fig. 9.5. For instance, the quantity
√|Im(ae)11vd | is restricted

to be less than 6 × 10−4mẽ. Likewise, the bound on the neutron electric dipole

moment restricts
√|Im(ad)11vd | to be less than ∼ 0.002md̃ . In the case of R-parity-

violating scenarios, phases of R-parity-violating couplings are also restricted by

similar considerations.

Finally, measurements of the C P-violating decays KL → ππ are related to the

C P-violating parameter ε′
K . These measurements further restrict

√|Im(ad)12vd | to

be smaller than ∼ 0.004md̃ .

Determining the physical principle behind why so many of the C P-violating

phases are so small is known as the SUSY C P problem. Motivated by the stringent

limits on the magnitude of C P-violating phases, an ad hoc but frequent assumption
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in the literature is to simply ignore them, and set all the imaginary parts of soft SUSY

breaking parameters as well as μ to zero. This is not meant to be taken literally. In

many analyses not involving C P violation (e.g. direct searches for sparticles), these

small phases make little difference. An alternative solution is to again assume the

SUSY particles circulating in the loops are so heavy – in the multi-TeV range – that

the C P-violating contributions are suppressed. SUSY model builders, however,

have to explain why SUSY contributions to C P violation are small, and perhaps

to make predictions for the patterns of C P violation for the third generation where

data are not yet in.

A common but stronger assumption which solves both the SUSY flavor and C P
problems is to assume universality and reality of soft SUSY breaking masses:

m2
Q = m2

Q1; m2
U = m2

U 1; m2
D = m2

D1; m2
L = m2

L1; m2
E = m2

E 1. (9.4)

In addition, the trilinear a terms are assumed proportional to their corresponding

Yukawa matrices:

au = Aufu; ad = Adfd ; ae = Aefe. (9.5)

In this case, almost all FCNC contributions will be well below experimental limits

(a super-GIM mechanism operates), and all C P-violating phases other than in the

usual CKM mixing matrix will be vanishing. The universality assumption, however,

goes beyond just fulfilling experimental constraints. In particular, it should be kept

in mind that restrictions on many of the soft SUSY breaking mass parameters are

very loose or even non-existent, and it remains for experimental measurements to

determine or limit these parameters.

9.1.3 Large C P-violating parameters in the MSSM?

As we have discussed, measurements of the EDM of the electron and the neutron

and, most recently, of atoms such as mercury have placed stringent constraints

on C P-violating phenomena in the MSSM. However, these constraints do not
guarantee that many of the C P-violating MSSM parameters are small. It could be

that flavor-blind C P-violating parameters (such as the gaugino masses M ′
i ) and

C P-violating phases associated with the first two generations are small, but those

associated with the third generation are large. Or, it could be that sparticle masses

are in the multi-TeV range so that SUSY loop contributions to the various EDMs are

suppressed even if the C P-violating parameters are relatively large. Finally, it could

be that individual phases/parameters are large, but that there exist cancellations

amongst the amplitudes which contribute to the various EDMs. Any theory of

SUSY breaking would then have to explain the origin of these cancellations if they
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are not to be attributed to mere accident. We caution the reader that there is no

clear consensus in the literature as to just how well these cancellation mechanisms

work. In part, this is because the conversion of the stringent experimental bound

on the EDM of mercury to limits on the EDM of quarks and electrons (or its

QCD analogue, the chromo electric dipole moment of quarks) that are predicted by

any high scale theory is not entirely straightforward. A careful assessment of the

associated subtleties is beyond the scope of this text, and we refer the interested

reader to the literature for a discussion of these issues.3

If indeed the C P-violating parameters are large, these can lead to observable

effects in the sparticle and Higgs boson sectors, even in non-C P-violating phenom-

ena. One simple example comes from the chargino mass matrix, exemplified in the

exercise at the end of this section. In Chapter 8, we noted that while one of the C P-

violating phases associated with gaugino masses (we chose the case of M ′
3) could

be rotated away, the remaining two could not. Thus, M ′
2 and also a complex phase

in the μ parameter (where μ = |μ|eiφμ) would enter the chargino mass matrix and

alter the corresponding physical chargino mass eigenvalues. The C P-violating pa-

rameters would also modify the chargino mixing matrices, and hence could modify

chargino production cross sections and branching fractions. Likewise, neutralino

mass eigenvalues, production rates, and decay rates can depend on M ′
1, M ′

2, and

φμ. Squark and slepton observables can depend on these parameters, as well as on

possibly large C P-violating phases in the a-parameters: within the mSUGRA-like

framework with a universal A-parameter introduced in Section 9.2.2, this effect

is most pronounced for the third generation sfermions. If SUSY sources of C P
violation are large, Higgs boson phenomenology may also be significantly altered:

in particular, as already alluded to in Section 8.3.3, neutral Higgs bosons would no

longer be mass eigenstates, and their phenomenology would be correspondingly

altered. These new sources of C P violation can also obviously lead to novel effects

in the physics of K and B mesons, since not all C P-violating effects would then be

described by the Kobayashi–Maskawa phase.4 These SUSY sources of C P viola-

tion may also have a significant impact on cosmology at early times, most notably

on baryogenesis.

3 The EDM of mercury was evaluated within the MSSM framework by T. Falk, K. Olive, M. Pospelov and
R. Roiban, Nucl. Phys. B560, 3 (1999). For an overview of the potential uncertainties in this evaluation, see
e.g. the reviews by Ibrahim and P. Nath, hep-ph/0210251 (2002) and D. Chung et al., hep-ph/0312378 (2003),
and references cited therein. An overview of how SUSY C P violation affects sparticle phenomenology is also
contained in these reviews. See also, J. Erler and M. Ramsey-Musolf, hep-ph/0404291 for a general discussion
of the evaluation of EDMs within extensions of the SM.

4 For instance, determination of the angles of the so-called unitarity triangles in different processes will not
yield consistent values for these. Especially topical at the time of this writing is the discrepancy in the decays
B → φKs vis-à-vis the decays B → ψ Ks , reported by the BELLE experiment. This discrepancy has, however,
not been seen by the BaBar experiment. For textbook discussions of these questions see G. Branco, L. Lavoura
and J. Silva, C P Violation, Oxford (1999); I. Bigi and A. Sanda, CP Violation, Cambridge University Press
(2000).
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We will for simplicity of discussion ignore the possibility of large C P-violating

parameters in the remainder of this book. We expect that the interested reader

will be able to carry out the necessary modifications to include their effects in the

discussion.

Exercise To illustrate the potential impact of C P-violating SUSY parameters on
sparticle masses and couplings, generalize the derivation of the chargino masses
and mixing patterns in Section 8.3.5 to the case where the C P-violating gaugino
mass term M ′

2 does not vanish, and the supersymmetric parameter μ is complex.
Working in the convention that the Higgs scalars have real VEVs (this may lead

to C P-violating phases in the interactions of Higgs bosons with other scalars)
show that the mass terms for the charginos can now be written as,

Lchargino = − (
λ̄, ¯̃χ

) (

Mcharge PL + M†
charge PR

) (
λ

χ̃

)

,

where now

Mcharge =
(

M2 − iM ′
2 −gvd

−gvu −μ

)

.

Many authors who use the two-component notation introduce instead a complex
mass M2 ≡ M2 − iM ′

2 and write M2 ≡ |M2|eiφ2 , and work with the real numbers
|M2| and φ2 instead of our M2 and M ′

2, as alluded to at the very end of Chapter 7.
Show that the squared chargino masses, the eigenvalues of the matrix

MchargeM†
charge, are now given by,

m2
W̃1,2

= 1

2

[
(|μ|2 + |M2|2 + 2M2

W ) ∓ ζ
]
,

with

ζ 2 = (|μ|2 − |M2|2)2 + 4M2
W

[
M2

W cos2 2β + |μ|2 + |M2|2
−2|μ||M2| sin 2β cos(φμ + φ2)

]
.

Notice that if |M2| =
√

M2
2 + M ′2

2 and/or |μ| are much larger than MW , once
again the two charginos are dominantly gauginos and higgsinos.

The matrices U and V that enter the chargino couplings via the diagonalization
of charginos (see Sec. 8.3.5) will now depend on these additional C P-violating
parameters, and potentially cause C P violation in processes involving charginos.

The effect of C P-violating gaugino masses and complex μ term on the neutralino
sector can be similarly worked out.
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9.2 Renormalization group equations

Since the MSSM is free of quadratic divergences, mass parameters of order the

weak scale remain stable under radiative corrections. In particular, if the MSSM is

embedded in a larger framework, such as a GUT or string model, parameters of order

the weak scale will remain that same order even after radiative corrections involving

the ultra-high energy scales associated with these models. This stabilization of

mass hierarchies allows the possibility of reliably extending the predictions of the

MSSM up to very high energy scales. Logarithmic divergences, however, remain,

and perturbative calculations involving energies Q ∼ MGUT will typically contain

powers of αi
4π

log(MGUT/MZ ), where αi is a gauge coupling. Fortunately, these

large logarithms which would invalidate the perturbative expansion in αi can be

summed by using renormalization group methods. The coupling constants and mass

parameters of the theory are replaced by running couplings and masses, with values

depending on the energy scale. The scale dependence of the parameters of the theory

is given by the renormalization group equations.

9.2.1 Gauge couplings and unification

In quantum field theory, perturbative calculations beyond tree level are usually

performed using renormalized perturbation theory (RPT), as opposed to bare per-

turbation theory. The bare fields, mass terms and coupling constants that occur in the

original Lagrangian are (perturbatively) divergent quantities. In RPT, these are re-

placed by finite, renormalized fields, masses and coupling constants, and divergent

quantities are formally shuffled into counterterms. The form of the counterterms

is determined by specifying renormalization conditions at some arbitrarily chosen

energy scale Q, referred to as the renormalization scale. While Green functions

of the bare theory are independent of the renormalization scale, Green functions

calculated in RPT are dependent on the renormalization scale. The dependence of

Green functions of RPT on shifts in the renormalization scale Q is governed by the

Callan–Symanzik equation. As the renormalization scale shifts, so too do the fields,

coupling constants and masses of the theory. The evolution of a coupling constant

g with renormalization scale, in particular, is governed by the Callan–Symanzik

beta function β(g), defined as

β(g) = Q
∂g

∂ Q
.

The procedure for evaluating β is to calculate the logarithmically divergent parts

of diagrams which contribute to the coupling constant renormalization, and then

take the logarithmic derivative with respect to the renormalization scale Q. For

non-supersymmetric non-Abelian gauge theories, the calculation of the one-loop
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β-function is performed in many texts.5 The result, generalized to include scalars

and left- and right-handed fermions in different representations, is

β(g) = − g3

16π2

[
11

3
C(G) − 2

3
nFS(RF) − 1

3
nHS(RH)

]

, (9.6)

where C(G) is the quadratic Casimir for the adjoint representation of the associated

Lie algebra, S(RF) is the Dynkin index for representation RF of the fermion fields,

S(RH) is the Dynkin index for representation RH of the scalar fields, nF is the number

of fermion species, and nH is the number of complex scalars. For an SU (N ) gauge

theory, for fermions or scalars in the fundamental N -dimensional representation,

S(R) = 1/2, while C(G) = N . For small values of nF, the β-function is negative,

resulting in the well-known phenomenon of asymptotic freedom.

