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Abstract 

Hands are the sensors and actuators for many design tasks. While several tools exist to capture human 

interaction and pose, many are expensive and require intrusive measurement devices to be placed on 

participants and often takes them out of the natural working environment. This paper reports a novel workflow 

that combines computer vision, several Machine Learning algorithms, and geometric transformations to 

provide a low-cost non-intrusive means of spatially tracking hands. A ±3mm position accuracy was attained 

across a series of 3-dimensional follow the path studies. 

Keywords: user-centred design, virtual reality (VR), interaction design, machine learning, 
prototyping 

1. Introduction 
Hands enable individuals to connect with, actuate and interrogate products, process, and tools across 

Design and Manufacture (Figure 1) (Openshaw & Taylor, 2006). Examples in design include clay 

modelling, prototyping, and sketching enabling designers to realise their ideas in physical form. 

Examples in manufacturing include cottage and industrial craft processes, such as basket weaving, 

pottery, woodwork, panel beating, drawing coach lines and carbon fibre layup. Hands are also a primary 

means of interacting with the products and processes that designers have created for society. Examples 

include cooking implements, sports equipment, clothing, and computer games controllers. There is a 

near endless list of product-process interactions that require an individuals to actuate and interrogate by 

their hands. 

 
Figure 1. Hand interaction across design, manufacturing and products 

The design community has undertaken considerable research to understand how data and information 

can be elicited from an individual's experience in using a product and/or performing a process with their 
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hands (Chien et al., 2016; Helminen et al., 2010; Karras et al., 2017; Schifferstein & Cleiren, 2005). 

Methods such as think-aloud and video capture coupled with, often manual, coding schemes have been 

developed and successfully used. However, there remains a disconnect and an interpretative step 

between coding what an individual describes as their interaction and the physical reality of the 

interaction. Papers reporting user interaction studies often cite the challenge for individuals to describe 

their interaction effectively through language while also processing and reacting to the incoming sensory 

data of the interaction episode (Lederman & Klatzky, 2009). 

The importance of capturing interaction data and information has never been greater. In design, the 

emergence of Virtual, Augmented and Mixed Reality is providing an exciting and novel environment 

in which designers can interact, modify, and develop their designs. In manufacture, many cottage craft 

processes are in-danger of becoming extinct with fewer and fewer individuals wishing to take on crafts 

and therefore, no one to pass the knowledge onto. Industry 4.0 and the digitalisation of manufacturing 

processes require technician interaction data so that the processes can be replicated through tools, such 

as soft robotics. In products, mass-customisation is pushing for individualised and tailored experiences 

requiring designers to have a deeper and better understanding of how users interact with their product. 

Human factors research has shown that supplementing traditionally qualitative methodologies with 

high-rate quantitative data inputs both reduces design cycle time and allows for improved product 

design (Johnston et al., 2022). It is not only important to capture track hands spatially and to a high 

degree of accuracy but to also classify what the hands and/or activity the individual is doing when 

interacting with the product (Joong Hee Lee & Yun, 2023; Shi et al., 2021). Higher-level classifications, 

such as therbligs, can help synthesise the system of interactions that an individual has performed. 

Statistical methods applied to the classifications can generate profiles that represent population 

percentiles. 

Methods to track hands and, more generally, the human body have existed for some time and are 

commonly referred to as motion capture. They have been widely used in the film and games industry, 

and necessitate special costumes and gloves with markers that may or may not protrude from the outfit. 

The movements are also captured out of context using green screens in order to maximise the capture 

fidelity. The systems are expensive and, while suitable for individuals imagining and acting out a 

scenario, take an individual outside their usual context when interacting with a product and/or process. 

The removal of the contextual surroundings can influence the interaction being studied. 

Advances in Digital Technology – Computer Vision, Virtual Reality (VR) and Machine Learning (ML) 

– have increased the fidelity at which an individual’s pose can be tracked through low-cost webcam and 

VR technology (Buckingham, 2021; Caeiro-Rodríguez et al., 2021). This paper contributes a digital 

processing pipeline that utilises these technologies to spatially track product-process hand interactions 

without markers and/or specialist environmental setups. A preliminary validation of the pipeline was 

performed through point and path motion studies. 

The paper continues with the related work in hand tracking methods and product-process hand 

interaction studies (Section 2). Section 3 provides details of the digital processing pipeline that has been 

developed, which combines Computer Vision, ML and VR technologies. This is followed by Section 4 

that details the preliminary validation experiment). Sections 5 and 6 present the results and a discussion 

with respect to the pipelines utility in studying product-process hand interaction. The paper then 

concludes with the key findings from the work (Section 7) 

 

 
Figure 2. Example of available methods to capture interaction 
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2. Related work 
This section provides an overview of the available hand position capture methods. The methods can be 

grouped into optical and worn (Figure 2). 