For SU (3)C, with fermions uL, dL, uR and dR, nF = 4ng, where ng is the number

of generations. For SU (2)L, with three colors of left doublet quarks and a single left

doublet of leptons, nF is again 4ng. Finally, for U (1)Y, S(R) = 1, and we simply

sum over the squared hypercharges of a complete generation:
∑

(Y/2)2 = 10/3.

The final result for the SM, at one-loop, is

βi = g3
i

16π2
bi , (9.7)

where the bi (i = 1, 2, 3) are given by

⎛

⎝

b1

b2

b3

⎞

⎠ =
⎛

⎝

0

− 22
3

−11

⎞

⎠ + ng

⎛

⎜
⎝

4
3
4
3
4
3

⎞

⎟
⎠ + nH

⎛

⎝

1
10
1
6

0

⎞

⎠ , (9.8)

ng is the number of generations, and nH is the number of (complex) Higgs doublets

(nH = 1 in the SM). The expression for b1 holds for the evolution of the rescaled

charge g1 = √
5/3g′ appropriate for a GUT model.

In the MSSM, there will be additional loop contributions to the various counter-

terms involving gauginos, matter scalars, Higgs scalars and higgsinos. To calculate

the various loop diagrams, a suitable regularization scheme must be chosen. For

SM calculations, dimensional regularization (DREG) is most frequently chosen,

since it preserves gauge symmetry and hence the validity of Ward identities in loop

calculations. In models with supersymmetry, DREG is usually not the regulator

of choice, since it violates supersymmetry. The reason is that, by modifying the

dimensionality of spacetime, one introduces a mismatch between the number of de-

grees of freedom in vector fields versus their supersymmetric counterpart gauginos.

5 See, for instance, M. Peskin and D. V. Schroeder, Introduction to Quantum Field Theory, Chapter 16, Addison-
Wesley (1995).

https://doi.org/10.1017/9781009289801.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289801.010


9.2 Renormalization group equations 201

A modification of DREG known as dimensional reduction (DRED) also modifies

the dimensionality of spacetime, but maintains four-vectors as four-component ob-

jects.6 DRED thus preserves supersymmetry, at least for one-loop calculations.

Calculations using DRED versus DREG differ only in the finite parts of one-loop

diagrams, but differ even in the divergent parts of two-loop diagrams. Thus, the

RGEs calculated via DREG or via DRED will be equivalent to one-loop order.

In the MSSM, the β-functions are modified by superpartner contributions from

gauginos, higgsinos and matter scalars. These can be readily computed from (9.6).

Using S(R) = N for the adjoint representation in SU (N ), it is straightforward to

show that the one-loop β-functions for the MSSM take the form,

β(g) = − g3

16π2
[3C(G) − S(R)] , (9.9)

where the Dynkin index S(R) is summed over all the matter and Higgs fields, and

their superpartners, in the model. This then yields,

⎛

⎝

b1

b2

b3

⎞

⎠ =
⎛

⎝

0

−6

−9

⎞

⎠ + ng

⎛

⎝

2

2

2

⎞

⎠ + nH

⎛

⎜
⎝

3
10
1
2

0

⎞

⎟
⎠ . (9.10)

Exercise Using Eq. (9.6) to obtain the contributions of the superpartner gauginos,
higgsinos, and sfermions, verify that the gauge β-functions for the MSSM are indeed
as given by (9.9) and (9.10).

The RGEs for the gauge couplings can now be simply integrated. The constant

of integration can be fixed using the experimentally measured value of the gauge

coupling at some reference scale Q0. We then find,

1

gi (Q)2
− 1

gi (Q0)2
= − bi

8π2
ln

(
Q

Q0

)

. (9.11)

In Fig. 9.6, we show how the gauge couplings, given by Eq. (9.11), evolve with the

scale choice Q. It is customary to plot the inverse of αi = g2
i /4π , beginning with

the values of α1, α2, and α3 which are known to high precision at the value Q = MZ .

The evolution in the SM is shown in Fig. 9.6a. The three gauge coupling constants

evolve in a generally convergent direction towards higher energy scales, becoming

roughly the same at Q ∼ 1013–1017 GeV. In Fig. 9.6b, the case for the MSSM is

shown. Remarkably, the three gauge couplings unify with impressive precision at

Q � 2 × 1016 GeV! In this case, we have evolved the gauge couplings according to

6 W. Siegel, Phys. Lett. B84, 193 (1979).
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Figure 9.6 Evolution of the SU (3)C × SU (2)L × U (1)Y gauge coupling constants
from the weak scale to the GUT scale for the case of (a) the SM, (b) the MSSM
with two Higgs doublets, and (c) the MSSM with four Higgs doublets.

SM RGEs between Q = 102 and Q = 103 GeV, and switched to MSSM evolution

equations for higher Q values. The gauge coupling unification in the MSSM is

startling, and strongly suggests that the MSSM may be the remnant of some sort

of supersymmetric grand unified theory, with superpartners around the TeV scale.

In Fig. 9.6c, we show the same gauge coupling evolution, but this time we include

four Higgs doublets in the supersymmetric model. For this case, gauge coupling

unification is once again off the mark.
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The successful prediction of gauge coupling unification is viewed by many as

indirect evidence for weak scale supersymmetry. It motivates us to consider the

possibility that there may indeed be no new physics all the way up to a very

high scale, and that the weakly coupled MSSM is valid up to Q ∼ MGUT. This

is an assumption. Above Q = MGUT, there may be new physics: gauge coupling

unification suggests grand unification with a desert as the simplest possibility, but

this need not be the case.

It is possible that an examination of the parameters of the MSSM renormalized

at a very high scale (obtained from their measured values) might provide clues as

to what this new physics might be, in the same way that the unification of gauge

couplings points to grand unification. But such a bottom-up approach is clearly

not possible today since we do not know the weak scale values of the SUSY

parameters or even the superpotential Yukawa couplings. Instead, what is usually

done is to make simple ansätze about the values of these soft SUSY breaking

parameters at the high scale, and then evolve these down to the weak scale relevant

for phenomenology using renormalization group equations. These ansätze serve as

boundary conditions for the evolution.7 It should be stressed that the evolution does

not involve any new physics beyond the MSSM.

Typically, the simple boundary conditions can be expressed in terms of just a

handful of parameters, from which all the parameters of the MSSM may be com-

puted. In this sense, the MSSM augmented by the boundary conditions is a very pre-

dictive framework. As discussed in Chapter 7, we hope that an understanding of the

physics of supersymmetry breaking, and its mediation to the observable sector, will

yield the correct boundary conditions. In Chapter 11, we will discuss various models

for SUSY breaking, but for the present we will regard the specification of the bound-

ary values of the soft supersymmetry breaking parameters as an additional ansatz.

We have already studied the renormalization group equations for the gauge

couplings. The one-loop RGEs for third generation Yukawa couplings of the MSSM

are given by

d ft

dt
= ft

16π2

(

−
∑

i=1−3

ci g
2
i + 6 f 2

t + f 2
b

)

, (9.12a)

d fb

dt
= fb

16π2

(

−
∑

i=1−3

c′
i g

2
i + f 2

t + 6 f 2
b + f 2

τ

)

, (9.12b)

d fτ
dt

= fτ
16π2

(

−
∑

i=1−3

c′′
i g2

i + 3 f 2
b + 4 f 2

τ

)

, (9.12c)

7 Of course, care must be taken to ensure that these boundary conditions lead to weak scale parameters consistent
with all experimental constraints.
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where ci = (13/15, 3, 16/3), c′
i = (7/15, 3, 16/3), c′′

i = (9/5, 3, 0) and t =
log(Q). Effects of Yukawa couplings of the first two generations should be negli-

gible, and are usually neglected in calculations, unless one is attempting to match

the entire mass spectrum of SM fermions. To find the weak scale boundary condi-

tions on the Yukawa couplings, one starts with running fermion masses (evaluated

at the scale of the fermion mass) that are usually extracted in the M S (modified

minimal subtraction) scheme and then converts these to corresponding masses at a

scale MZ (or mt ) in the DR scheme (DR = modified minimal subtraction using

dimensional reduction). Once the running fermion masses are known at the weak

scale, they can be converted to running Yukawa couplings. If tan β is large, it is

important to include supersymmetric loop contributions to fermion masses for a

reliable extraction of weak scale Yukawa couplings, especially for fb. The Yukawa

couplings can then be evolved to any other scale where the MSSM is valid using

the RGEs given above. Notice that unlike the RGEs for gauge couplings that form

a closed system, a knowledge of gauge couplings (but not the sparticle spectrum)

is necessary to determine the Yukawa coupling evolution.

9.2.2 Evolution of soft SUSY breaking parameters

Like the gauge and Yukawa couplings, the various soft SUSY breaking parameters

as well as the superpotential Higgs mass μ, evolve with energy scale. The RGE for

the gaugino mass can be obtained from the generalization of the expression for the

gluino mass in Eq. (8.131). Taking the derivative with respect to t = log(Q) gives,

dMi

dt
= g2

i

16π2
Mi (−6C(G) + 2S(R)) . (9.13)

Exercise Noting that the β-function for the gaugino mass is proportional to the
β-function for the corresponding gauge coupling, show that

Mi (Q)

g2
i (Q)

= Ki , (9.14)

where the constant Ki is independent of the scale Q.

In models where the Ki defined in the last exercise are the same for each gauge

group factor, we would have the relation

α1

M1

= α2

M2

= α3

M3

. (9.15)

Such a relation is natural in many simple SUSY GUT theories. In this case, the

three couplings as well as the three gaugino masses must unify at Q = MGUT, and

the Ki ’s in Eq. (9.14) are independent of i . The relation (9.15) is therefore often
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referred to as the GUT relation for gaugino masses. We should remind the reader

that the coupling α1 is related to the conventionally normalized weak hypercharge

gauge coupling α′ by

α′ = 3

5
α1.

The one-loop RGEs for the soft SUSY breaking parameters and for μ can most

easily be worked out using the analysis of Falck, and are listed below.8 Two-loop

RGEs have also been worked out; for these, we refer the reader to the original

literature.9 In writing the RGEs, we neglect any inter-generation mixing. Also,

following our earlier discussion, we write the trilinear soft SUSY breaking coupling

ai as ai = fi Ai . Finally, we write the RGEs only for third generation sfermion

masses and A-parameters. The corresponding RGEs for the first two generations

may be obtained by self-evident replacement of the Yukawa couplings and “X”

parameters (defined below). With these assumptions, the RGEs are given by,

dMi

dt
= 2

16π2
bi g

2
i Mi , (9.16a)

dAt

dt
= 2

16π2

(

−
∑

i

ci g
2
i Mi + 6 f 2

t At + f 2
b Ab

)

, (9.16b)

dAb

dt
= 2

16π2

(

−
∑

i

c′
i g

2
i Mi + 6 f 2

b Ab + f 2
t At + f 2

τ Aτ

)

, (9.16c)

dAτ

dt
= 2

16π2

(

−
∑

i

c′′
i g2

i Mi + 3 f 2
b Ab + 4 f 2

τ Aτ

)

, (9.16d)

dB

dt
= 2

16π2

(

−3

5
g2

1 M1 − 3g2
2 M2 + 3 f 2

b Ab + 3 f 2
t At + f 2

τ Aτ

)

, (9.16e)

dμ

dt
= μ

16π2

(

−3

5
g2

1 − 3g2
2 + 3 f 2

t + 3 f 2
b + f 2

τ

)

, (9.16f)

dm2
Q3

dt
= 2

16π2

(

− 1

15
g2

1 M2
1 − 3g2

2 M2
2 − 16

3
g2

3 M2
3 + 1

10
g2

1 S + f 2
t Xt + f 2

b Xb

)

,

(9.16g)

dm2
t̃R

dt
= 2

16π2

(

−16

15
g2

1 M2
1 − 16

3
g2

3 M2
3 − 2

5
g2

1 S + 2 f 2
t Xt

)

, (9.16h)

dm2
b̃R

dt
= 2

16π2

(

− 4

15
g2

1 M2
1 − 16

3
g2

3 M2
3 + 1

5
g2

1 S + 2 f 2
b Xb

)

, (9.16i)

8 N. K. Falck, Z. Phys. C30, 247 (1986).
9 S. Martin and M. Vaughn, Phys. Rev. D50, 2282 (1994); Y. Yamada, Phys. Rev. D50, 3537 (1994); I. Jack and

D. R. T. Jones, Phys. Lett. B333, 372 (1994).
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dm2
L3

dt
= 2

16π2

(

−3

5
g2

1 M2
1 − 3g2

2 M2
2 − 3

10
g2

1 S + f 2
τ Xτ

)

, (9.16j)

dm2
τ̃R

dt
= 2

16π2

(

−12

5
g2

1 M2
1 + 3

5
g2

1 S + 2 f 2
τ Xτ

)

, (9.16k)

dm2
Hd

dt
= 2

16π2

(

−3

5
g2

1 M2
1 − 3g2

2 M2
2 − 3

10
g2

1 S + 3 f 2
b Xb + f 2

τ Xτ

)

, (9.16l)

dm2
Hu

dt
= 2

16π2

(

−3

5
g2

1 M2
1 − 3g2

2 M2
2 + 3

10
g2

1 S + 3 f 2
t Xt

)

, (9.16m)

where m Q3
and mL3

denote the mass term for the third generation SU (2) squark

and slepton doublet respectively, and

Xt = m2
Q3

+ m2
t̃R

+ m2
Hu

+ A2
t , (9.17a)

Xb = m2
Q3

+ m2
b̃R

+ m2
Hd

+ A2
b, (9.17b)

Xτ = m2
L3

+ m2
τ̃R

+ m2
Hd

+ A2
τ , and (9.17c)

S = m2
Hu

− m2
Hd

+ T r
[
m2

Q − m2
L − 2m2

U + m2
D + m2

E

]
. (9.17d)

Here, the trace denotes a sum over generations. In many models (including the

model with “universal” mass parameters to be introduced shortly), S = 0.

Exercise Obtain the one-loop RGE for S and show that if S vanishes at one scale,
it vanishes at all scales. We therefore do not have to worry about the S-term in the
class of models where the boundary conditions ensure that S vanishes.

Notice that the RGE for μ is completely decoupled from the soft SUSY breaking

parameters, as is appropriate for a parameter occurring in the superpotential.

The complete set of 26 RGEs can be solved easily numerically as follows. Given

initial values of the gauge couplings, Yukawa couplings, soft breaking terms, and

μ parameter at some scale Q0, we can plug into the right-hand side of each of the

RGEs to calculate the slope, and then make a linear extrapolation along a small step

size �Q to find new values of each of these parameters. By iterating this approach,

the trajectories of each parameter can be found. In practice, more sophisticated

numerical methods such as Runge–Kutta integration are used.

As an example, inspired by the apparent gauge coupling unification at the grand

unified scale together with the constraints from FCNCs and electric dipole mo-

ments, we can adopt the universality hypothesis at the scale Q = MGUT � 2 ×
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1016 GeV:

g1 = g2 = g3 ≡ gGUT, (9.18a)

M1 = M2 = M3 ≡ m1/2, (9.18b)

m2
Qi

= m2
Ui

= m2
Di

= m2
Li

= m2
Ei

= m2
Hu

= m2
Hd

≡ m2
0, (9.18c)

At = Ab = Aτ ≡ A0, (9.18d)

where all off-diagonal soft SUSY breaking scalar masses and A parameters are set

to zero. Inter-generation mixing then occurs only via superpotential Yukawa cou-

plings. Many analyses not involving flavor physics can be simplified by ignoring

Yukawa interactions for the first two generations. Then, each generation number is

separately conserved, and off-diagonal sfermion masses or A-parameters will not be

generated by renormalization group evolution. Notice also that we use two notations

interchangeably: m E1
and mẽR

both denote the soft SUSY breaking mass for the

right-handed selectron, while mL1
= mẽL

= m ν̃eL
denotes the common soft SUSY

breaking mass parameter of the selectron, and the electron sneutrino, and simi-

larly for squarks. The assumption that the MSSM is valid between the weak scale

and GUT scale, and that the “boundary conditions” (9.18a)–(9.18d) hold is often

referred to as the mSUGRA, or the minimal supergravity model. We will see in Chap-

ter 11 that these boundary conditions are obtained in the simplest supergravity GUT

models, assuming that below Q = MGUT, the field content is that of the MSSM.10

An example of the evolution of soft SUSY breaking parameters is shown in

Fig. 9.7. We take m0 = 100 GeV, m1/2 = 200 GeV, A0 = 0, and tan β = 4. The

short dashed lines depict the running of the three gaugino masses from their common

GUT scale value. The value of M3 increases, since it has a negative β-function,

while M1 and M2 both decrease. In the mSUGRA model, we thus expect at the

weak scale the ratio of gaugino masses M1 : M2 : M3 ∼ 1 : 2 : ∼ 7, in accord with

the values of the weak scale gauge couplings. Thus, the gluino should be far heavier

than the lighter chargino or the two lighter neutralinos.

The evolution of first generation squark and slepton mass parameters is shown

by the solid lines. The evolution is solely due to their gauge interactions (Yukawa

couplings are neglected) which always increase these masses as we run from the

high scale down to the weak scale. Squark masses evolve the most because of strong

interaction loop contributions to their RGEs. The small intra-generational mass

splitting is due to differences in their electroweak interaction. Sleptons, because they

10 Many phenomenological analyses of weak scale supersymmetry have been performed within this framework.
Its popularity can be judged by the number of acronyms associated with it: MSSM, CMSSM, MGUM, MSGM,
SSC, . . . We will see in Chapter 11 that supergravity does not necessarily lead to high scale universality
as was originally thought. So, rather than associating SUGRA with supergravity, one may instead consider
that mSUGRA stands for minimal supersymmetric model with universality, gauge coupling unification, and
radiative electroweak symmetry breaking.
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Figure 9.7 Evolution of gaugino masses, Higgs boson mass parameters, and first
generation scalar mass parameters, versus energy scale in the mSUGRA model.

For the scalars, we actually plot sign (m2) ·
√

|m2|, so that the negative values on
the dashed Hu curve correspond to negative values of m2

Hu
. We use two-loop RGEs

for this figure.

have just electroweak interactions, evolve much less than squarks, with mẽR
evolving

less than mẽL
because the SU (2) gauge coupling is larger than the hypercharge gauge

coupling. We can see from the RGEs that the sfermion mass evolution depends on

the gaugino masses which, in turn, are all proportional to m1/2. Thus, if m0 � m1/2

most of the mass at the weak scale comes from m0, and the sfermions will be

approximately degenerate and much heavier than the gluino. If, on the other hand,

m1/2 � m0 as in our illustration, radiative corrections to the sfermion masses are

large, and sleptons will be much lighter than the squarks, with the right selectron

being the lightest of the first generation matter scalars. These important features of

the soft SUSY breaking masses of the first two sfermion generations are captured

by the following simple approximations to the soft terms:

m2
q̃ � m2

0 + (5 − 6)m2
1/2, (9.19a)

m2
ẽL

� m2
0 + 0.5m2

1/2, (9.19b)

m2
ẽR

� m2
0 + 0.15m2

1/2, (9.19c)

where D-term contributions given by (8.64) have been neglected for simplicity.

Notice that these relations (together with the relation between M3 and m1/2) imply
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that the first two generations of squarks can never be much lighter than the gluino.

The effect of Yukawa coupling contributions to the third generation scalar RGEs

can be seen by the dot-dashed lines for the top squark soft SUSY breaking mass

parameters. Yukawa interactions have an opposite effect compared to gauge inter-

actions: they reduce scalar masses as we run from a high scale down to the weak

scale. Indeed we see that the stop mass parameters are considerably smaller than the

corresponding first generation squark masses. Remember that by SU (2) invariance,

mb̃L
= mt̃L . For the low value of tan β used in Fig. 9.7, the bottom Yukawa coupling

is small, and we expect that mb̃R
� md̃R

> mb̃L
. Even though top scalars have an

additional contribution m2
t (see (8.65a)), generally speaking these will be lighter

than their first and second generation counterparts. In fact, care must be exercised

to ensure that these masses do not become negative, since then charge and color

breaking minima may occur in the scalar potential.

Finally, we note that because Hd and ẽL have the same gauge quantum numbers,

and if bottom quark Yukawa interactions are negligible, the evolution of m2
Hd

is vir-

tually identical to that of m2
ẽL

. The evolution of the Higgs mass parameter m2
Hu

is very

different and particularly noteworthy: it begins at the common GUT scale value but,

because it has large top quark Yukawa interactions, it evolves to negative values. At

first sight, something appears terribly wrong! However, as we will now see, this turns

out to be just what is needed for an appropriate breakdown of electroweak symmetry.

Exercise Notice from Fig. 9.7 that the Yukawa coupling contributions to the evo-
lution of m2

t̃R
, which reduce it relative to m2

ũR
, are larger than the corresponding

contributions that reduce m2
t̃L

. This is because the correction to m2
t̃R

can come from
either a tL or a bL (or the corresponding squarks) and, respectively, the neutral or
the charged component of the higgsino (scalar) component of ĥu, while the cor-
rection to mt̃L can come only from the singlet top quark (or squark) in the loop.
Since all the vertices are determined by just the superpotential top quark Yukawa
coupling, we expect that the Yukawa coupling correction to m2

t̃R
is twice that of m2

t̃L
.

Identify this factor of two in the RGEs. Now consider the diagrams that give rise to
Yukawa coupling corrections to m2

Hu
. Relative to the correction to the stop masses,

how big do you expect this correction to be? Identify the corresponding term in the
RGE, and check whether your answer is consistent with this.

9.2.3 Radiative breaking of electroweak symmetry

In the SM, electroweak symmetry is spontaneously broken if a scalar field that

transforms non-trivially under SU (2)L × U (1)Y acquires a VEV. The situation is

no different in the MSSM. If the scalar field potential, evaluated at the weak scale,
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has a minimum for non-zero field values of h0
u or h0

d with zero values for other

fields, we would have the desired symmetry breaking pattern. In the MSSM with

arbitrary values for each of the soft SUSY breaking parameters this can be trivially

arranged by choosing m2
Hu

or m2
Hd

to be negative. Of course, the conditions (8.17a)

requiring that the origin be a maximum of the potential, and (8.17b) requiring the

potential to be bounded from below need to be satisfied. The remarkable thing that

we have just seen is that even with universal mass parameters at the high scale,
renormalization group evolution can cause m2

Hu
to turn negative at the weak scale,

leaving squark and slepton squared masses to be positive. We stress that although

the scalar potential with parameters renormalized at a scale Q � Mweak has only

positive squared masses, this does not imply that its true minimum is at the origin

in field space. Radiative corrections can be substantial because of the large value of

log(Q/Mweak), and can qualitatively change this picture. Evolving the parameters

of this potential to the weak scale sums these large logs, and a more reliable picture

of the true potential is obtained.11 We will, therefore, refer to this mechanism,

wherein m2
Hu

turns negative due to its renormalization group evolution, as radiative

electroweak symmetry breaking (REWSB).

In Chapter 8 we minimized the tree-level scalar potential of the MSSM, and found

two conditions necessary for spontaneous breaking of electroweak symmetry:

B = (m2
Hu

+ m2
Hd

+ 2μ2) sin 2β

2μ
and (9.20a)

μ2 = m2
Hd

− m2
Hu

tan2 β

(tan2 β − 1)
− M2

Z

2
. (9.20b)

The first of these can be used to determine B (or equivalently B0) in terms of tan β,

μ, and the Higgs mass parameters. Since B never enters the RGEs for the other

parameters, its value is not needed for computing their evolution. The second of

these minimization conditions determines the value of μ2 in terms of the Higgs

mass parameters and tan β, possibly at the expense of some fine-tuning.

REWSB, which was discovered in the early 1980s,12 occurs over a wide range of

model parameters if the top quark Yukawa coupling is large enough, corresponding

to mt ∼ 100 − 200 GeV. The subsequent discovery of the top quark with mass

mt � 175 GeV lends credence to this mechanism. As mentioned above there are,

however, regions of parameter space where charge- and color-breaking minima

11 In practice, one usually also includes higher loop calculations and computes the minima using the effective
potential as discussed in the previous chapter.

12 L. E. Ibañez and G. G. Ross, Phys. Lett. B110, 215 (1982); K. Inoue et al., Prog. Theor. Phys. 68, 927 (1982) and
71, 413 (1984); L. Ibañez, Phys. Lett. B118, 73 (1982); J. Ellis, J. Hagelin, D. Nanopoulos and M. Tamvakis,
Phys. Lett. B125, 275 (1983); L. Alvarez-Gaumé, J. Polchinski and M. Wise, Nucl. Phys. B221, 495 (1983).
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may occur. Thus although it is fair to say that REWSB links electroweak symmetry

breaking with the breakdown of supersymmetry at some higher scale, it is premature

to conclude that the pattern of electroweak symmetry breaking is explained.

Since REWSB is driven by the top quark Yukawa coupling, we have m2
Hu

< m2
Hd

(assuming that we start with universal masses), which implies tan β > 1. Fur-

thermore, in order for REWSB to be driven by the top quark Yukawa cou-

pling, tan β has to be bounded above. This follows because ft > fb implies that

mt/mb = ftvu/ fbvd > tan β, where the Yukawa couplings, and hence the quark

mass parameters, are to be evaluated at the weak scale. The bound tan β <∼ 60 thus

obtained should be regarded as qualitative because it would be modified by radiative

corrections.

The evolution of the soft SUSY breaking masses from MGUT to the weak scale

now allows us to determine the weak scale values of the soft SUSY breaking masses

that are needed to determine all the sparticle masses as well as their couplings in

terms of just a handful of parameters. Note that the minimization condition for

REWSB specifies the value of μ2, but not the sign of μ. It is convenient to eliminate

the high scale parameter B0 in favor of tan β. The mSUGRA model is completely

specified by the parameter set:

m0, m1/2, A0, tan β, sign(μ). (9.21)

A selection of sparticle masses for the same mSUGRA model parameters used in

Fig. 9.7 is shown in Table 9.1.

9.2.4 Naturalness constraint on superparticle masses

It is often stated loosely that sparticles ought to have masses typically below∼ 1 TeV

so that the hierarchy between the SUSY breaking and weak scales can be maintained

without resorting to too much fine tuning. But how much fine tuning is too much

fine tuning?

To gain a better handle on how heavy sparticles can be, many groups have tried

to quantify a measure of fine tuning, in order to decide which values of SUSY

model parameters are natural. First, one has to decide on such a measure, and then

one must decide how much fine tuning is too much. Clearly, there is a good deal of

subjectivity built into constraints from naturalness. We should also keep in mind

that it is possible that what appears to be fine tuning from the vantage point of the

low energy theory could be the result of particular relationships in the (unknown)

high energy theory. Thus, while we would regard the fine tuning required by the

SM as indicative of new physics, we would not necessarily be alarmed by what

appears to be fine tuning at, for instance, a part per mille level.
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Table 9.1 Weak scale sparticle masses and parameters (GeV)
for the mSUGRA model with m0 = 100 GeV, m1/2 = 200 GeV,

A0 = 0, tan β = 4, and μ > 0. These results were obtained
from the computer program ISAJET version 7.69.

parameter value (GeV)

mg̃ 500.5
mũL

463.4
md̃R

451.7
mt̃1 324.7
mb̃1

426.9
m �̃L

176.0
m �̃R

131.0
m τ̃1

129.6
mW̃1

135.3
m Z̃2

136.5
m Z̃1

72.8
mh 104.4
m A 343.1
μ 292.5

A particularly simple measure of fine tuning can be extracted from the sec-

ond of the electroweak symmetry breaking relations (9.20b) listed in the previous

subsection. Naively, if |μ| � MZ , the term involving the Higgs mass parameters

must also be large so that these two terms may combine and largely cancel to give

MZ . It is possible to argue that models with |μ| � MZ would be fine tuned, and

the weak scale value of |μ| itself can be used as a measure of fine tuning. This

naive example may be too simplistic, and many authors would also argue that many

parameter choices leading to |μ| ∼ MZ are also fine tuned.

As an example of a more sophisticated measure of fine tuning, we can discuss

naturalness constraints in the mSUGRA model. The fundamental parameters asso-

ciated with SUSY breaking are,

ai = {
m0, m1/2, A0, B0, and μ0

}
. (9.22)

Quantities associated with the weak scale can be calculated in terms of these fun-

damental parameters. We have included the GUT scale superpotential μ parameter

in this list since we will regard the value of MZ (which is given by the second of the

electroweak symmetry breaking conditions (9.20b) mentioned above) as an output.

Of course, only certain sets of GUT scale input parameters {ai } will give the correct

value of MZ . For variations of the input parameters ai → ai + �ai , we can derive
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a corresponding value of M2
Z + �M2

Z . The fine-tuning requirement is that,

�M2
Z

M2
Z

< ci
�ai

ai
,

where ci is the fine-tuning parameter.13 It is up to the reader to decide what consti-

tutes an acceptable choice of ci . Typical values quoted in the literature range from

ci = 10–100. Thus, if a tiny change in input parameters ai leads to a big change in

the derived value of M2
Z (or some other weak scale observable), then the model is

said to be fine-tuned. In terms of derivatives, the fine-tuning requirement is written

as
∣
∣
∣
∣

∂ log M2
Z

∂ log ai

∣
∣
∣
∣ < ci . (9.23)

As an example, we show in Fig. 9.8 the m0 vs. m1/2 plane of the mSUGRA model,

taking A0 = 0, tan β = 10, μ > 0, and mt = 175 GeV. The gray region in the upper

left is excluded if we require that the lightest SUSY particle be electrically neutral

(to fulfill cosmological constraints). The gray regions on the far right are excluded

by a lack of appropriate REWSB (using the one-loop corrected scalar potential).

The dark gray region for low m1/2 is excluded in that the lightest chargino mass

falls below limits from LEP2 searches: mW̃1
< 100 GeV. For reference, we plot

also contours of mg̃ = 1000 and 2000 GeV, and mũL
= 1000 and 2000 GeV. To

illustrate how subjective fine-tuning considerations can be, we show examples of

fine-tuning bounds obtained using various criteria for fine-tuning limits from the

literature. First, we show a contour of the weak scale value of μ = 500 GeV. Taking

the value of μ as a fine-tuning parameter generally restricts the parameter plane

to values of m1/2 below about 400 GeV, unless m0 is very large, in which case

very large values of m1/2 can yield “natural” models. The trajectory of constant

μ is known as the hyperbolic branch (HB), and all parameter space points with

low |μ| may be regarded as natural.14 A second contour (labeled AC) was obtained

by Anderson and Castaño.15 These authors include the top Yukawa coupling ft

in the list of fundamental parameters, and use a weighted average of fine-tuning

parameters to obtain their contour. Their result clearly prefers low values of both

m0 and m1/2 to obtain natural models. Finally, a fine-tuning contour calculated

by Feng, Matchev and Moroi neglects the top Yukawa coupling on the basis that

it is associated with the flavor sector, and not the SUSY breaking sector.16 Their

contour (labeled FMM) excludes large m1/2 values, but does admit solutions with

13 R. Barbieri and G. Guidice, Nucl. Phys. B306, 63 (1988).
14 See K. Chan, U. Chattopadhyay and P. Nath, Phys. Rev. D58, 096004 (1998).
15 G. Anderson and D. Castaño, Phys. Rev. D53, 2403 (1996).
16 J. L. Feng, K. T. Matchev and T. Moroi, Phys. Rev. D61, 075005 (2000).
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Figure 9.8 A plot of mSUGRA parameter space in the m0 vs. m1/2 plane, for
A0 = 0, tan β = 10, and μ > 0. We show contours of gluino and squark mass
for 1000 and 2000 GeV. We also show sample fine-tuning contours i) μ = 500
GeV, plus contours extracted from ii) Anderson and Castaño (AC), and iii) Feng,
Matchev and Moroi (FMM). The proposed acceptable regions are below the fine-
tuning contours.

large m0. The large m0 solutions have been referred to as focus point supersymmetry

(FP), since (for m1/2 � m0) the value of m2
Hu

evolves to a fixed weak scale value

independent of its GUT scale value, i.e. it is focussed in its RG trajectory. The

focus point solutions offer the possibility of solving, at least partially, the SUSY

flavor and CP problems, since in this case all the squark and slepton masses can be

beyond 1 TeV while “maintaining naturalness”.

9.3 Constraints from b → sγ decay

We have already mentioned that the agreement between the observed rate for the

decay b → sγ and SM expectation yields significant constraints on off-diagonal

squark mass squared matrix elements and a parameters. This should not be
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surprising because, as we saw in the exercise at the end of Section 6.6, the radiative

decay of the b quark is a probe of the supersymmetry breaking sector.17 Even in the

mSUGRA model with universal GUT scalar masses and a universal A0-parameter,

significant constraints are obtained. Within this framework flavor violation, which

is the other essential ingredient for this decay to occur, occurs only via Yukawa

couplings. The flavor-violating matrix elements can then be calculated in terms

of known quark masses and Kobayashi–Maskawa (KM) matrix elements (see ex-

ercise below). The point is that we can always go to a quark basis (at the weak

scale) where the fields uR, dR, and dL are the same as in the mass basis, while

the field uL is related to the corresponding field in the mass basis by the KM ma-

trix. The Yukawa coupling matrices are known in this basis, and can be evolved

to the high scale where the mSUGRA boundary conditions are specified. At this

scale, if squarks with the same gauge quantum numbers have a common mass (the

mSUGRA framework, where all squarks have a universal mass is a special case),

we do not need to know the basis of squarks since all bases are equivalent. The

mSUGRA boundary conditions, together with the known Yukawa coupling ma-

trices thus specify the framework completely, and flavor-violating effects can be

unambiguously computed.

Exercise Unlike in the Standard Model, flavor physics is not always specified by
just the Kobayashi–Maskawa matrix. A general two doublet Higgs model serves
to illustrate this point. Let two SU (2) doublets (H+, H 0) and (K +, K 0) couple
the quark doublet to dR via “Yukawa coupling matrices” fH and fK, respectively
while the conjugate doublets (H 0∗, −H−) and (K 0∗, −K −) respectively couple the
quark doublet to uR with Yukawa coupling matrices f̃H and f̃K. Show that (1) the
couplings of H 0 and K 0 as well as those of H+ and K + to the quarks depend on
all four matrices VL(u), VL(d), VR(u), and VR(d) that connect the weak current
and mass bases for uL, dL, uR, and dR type quarks (the Kobayashi–Maskawa
matrix, which is determined by the couplings of quarks to W ± bosons, is just
VL(u)†VL(d)), and (2) the interactions of H 0 and K 0 do not conserve flavor. Verify
that for the “MSSM-like case” where fK and f̃H vanish, the charged boson couplings
are completely determined by the KM matrix and quark masses and, further, that
the flavor-violating couplings of H 0 and K 0 vanish.

For the case of the MSSM, some couplings involving squarks may also depend
on matrices that diagonalize the squarks. It is, therefore, noteworthy that in models

17 In practice, it is the inclusive decay B → Xsγ that is bounded by the experiment. The transition magnetic
dipole moment operator that we argued to be absent in the SUSY limit is the operator of lowest dimensionality
that could have a contribution to this decay. In principle, higher dimensional operators involving additional
gluons may contribute to the inclusive decay of B mesons through non-renormalizable terms in the Kähler
potential, but these contributions would be extremely suppressed, and quite likely smaller than the theoretical
uncertainty in the calculation.
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where squarks with the same quantum numbers have a common mass at some high
scale, flavor physics effects are fixed by just the KM matrix and quark masses.

In the SM the decay b → sγ proceeds at lowest order via a tW − loop. In super-

symmetric models, there are additional contributions from the t H− loop, as well as

sparticle loops containing ũi W̃ j , d̃ i g̃, and d̃ i Z̃ j . Since SM as well as SUSY contri-

butions both occur at the one-loop level, it is reasonable to expect that if sparticles

are at the weak scale, SUSY contributions to the decay amplitude will be compara-

ble to the SM contribution, so that the experimental determination of the branching

ratio will provide strong constraints on the parameters of supersymmetric models.

The b → sγ decay rate is usually calculated by evaluating lowest order matrix

elements of effective theory operators at a scale Q ∼ mb. The complete calculation

is complicated by the fact that QCD corrections are large. These are included via

renormalization group resummation of leading logs (LL) which arise due to a dis-

parity between the scale at which new physics enters the b → sγ loop corrections

(usually taken to be Q ∼ MW ), and the scale at which the b → sγ decay rate is

evaluated (Q ∼ mb). The resummation is most easily performed within the frame-

work of effective field theories. Above the scale Q = MW (all scales Q ∼ MW are

equivalent in LL perturbation theory), calculations are performed within the full

theory. Below Q = MW , particles heavier than MW are integrated out, leading to

an effective Hamiltonian,

Heff = −4G F√
2

VtbV ∗
ts

8∑

i=1

Ci (Q)Oi (Q). (9.24)

Matching the two theories at Q = MW yields the values of the so-called Wilson

coefficients Ci (Q = MW ). The Oi in Eq. (9.24) are a complete set of operators that

mix via QCD; their form can be found in the literature.18 The logs are summed by

solving the renormalization group equations (RGEs) for the Wilson coefficients

Q
d

dQ
Ci (Q) = γ j i C j (Q), (9.25)

where γ is the 8 × 8 anomalous dimension matrix. The matrix elements of the

operators Oi are finally calculated at a scale Q ∼ mb and multiplied by the ap-

propriately evolved Wilson coefficients to obtain the decay amplitude. The LL

QCD corrections just described yield enhancements in the b → sγ decay rate of

factors of 2–5. Variation of the scale choice between mb/2 < Q < 2mb yields

approximately a 25% uncertainty in the theoretical calculation. This is reduced

to about 9% by working at next-to-leading order. We also note that the SUSY

18 See e.g., G. Buchalla, A. Buras and M. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
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Figure 9.9 Contributions to the Wilson coefficient C7(MW ) versus tan β from
various loop contributions. We take m0 = 100 GeV, m1/2 = 200 GeV, A0 = 0,
and μ > 0. The dotted line shows the total contribution from sparticle loops.
Reprinted with permission from H. Baer, M. Brhlik, D. Castaño and X. Tata, Phys.
Rev. D58, 015007 (1998), copyright (1998) by the American Physical Society.

calculation has larger uncertainty, especially if tan β is large. Our discussion here

is to give the reader a flavor of the ingredients that go into such a calculation.

These calculations are sophisticated, and the reader who is actually interested in

performing the calculation is well advised to consult the original literature.

The most important of the above operators is the magnetic operator O7 ∼
sLσμνbR Fμν . In Fig. 9.9, we show the magnitude of the Wilson coefficient C7(MW )

versus tan β from various contributions involving tW , t H−, and W̃i q̃ j loops for one

choice of mSUGRA parameters. The total contribution from gluino and neutralino

loops is negligible. We see from the figure that large cancellations are possible

between the various contributions.

In Fig. 9.10, we show the b → sγ branching fraction contours in the m0 vs. m1/2

plane, for tan β = 10, A0 = 0, and a) μ < 0 and b) μ > 0. Data from the CLEO,

BELLE, and ALEPH experiments, roughly speaking, restrict 2 × 10−4 <∼ B(b →
sγ ) <∼ 5 × 10−4, if we conservatively factor in theoretical uncertainties. Clearly,

the mSUGRA model with μ < 0 is only consistent with data for large values of

m1/2 > 300 GeV. For μ > 0, virtually the entire plane is allowed. Qualitatively

similar results are obtained for even larger values of tan β.

9.4 Bs → μ+μ− decay

Within the framework of the Minimal Supersymmetric Standard Model (MSSM),

FCNC conservation is ensured (at tree level) by requiring that the matter multiplets
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Figure 9.10 Contours of constant branching fraction B(b → sγ ) in the m0 vs.
m1/2 plane for tan β = 10, A0 = 0. The number labeling each contour must be

multiplied by 10−4 to obtain the branching fraction. The region labeled EX is
excluded by the constraint mW̃1

> 100 GeV while the region marked TH is not
allowed for theoretical reasons.

with weak isospin T3 = 1/2 couple only to the Higgs superfield Ĥu , while those

with T3 = −1/2 couple just to the Higgs superfield Ĥd .

At the one-loop level, however, a coupling of Ĥu to down-type fermions is in-

duced. This induced coupling leads to a new contribution, proportional to vu , to

the down-type fermion mass matrix. Although this contribution is suppressed by

a loop factor relative to the tree-level contribution, this suppression is (partially)

compensated if tan β is sufficiently large. As a result, down-type Yukawa interac-

tions and down-type quark mass matrices are no longer diagonalized by the same

transformation, and flavor-violating couplings of neutral Higgs scalars h, H , and A
emerge. In the limit of large m A, the Higgs sector becomes equivalent to the Stan-

dard Model (SM) Higgs sector with a light Higgs boson h � HSM, and the effects

of flavor violation decouple from the low energy theory . The interesting feature

is that the flavor-violating couplings of h, H , and A do not decouple for large
superparticle mass parameters: being dimensionless, these couplings depend only

on ratios of these mass parameters, and so remain finite even for very large values

of SUSY mass parameters.19 This flavor-violating neutral Higgs boson coupling

results in a potentially observable branching fraction for the decay Bs → μ+μ−

19 These not only include sparticle masses, but also the superpotential parameter μ and also the soft SUSY
breaking A-parameters.
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Figure 9.11 Contours of B(Bs → μ+μ−) = 10−7 (solid) and B(Bd → τ+τ−) =
10−6 (dashed) in the m0 vs. m1/2 plane of the mSUGRA model for several values of
tan β and (a) μ > 0, and (b) μ < 0. In frame (a), the contours end where Z̃1 is no
longer the LSP. The region where this occurs for tan β = 35 is shaded. Reprinted
with permission from J. K. Mizukoshi, X. Tata, and Y. Wang, Phys. Rev D66,
115003 (2002), copyright (2002) by the American Physical Society.

mediated by the neutral Higgs bosons, h, H , and A, and possibly also the decay

Bd → τ+τ−.20 The former might be probed at the Tevatron (the CDF experiment

has already limited it to be < 5.8 × 10−7), while the latter might be detectable at

B-factories. Within the MSSM, this branching fraction – which depends sensitively

on tan β and m A and less sensitively on other sparticle masses – can be more than

1000 times its SM value.

In Fig. 9.11 we illustrate the branching fraction for these Higgs-mediated leptonic

decays of Bs and Bd mesons within the mSUGRA framework for a) μ > 0, and

b) μ < 0. The solid lines show contours of B(Bs → μ+μ−) = 10−7, a level that

Tevatron experiments should probe with an integrated luminosity ∼ 2 fb−1, for the

values of tan β shown on the contours. The dashed lines are contours of B(Bd →
τ+τ−) = 10−6. The contours in frame a) end where Z̃1 is no longer the LSP. If

20 See, e.g., K. S. Babu and C. Kolda, Phys. Rev. Lett. 84, 228 (2000).
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tan β is sufficiently large, Tevatron experiments will probe SUSY via Bs decays

for parameter ranges where signals from direct production studied in Chapter 15

are predicted to be below the detectable level. The sensitivity of B-factories to

B(Bd → τ+τ−) is not known.

9.5 Muon anomalous magnetic moment

Historically, the anomalous magnetic moment of the electron has been a harbinger

of new physics, from the advent of the Dirac theory of the electron to the formu-

lation of QED, and up to the present day. For contemporary new physics searches,

the anomalous magnetic moment of the muon (rather than the better measured

moment of the electron) turns out to have greater importance because for many ex-

tensions of the SM the new physics contributions to the lepton magnetic moment are

proportional to m2
�. The E821 experiment at Brookhaven National Laboratory has

measured aμ = (g − 2)μ/2 to eight significant figures, with a precision better than

a part per million.21 In the SM, QED corrections to the photon–muon–muon vertex

have been calculated to four loops (with an estimate for the fifth-loop contribution,

showing that its magnitude is small for the purpose of our analysis). Electroweak

corrections, which are significant, have also been calculated. The biggest theoretical

uncertainty comes from hadronic corrections. Although there is some controversy

about the magnitude of the theoretical uncertainty, it is comparable to or better than

the experimental uncertainty. If weak scale SUSY exists, then there will also be

SUSY contributions to aμ via the W̃i − ν̃μ and Z̃i − μ̃ j loops shown in Fig. 9.12.

The SUSY contribution gives

�aSUSY
μ ∝ m2

μμMi tan β

M4
SUSY

, (9.26)

where Mi (i = 1, 2) is a gaugino mass and MSUSY is a characteristic sparticle mass

circulating in the loop. The complete one-loop result is given, for instance, by

Moroi.22 We see that �aSUSY
μ grows with tan β and, for models with a positive

gaugino mass, has the same sign as the superpotential Higgs mass term μ. Depend-

ing on SUSY parameters, its magnitude may be comparable to that of the weak

contribution, so that the sensitivity of the E821 experiment is at a level where it can

probe these SUSY contributions.

21 See e.g. G. W. Bennett et al. (Muon g − 2 Collaboration), hep-ex/0401008.
22 T. Moroi, Phys. Rev. D53, 6565 (1996). That the SUSY contributions to aμ cancel the corresponding SM

contributions in the SUSY limit of the MSSM – this limit is discussed in the exercise at the end of Section 8.3.6 –
in accord with the general result demonstrated in the exercise at the end of Section 6.6 has been explicitly
demonstrated at the one-loop level by T. Ibrahim and P. Nath, Phys. Rev. D61, 095008 (2000).
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Figure 9.12 Supersymmetric contributions to g − 2 of the muon.

Figure 9.13 Contours of aμ × 1010 in the mSUGRA model for μ > 0. The Fer-
milab Tevatron (dashes) and CERN LHC (dot-dashed) reach contours are also
shown.

Contours of �aSUSY
μ × 1010 are shown in Fig. 9.13 for three tan β values in the

mSUGRA model, and μ > 0. Regions of parameter space where �aSUSY
μ

>∼ 60 ×
10−10 and �aSUSY

μ < 0 are currently disfavored. As the experimental error reduces,

and theoretical calculations improve, the results will more definitively point to

preferred and excluded regions of SUSY model parameter space.

9.6 Cosmological implications

Since R-parity is assumed to be conserved in the MSSM, the lightest SUSY particle

is absolutely stable. This has profound implications for cosmology and, in particular,

may imply that relic LSPs left over from the Big Bang could account for the bulk

of the matter in the Universe. Moreover, the requirement that the relic density
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of LSPs should be in accord with astrophysical measurements of the dark matter

density of the Universe leads to important constraints on supersymmetric model

parameters.

The central idea behind relic density calculations is that in the very early Uni-

verse, when temperatures were very hot (i.e. T � mLSP, where the Boltzmann

constant k = 1), neutralinos were being created and annihilated, but that they were

in a state of thermal equilibrium with the cosmic soup. As the Universe expanded,

and cooled, its temperature dropped below the level where LSPs could be pair-

produced, although they could still annihilate one with another. Ultimately, the

expansion rate of the Universe outstripped the LSP annihilation rate, and (except

for dilution due to the expansion of the Universe) the relic density of LSPs was

locked in. Thus, if the MSSM and the basic Big Bang picture are both correct,

a gas of LSPs should fill all space, and could account for much of the missing

matter of the Universe. Such a scenario immediately rules out almost all cases of

having a colored or electrically charged LSP, since otherwise such relics would

have become bound to nuclei and atoms, and would have been detected in search

experiments for anomalous nuclei and atoms: searches for anomalous isotopes are

sensitive to an isotope abundance ranging between 10−12–10−29 depending on the

isotope,23 to be compared with a theoretical expectation of 10−6–10−10 for an LSP

mass of 100–1000 GeV.24 Within the MSSM framework, this leaves a sneutrino or

the lightest neutralino as candidates for the LSP.

Many experiments have searched for such weakly interacting massive parti-

cles (WIMPs) as relic dark matter from the Big Bang. The basic idea is to detect

collisions of WIMPs with nuclei of detector material. If the WIMP is the light-

est neutralino with a mass ∼ 100 GeV, then a typical neutralino-nucleus elastic

scattering will involve energies of a few keV. To detect such tiny energy deposi-

tions, detector materials are frequently cooled to ultra-low temperatures, so that

phonons, ionization or superconducting phase transitions can be detected. If in-

stead the WIMP is a sneutrino heavier than about 25 GeV, then it should have

been seen already by such direct dark matter detection experiments. Sneutrinos

lighter than ∼ 25 GeV are excluded by measurements of the properties of the Z
boson at LEP (and also by the non-observation of energetic solar neutrinos in the

Kamiokande detector). Thus, cosmological considerations point to the lightest neu-

tralino, Z̃1, as being the LSP for the MSSM. It is satisfying that in most model cal-

culations (see Chapter 11) involving the MSSM, the lightest neutralino is in fact the

LSP.

23 See e.g. T. Hemmick et al., Phys. Rev. D41, 2074 (1990) and references therein.
24 S. Wolfram, Phys. Lett. B82, 65 (1979); C. B. Dover, T. Gaisser and G. Steigman, Phys. Rev. Lett. 42, 1117

(1979).
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Another possibility is that the LSP is the gravitino.25 In this case, gravitinos

could account for the cold dark matter (CDM) in the Universe, but direct or indirect

gravitino detection would likely be impossible.

9.6.1 Relic density of neutralinos

The total matter/energy density � = ρ/ρc of the Universe is usually written as a

fraction in terms of the critical closure density ρc = 3H 2
0 /8πGN � 1.88 × 10−29h2

g cm−3. Here, H0 � 71 km s−1 Mpc−1 is the value of the Hubble parameter today,

and GN is Newton’s gravitational constant. H0 is frequently parametrized as H0 ≡
100h km s−1 Mpc−1, where h is a dimensionless scaling constant.

The past decade has witnessed increasingly precise measurements of the

anisotropies of the cosmic microwave background (CMB) radiation left over from

the Big Bang. Recent results come from the Wilkinson Microwave Anisotropy

Probe (WMAP) satellite measurements. Astonishingly, an analysis of their results

pinpoints the age of the Universe to be 13.7 ± 0.2 Gyrs.26 In addition, the geom-

etry of the Universe is flat, consistent with simple inflationary models. The dark

energy content of the Universe is found to be about 73%, while the matter content is

about 27%. A best fit of WMAP and other data sets to cosmological parameters in

the �CDM cosmological model yields a determination of baryonic matter density

�bh2 = 0.0224 ± 0.0009, which is in excellent agreement with estimates from Big

Bang nucleosynthesis, a total matter density of �mh2 = 0.135+0.008
−0.009, and a very low

density of hot dark matter (relic neutrinos). From these values the cold dark matter

density of �CDMh2 = 0.1126+0.0161
−0.0181 (at 2σ ) can be inferred.

The discrepancy between baryonic and total matter density may come from

CDM particles (that is, non-relativistic matter that does not radiate light), while the

remaining energy density may come from a non-zero cosmological constant, as was

first suggested by measurements of type Ia supernovae at the highest red shifts, and

then strikingly confirmed by the CMB data. We will see that the lightest neutralino

of supersymmetry can be an excellent candidate for CDM in the Universe.

The relic density of neutralinos predicted by the MSSM can be found by solving

the Boltzmann equation as formulated for a Friedmann–Robertson–Walker (FRW)

Universe:

dn

dt
= −3Hn − 〈σvrel〉(n2 − n2

0). (9.27)

Here, n is the number density of neutralinos, t is time, n0 is the thermal equilibrium

number density, and 〈σvrel〉 is the thermally averaged neutralino annihilation cross

25 For a discussion of this possibility, see J. Feng, S. Su and F. Takayama, hep-ph/0404231, and references therein.
26 See e.g. D. N. Spergel et al. (WMAP Collaboration), Astrophys. J. Suppl. 148, 175 (2003).
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section times relative velocity. (Remember that except for s-wave scattering, σvrel

depends on vrel, so that the thermal average depends on the temperature.) The first

term on the right represents a diminution of number density as the Universe expands,

while the second term represents the change due to annihilation of neutralinos into

SM particles.

Using conservation of entropy and the kinematics of a FRW Universe, it is

convenient to reparametrize the Boltzmann equation in terms of temperature rather

than time. In the radiation dominated era, the entropy density ∝ T 3, so that the

size of the Universe R ∝ 1/T , and t � 1/(2H ) =
√

45
16π3g∗GN

1
T 2 , where g∗ ∼ 80

counts the total number of relativistic degrees of freedom.27 Defining f = n/T 3

and rescaling the temperature in terms of particle mass, x = T/m, the Boltzmann

equation can be recast in the form

d f

dx
= m

√

45

4π3g∗GN

〈σvrel〉( f 2 − f 2
0 ). (9.28)

The Boltzmann equation can be solved in several steps.

1. At very early times the last term in (9.27) dominates, and n is close to its equi-

librium value, so that f � f0. For non-relativistic particles (including their rest

mass), E � m + p2/2m, and the equilibrium number density is given by

f0(x) = n0

T 3
= 1

T 3

g

(2π )3

∫

d3 pe−E/T

= 1

T 3

4πg

(2π )3
e−m/T

∫ ∞

0

p2dpe−p2/2mT

= g

2

√
1

2π3
(
m

T
)

3
2 e− m

T

= g

2

√
1

2π3
x− 3

2 e− 1
x , (9.29)

where g = 2 is the number of spin degrees of freedom for a neutralino.

2. As the Universe cools to temperatures below T = m, the number density of neu-

tralinos falls exponentially. However, if this would continue, neutralinos would

no longer be able to annihilate efficiently, and the first term on the right-hand

side of the Boltzmann equation would begin to dominate. In this regime, we

would have

1

n

dn

dt
= −3

1

R

dR

dt
,

27 E. W. Kolb and M. S. Turner, The Early Universe, Addison-Wesley (1990).
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so that n ∝ 1/R3: i.e. the number density of neutralinos would reduce only due

to the expansion of the Universe, and no longer drop exponentially. In other

words, the number of neutralinos would be much larger than expected from

thermal equilibrium. This is referred to as freeze out. The temperature at which

this occurs may be estimated by using the equilibrium f on the left-hand side

of (9.28) and setting f 2 − f 2
0 � f 2

0 on its right-hand side. This then gives the

freeze out temperature,

1/xF = log

[

m

2π3

√

45

2g∗GN

〈σvrel〉√xF

]

. (9.30)

This equation can be solved iteratively, and typically yields TF � m/20.

3. With the relic density locked in at a value much larger than its value in thermal

equilibrium, f 2 � f 2
0 , we can integrate the Boltzmann equation to obtain the

relic density today as,

n(T0) = 1

m

(
T0

Tγ

)3

(Tγ )3

√
4π3g∗GN

45

[∫ xF

0

〈σvrel〉dx

]−1

, (9.31)

where Tγ = 2.75 K is today’s cosmic microwave background temperature. We

see that the relic number density ∝ T 3 showing that it is indeed dropping only

due to the expansion of the Universe as discussed above. The reason for writing

the relic density in this form is that we do not know the neutralino temperature

T0: but for the fact that photons are reheated as species decouple, these two

temperatures would be the same. Since the reheating process is isentropic, and

s = gT 3, (Tγ /T0)3 can be obtained from the ratio of the number of degrees of

freedom at freeze out to the effective number of degrees of freedom today and

is approximately equal to 19.4.

The neutralino relic density can be recast in the form

�Z̃1
h2 = ρZ̃1

(T0)

8.1 × 10−47 GeV4
, (9.32)

with ρZ̃1
= mn(T0) given by,

ρZ̃1
(T0) � 1.66

MPl

(
T0

Tγ

)3

T 3
γ

√
g∗

1
∫ XF

0
〈σvrel〉dx

. (9.33)

Central to the calculation is the evaluation of the thermally averaged neutralino anni-

hilation cross section times velocity. This has been simplified to a one-dimensional
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integral by Gondolo and Gelmini:28

〈σvrel〉 =
∫

σvrele
−E1/T e−E2/T d3 p1d3 p2

∫
e−E1/T e−E2/T d3 p1d3 p2

= 1

4x K 2
2 ( 1

x )

∫ ∞

2

daσ (a)a2(a2 − 4)K1(
a

4
), (9.34)

where a = √
s/m Z̃1

and Ki are modified Bessel functions of order i . Evaluation

of the relic density thus requires the knowledge of all neutralino annihilation cross

sections Z̃1 Z̃1 → f1 f2, where f1 and f2 are SM particles. How to compute cross

sections, starting with the interactions derived in the last chapter, will be discussed

in Chapter 12.

If there are other sparticles with mass close to the LSP mass, these will also

be present in the thermal bath right up to the time that the LSP decouples. In this

case, it is necessary to take into account SUSY processes involving annihilation

of pairs of these sparticles as well as co-annihilation of these sparticles and the

LSP to accurately obtain the neutralino relic density. Although the number density

of the heavier sparticles is suppressed by the Boltzmann factor exp (−m/T ), this

may be compensated for by the fact that the cross sections for co-annihilation or

pair annihilation may be much larger than the LSP annihilation cross section. For

instance, if the τ̃1 is close in mass to a gaugino-like Z̃1, its annihilation rate may be

much larger than the annihilation rate for Z̃1 pairs. Alternatively, in models with

small values of μ, m Z̃1
∼ m Z̃2

∼ mW̃1
, and σZ̃1 Z̃2

or σW̃1W̃1
(which are not P-wave

suppressed at threshold) may be much larger than the annihilation cross section for

two Z̃1s.

The WMAP determination �CDMh2 = 0.1126+0.0161
−0.0181 implies an upper limit

�WIMPh2 < 0.129 (2σ ) on the relic density of any stable WIMP. Only if we fur-

ther assume that the cold dark matter consists solely of a single component can

we infer that the relic density of any particular WIMP (in our case �Z̃1
h2) will

saturate the WMAP value. In Fig. 9.14, we show regions of relic density �Z̃1
h2 in

the m0 vs. m1/2 plane for a) tan β = 10 and μ > 0 and (b) tan β = 45 for μ < 0,

where A0 = 0 and mt = 175 GeV. The very dark gray regions on the right and far

left are excluded by either not having a neutralino LSP, or not having the correct

EWSB pattern. The white regions for both tan β values have �Z̃1
h2 > 1, so that

the Universe would be younger than 10 billion years. The appropriately labeled

light gray region is where �Z̃1
h2 ≤ 0.1, and can be regarded as the theoretically

favored region. Four regions of parameter space emerge with �Z̃1
h2 < 0.129, as

determined by the WMAP analysis. In frame (a), we see:

28 P. Gondolo and G. Gelmini, Nucl. Phys. B360, 145 (1991). Formulae including co-annihilation effects can be
found in J. Edsjo and P. Gondolo, Phys. Rev. D56, 1879 (1997).
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Figure 9.14 Predictions for neutralino relic density �Z̃1
h2 in the m0–m1/2 plane

of the mSUGRA model for μ > 0 and two values of tan β. We thank A. Belyaev
for supplying this figure.

� the bulk annihilation region,
� the stau co-annihilation region, and
� the HB/FP region.

In addition, in frame (b), we see

� the A-annihilation funnel.

The bulk annihilation region occurs at low m0 and low m1/2 where neutralino

annihilation mainly occurs via Z̃1 Z̃1 → ��̄, via t-channel slepton exchange. As m0

increases, the slepton masses also increase, suppressing the neutralino annihilation

rate and increasing the relic density. The stau co-annihilation region is the narrow

corridor of favored relic density adjacent to the region where τ̃1 becomes the LSP;

this is where Z̃1τ̃1 and τ̃1 ¯̃τ1 co-annihilation can take place. The HB/FP region

occurs at large m0 along the lack of REWSB excluded region. In this area, since |μ|
is becoming small, the Z̃1 becomes increasingly higgsino-like, and annihilation into

W W , Z Z , and Zh states becomes large. Directly adjacent to the REWSB excluded

region, where μ → 0, co-annihilation of Z̃1 with W̃1 and Z̃2 is also important.

There is also a narrow strip of low relic density at m1/2 ∼ 160 GeV just beyond the

reach of LEP2 where neutralino annihilation via the narrow light Higgs h resonance

occurs: Z̃1 Z̃1 → h → bb̄, τ τ̄ .
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Frame (b) is qualitatively different from frame (a) in that there is a broad corridor

of very low relic density adjacent to the stau co-annihilation region. This occurs

when Z̃1 Z̃1 → A → bb̄, τ τ̄ annihilation is enhanced at large tan β. The annihila-

tion rate is enhanced in part because at large tan β, the value of m A can decrease to

the extent that resonance annihilation can take place. It is also enhanced because the

b- and τ -Yukawa couplings become large. Resonance annihilation also takes place

via the heavy Higgs H , but this is somewhat suppressed relative to annihilation

through A. Moreover, at these very large values of tan β, the Higgs bosons H and

A become very broad (�H,A ∼ 10–50 GeV), so that the resonance annihilation cor-

ridor becomes very broad, and in fact contributes to the annihilation cross section

across the entire plane.

9.6.2 Direct detection of neutralino dark matter

If SUSY dark matter exists, then a non-relativistic gas of LSPs fills all space.

Moreover, the LSPs are gravitationally clumped to form a galactic dark matter

halo. A number of direct WIMP detection experiments have been built or are under

construction to detect this halo. The general idea behind these experiments is that as

the earth moves through this halo, relic WIMPs, be they neutralinos or something

else, will scatter off the nuclei in some material, depositing typically tens of keV of

energy. The energy that is deposited could be detected via: (i) changes in resistance

due to a slight temperature increase (bolometry), (ii) a magnetic flux change due

to a superconducting granule phase transition, (iii) ionization, or (iv) phonons.29

Sneutrinos have a large scattering cross section, and it is the lack of a signal in

such experiments that disfavors the sneutrino as the LSP. Neutralino cross sections

are much smaller, and require higher sensitivity for their detection. Gravitinos are

essentially undetectable. The technical challenge is to build detectors that could pick

out the relatively rare, low energy neutralino scattering events from backgrounds

mainly due to cosmic rays and radioactivity in surrounding matter. Future detectors

are aiming to reach a sensitivity of 0.01–0.001 events kg−1 day−1. It is possible that

the first evidence for SUSY may come from direct neutralino detection rather than

from accelerator experiments, though identifying the SUSY origin of the signal

may require other analyses.

The first step involved in a neutralino–nucleus scattering calculation is to calcu-

late the effective four-particle neutralino–quark and neutralino–gluon interactions.

The neutralino–quark axial vector interaction leads, in the non-relativistic limit, to

a neutralino–nucleon spin-spin interaction, which involves the measured quark spin

content of the nucleon. To obtain the neutralino–nucleus scattering cross section, a

29 For a review, see G. Jungman, M. Kamionkowski and K. Griest, Phys. Rep. 267, 195 (1996).
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Figure 9.15 Regions of scalar neutralino–proton cross sections in the mSUGRA
model, in units of pb. The blank regions are excluded by theoretical and experi-
mental considerations. We thank J. O’Farrill for supplying this figure.

convolution with nuclear spin form factors must be performed. Neutralino–quark

and neutralino–gluon interactions (via loop diagrams) can also resolve into scalar

and tensor components. These interactions can then be converted into an effective

scalar neutralino–nucleon interaction involving quark and gluon parton distribu-

tion functions. The neutralino–nucleus scattering cross section can be obtained by

convoluting with suitable scalar nuclear form factors. The final neutralino detection

rate is obtained by multiplying by the local neutralino relic density (estimates are

obtained from galaxy formation modeling), and appropriate functions involving the

velocity distribution of relic neutralinos and the Earth’s velocity around the Sun

and around the galactic center. When the Earth’s velocity around the Sun is aligned

with the Sun’s galactic velocity, the scattering rate should increase, leading to a

seasonal modulation of these direct detection rates.

In Fig. 9.15, we show regions of scalar neutralino–nucleus cross section in the

mSUGRA model for tan β = 30, A0 = 0, and (a) μ < 0 or (b) μ > 0. The left-hand

side of the plots is excluded because τ̃1 becomes the LSP, and the lower right side of
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the plots is excluded due to a lack of REWSB. In frame a), there are regions at low

m0 and low m1/2 , and also along the HB/FP region, where direct detection cross

sections exceed 10−9 pb. These cross sections are large enough to allow possible

discovery of neutralino dark matter by Stage 3 dark matter detectors, such as Zeplin-

4, Cryoarray, and, XENON. There is also a region in frame (a) at m1/2 ∼ 0.3–

0.8 TeV and m0 ∼ 0.2–1.2 TeV, where there is a destructive interference in the

scattering cross section, and rates plunge below 10−12 pb. In frame (b), for μ > 0,

there are again sufficient rates for direct detection of dark matter at Stage 3 detectors

in the low m0 and low m1/2 region, and also in the HB/FP region. This time, however,

there is no destructive interference in the direct detection cross section.

9.6.3 Indirect detection of neutralinos

We have already noted that if dark matter neutralinos exist, then they should con-

dense to form a galactic halo. In addition, relic neutralinos may collect and become

gravitationally bound to the center of the Galaxy, the center of the Sun and the

center of the Earth. If this happens, then a variety of indirect dark matter detection

opportunities arise.

One possibility is that relic neutralinos may interact with nuclei in the Sun, scatter

to velocities below the escape velocity, and become gravitationally bound in the

solar core. The high density of neutralinos in the solar core may allow a high rate for

neutralino annihilation into SM particles. (Neutralinos may also collect in the core of

the Earth and experience enhanced annihilation, but rates are typically smaller than

from the Sun.) Most SM annihilation products will be immediately absorbed by the

solar material. However, high energy neutrinos arising from neutralino annihilation

may escape the Sun, and be detected by neutrino telescopes such as Antares (a

water Cherenkov device in the Mediterranean) or IceCube (an array of phototubes

deployed in the ice at the South Pole). Muon neutrinos would convert to muons in

the water or ice, and Cherenkov radiation from the muons could be detected. The

rate for neutralino annihilation in the solar core is given by

� = 1

2
C tanh2(

√
C At�), (9.35)

where C is the solar capture rate, A is the total annihilation rate times relative

velocity per unit volume, and t� is the present age of the Sun. For the Sun, the

age of the Solar System exceeds the equilibration time, so � ∼ C/2. Thus, highest

rates for neutrinos from solar core annihilations occur in parameter space regions

where the neutralino–nucleus scattering cross section is largest. From Fig. 9.15,

this would mean the bulk annihilation region or the HB/FP region. It is intriguing

that these regions also have low relic densities in accord with the WMAP analysis.
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Another possibility for indirect neutralino dark matter detection occurs if neu-

tralinos annihilate in the galactic core or halo to SM particles. High energy photons

can be produced as part of the annihilation products, and can be detected by gamma

ray observatories. In this case, the highest rates for gamma ray detection occur in

regions of parameter space where the neutralino annihilation cross section times

velocity is largest: i.e. in the bulk annihilation region, the HB/FP region or in the

A-annihilation funnel. Since the neutralino density is expected to be high around

the galactic core, a directional signal may be found emanating from this source.

Neutralinos may also annihilate via loop diagrams as Z̃1 Z̃1 → γ γ . In this case, the

rate would be quite low, but the signature spectacular, since the gamma ray energy

would be essentially equal to m Z̃1
.

Finally, neutralinos present in the galactic halo may also annihilate, leading to

positrons or antiprotons, which may be detected by cosmic ray detectors. In this

case, the e+s or p̄s would likely be non-directional, since their path of flight would

be bent by galactic magnetic fields. Again, the highest rates are to be expected

where the neutralino annihilation cross section is highest: in the bulk region, the

HB/FP region or the A-annihilation funnel. The rates for detection of the indirect

signals depend on assumptions regarding the density profile of neutralinos in the

galactic core and halo. Clearly, if clumping of dark matter occurs, then rates may

be higher than expected. Alternatively, if the galactic halo neutralino density profile

has been overestimated, then signal rates may be lower than expected.

In principle, the results of direct and indirect dark matter searches may pinpoint

the mechanism responsible for depletion of neutralinos in the early Universe so that

the current value of the relic density is consistent with WMAP results. The bulk

annihilation region at low m0 and low m1/2 may give rise to large signal rates in all
direct and indirect search experiments. However, this region is largely disallowed

due to large contributions to (g − 2)μ, B F(b → sγ ) and a value of mh lower than

bounds from LEP2. The stau co-annihilation region is likely to give no signals

for neutralino direct or indirect detection, while all signals for direct and indirect

neutralino detection may be possible in the HB/FP region. If neutralino annihilation

through the broad A and H resonances is the main sink for neutralinos in the early

Universe, then direct neutralino detection and also detection of neutrinos from

neutralino annihilation in the core of the Sun are unlikely. However, detection of

γ s, e+s, and p̄s from neutralino annihilation in the galactic core and halo may occur

at detectable rates.

9.7 Neutrino masses

Data from solar and atmospheric neutrino experiments provide unambiguous evi-

dence for neutrino oscillations, and strongly suggest an interpretation in terms of
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neutrino masses and mixings. These data are consistent with a hierarchical structure

of neutrino masses, with mνe � mνμ
� mντ

and mντ
∼ 0.05 eV and near-maximal

neutrino mixing, though other mass patterns are certainly possible. Cosmological

data also tell us that neutrinos are all lighter than a few eV.

We have seen, however, that like the SM, the MSSM (which after all is essentally

a direct supersymmetrization of the SM) does not allow for neutrino masses. As in

the SM, one can allow for lepton number conserving Dirac neutrino masses by intro-

ducing neutrino Yukawa couplings into the superpotential. This necessarily entails

the introduction of new right-handed neutrino (RHN) superfields. Since neutrinos

are electrically neutral, it is also possible to introduce lepton number violating Ma-

jorana mass terms for these. Within the SM, the well-known see-saw mechanism

provides an elegant way of obtaining the small values of neutrino masses indicated

by the data;30 in the supersymmetric context, this again requires the introduction

of RHN superfields. Within the supersymmetric framework, Majorana masses for

neutrinos are also obtained if the superpotential includes lepton number and R-

parity violating interactions, without the need for any new RHN superfields. This is

discussed in detail in Chapter 16. Here, we will confine our attention to the simplest

extension of the MSSM that accommodates the incorporation of neutrino masses

via the see-saw mechanism. This, of course, requires us to extend the superfield

content of the MSSM by the RHN superfields, one for each generation.

9.7.1 The MSSM plus right-handed neutrinos

In order to implement the see-saw mechanism for neutrino masses, we are led to

introduce three additional gauge singlet left-chiral scalar superfields N̂ c
i (i = 1–3

denotes the generation),

N̂ c
i = ν̃

†
Ri (x̂) + i

√
2θ̄ψN c

i L(x̂) + iθ̄ θLFN c
i
(x̂),

whose Majorana fermion component destroys left-handed SU (2) singlet anti-

neutrinos, or create the corresponding right-handed neutrinos (νRi ). These singlet

superfields are coupled to other MSSM superfields via the superpotential

f̂ = f̂MSSM + (fν)i jεab L̂a
i Ĥ b

u N̂ c
j + 1

2
MNi N̂ c

i N̂ c
i , (9.36)

30 The see-saw mechanism has an interesting history. To our knowledge, the see-saw formula for the neutrino
mass first appears in H. Fritzsch and P. Minkowski, Phys. Lett. B62, 72 (1976) and P. Minkowski, Phys. Lett.
B67, 421 (1977). The mechanism was independently invented and cast into its modern form by T. Yanagida,
KEK Report No. 79-18 (1979); M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, D. Freedman et
al., Editors, North-Holland, Amsterdam (1980); S. Glashow, in Quarks and Leptons, Cargèse 1979, M. Lévy
et al., Editors, Plenum (1980); R. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980). For a recent
review of the original idea and its variants, see e.g. R. Mohapatra, hep-ph/9910365.
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where summation over generation indices i and j as well as SU (2) indices a
and b is implied. Notice that the superpotential includes lepton number violating

Majorana mass parameters MNi for these right-handed neutrinos. In (9.36) we

have, without loss of generality, chosen a basis for the RHN superfields so that the

superpotential mass terms are diagonal. Since the mass terms for these gauge singlet

superfields are not forbidden by symmetry considerations (other than ad hoc global

symmetries such as lepton number conservation), these are naturally expected to be

large – ∼MPlanck in the present framework, or comparable to the SO(10) breaking

scale if the model is embedded into an SO(10) GUT, as discussed in Chapter 11.

Indeed, values of MNi well beyond the weak scale and ranging up to MGUT are

favored by SUSY GUT models which seek to explain neutrino oscillation data.

When electroweak symmetry is broken, Dirac neutrino mass entries (m D)i j are

also induced. The resulting 6 × 6 neutrino mass matrix must be diagonalized to

obtain the masses of the physical neutrinos. Assuming that (m D)i j � Mi for all i
and j , we know that there must be three nearly sterile, heavy Majorana neutrinos

with masses very close to Mi . Since these essentially saturate the trace, there must

be three light active Majorana neutrinos with masses that depend on the details of

the Dirac mass matrix, but whose values vary inversely as the Mi . In the limit where

we ignore the mixing of active neutrino flavors (not a good approximation to the

data), the formulae become simple and we have mνi � m2
Di/MNi as the mass of the

active neutrino of generation i . Though the neutrino masses would be different in

the case of mixed neutrinos, we would expect that this simple formula reproduces

their order of magnitude.

The soft SUSY breaking terms must now also be augmented to include

L � LMSSM − ν̃
†
Ri mν̃R

2
i j ν̃R j +

[

(aν)i jεab L̃a
i H̃ b

u ν̃
†
R j + 1

2
bνi j ν̃Ri ν̃R j + h.c.

]

,

(9.37)

where once again a summation over repeated indices is implied. The parameters

(mν̃R
)i j , (aν)i j , and bνi j are assumed to be of order the weak scale. Assuming that

Mi � MW , the right-handed sneutrinos have masses ∼ MNi and, like the νRi ’s,

decouple from the low energy theory. When considering the renormalization group

evolution of couplings and SSB parameters, one must remember that for energy

scales above Q = MNi , the effective theory is the MSSM augmented by the corre-

sponding right-handed neutrinos and sneutrinos, while at scales below the smallest

of the MNi , these are all integrated out, leaving the MSSM as the effective field

theory. Indeed, the RGEs of the MSSM must be augmented to include potentially

significant effects of the new neutrino Yukawa couplings.31

31 The RGEs for the MSSM augmented by a RHN are listed, for instance, in H. Baer et al., JHEP 04, 016 (2000).
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The inclusion of the new neutrino-sector superpotential and soft SUSY breaking

parameters can in general lead to lepton-flavor-violating processes (LFV).32 Even

in the case where one assumes mSUGRA-like conditions at Q = MGUT on the

new parameters, neutrino Yukawa coupling contributions to renormalization group

evolution between MGUT and MNi can induce off-diagonal slepton mass matrix

entries that lead to LFV processes like μ → eγ , μ → e conversion, τ → μγ or

μ− → e+e−e− at potentially observable rates. The stringent experimental limits on

these rare decays strongly constrain the neutrino sector parameters. In the future,

discovery of LFV processes may help pin down the parameters associated with the

right-handed neutrinos. Of course, LFV could also show up in the direct decays

of sparticles, for instance Z̃ j → �+
1 �−

2 Z̃i or �̃1 → �2 Z̃i , if these are produced at

future colliders. We should also mention that renormalization effects from neutrino

Yukawa couplings would cause small inter-generation splitting between the sneu-

trinos, in much the same way that the tau Yukawa interaction splits mẽL
from m τ̃L

.

These splittings may provide a direct test of the see-saw mechanism if sneutrino

masses are precisely measured in the future.

Finally, we mention that the existence of long-lived, heavy right-handed Majo-

rana neutrinos and sneutrinos offers a novel solution of the baryogenesis problem via

leptogenesis, provided that neutrino Yukawa interactions also violate C P conser-

vation. This is possible in the same way that SM quark interactions do not conserve

C P . Assuming that C P is violated, there will be a difference in the rates for the

decay of νR into leptons and antileptons at the one-loop level, so that a leptonic

matter–antimatter asymmetry can be induced at temperature T <∼ MNi , below which

the right-handed neutrinos and sneutrinos fall out of thermal equilibrium. This lep-

ton asymmetry is then converted to a baryon asymmetry at lower temperatures via

sphaleron interactions, as discussed in Chapter 16.33

32 For an overview, see Y. Kuno and Y. Okada, Rev. Mod. Phys. 73, 151 (2001).
33 See M. Fukugita and T. Yanagida, Phys. Lett. B174, 45 (1986).
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