Optical solutions use computer vision and/or Machine Learning to analyse one or more video streams 

(Lugaresi et al., 2019). The video capture equipment used can be of the visible (purely optical capture) 

or infra-red light (often used in depth-sensing technology or Motion Capture technology) variety.  

Mediapipe is an example of visible optical tracking and Ultraleap LeapMotion is an example of infra-

red optical tracking (Zhang et al., 2020). Cox et al., 2023 analysed the accuracy of optical solutions for 

hand tracking and showed visible solutions performed better than for 2D tracking. 

In some instances, specialist uniforms featuring reflective markers are worn. Individual are then situated 

in specially configured green rooms to capture their motion and interaction. These systems are known 

as motion capture and are used in the film and games industry (Merriaux et al., 2017). The system detects 

and keeps track of the markers in the scene providing a highly accurate solution. They are highly 

accurate but require a user to operate and perform actions out of the context of their normal environment. 

They also cost many thousands of pounds to purchase, deploy and operate.  

Worn solutions also exist. They track the hands by analysing sensor data coming from gloves worn by 

an individual. A combination of Inertial Measurement Units (IMUs) and/or lighthouses provide the data 

to determine the global position of a hand in 3D space. Examples include the HTC Vive trackers and 

Senso Gloves. 

To determine finger positions, gloves typically employ resistive sensors along the fingers. Their 

resistance changes during deformation which is then mapped to how the finger must be positioned. The 

MANUS Prime X gloves are one such example of this approach. Magnetic tracking is another approach 

where fluctuations in the magnetic field can be used to determine the finger position. This technique is 

used by the HaptX and Manus Quantum MetaGlove gloves. A fundamental challenge of glove-based 

approaches is the need for the user to wear a pair of gloves which may affect the way an end-user 

interacts with the product. Cox et al. (2023) analysed the effectiveness of three hand tracking methods 

– LeapMotion, Mediapipe and Manus gloves. The results showed the ML-based Mediapipe method to 

be the most accurate and consistent system (Table 1). It also had the benefit of not requiring the user to 

wear any additional garments or have any markers placed upon them. The only challenge is that 

Mediapipe operated on a single camera results in issues of occlusion and the inability to detect the depth 

of the hand. 

Table 1. Path tracking accuracy of existing approaches (from Cox et al., 2023) 

 

3. A low-cost non-Intrusive hand tracking pipeline 
The developed pipeline combines computer vision, ML, and Virtual Reality to provide spatial tracking 

of hands. The pipeline is illustrated in Figure 3. It was written in Python using the OpenCV, PyOpenXR, 

Numpy, Matplotlib, Mediapipe, and SKLearn packages (Harris et al., 2020; Hunter, 2007; Itseez, 2015; 

Pedregosa et al., 2011). The pipeline requires Python 3.10+, SteamVR, a series of web cameras and VR 

Head-Mounted Display (HMD). Figure 3 also provides an example of the required hardware. 
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The pipeline involves a three-step process to achieve spatial hand tracking: 

1. Calibration 

2. Training 

3. Track 

The Calibration step creates a dataset that relates the (𝑥, 𝑦) positions of detected objects in view of the 

𝑛 web cameras to the (𝑥, 𝑦, 𝑧) position of the object in VR. The object of interest was the HMD. A 

Charuco marker attached to the HMD enabled the web cameras to detect it using computer vision. 

The web cameras are initialised in separate processing threads and OpenCV used to capture and display 

the web camera stream as well as transforming the frames to greyscale and processing the greyscale 

images to detect the (𝑥, 𝑦) pixel position of the charuco marker. In parallel, PyOpenXR was used in 

another thread to capture the (𝑥, 𝑦, 𝑧) position of the HMD. The code synchronised the results and 

produced a list of input tensors (𝑥1, 𝑦1, …, 𝑥𝑛, 𝑦𝑛) and output tensors (𝑥, 𝑦, 𝑧) for the web camera and 

HMD, respectively. NaN values were used if the computer vision was unable to detect the charuco 

marker in a web camera frame. 

Windows showing the web camera views as well as a 3D point cloud of the HMDs path is shown to the 

user. The user specifies a set time they want to capture for and they move the HMD through the domain 

they wished to spatially track hands. Two comma separated variable files containing the input and output 

tensors are generated at the end of the specified time and past to the Training step of the process. 

The Training step accepts the tensors generated in the Calibration step and trains a set of ML algorithms 

to predict the (𝑥, 𝑦, 𝑧) position of a point detected as (𝑥1, 𝑦1, … , 𝑥𝑛, 𝑦𝑛) from the web cameras. An ML 

is trained for each combination of web cameras where data is available. The ML selected was a linear 

regression model with 2-degree polynomial features (i.e., 𝑥, 𝑦, 𝑥2, 𝑦2, 𝑥𝑦). The model was selected to 

take the curvilinear (fisheye lens) behaviour typically exhibited in many camera lenses into account. No 

information was required on the cameras used and their relative and absolute positions that would 

typically be needed for stereoscopic computer vision based calibrations. The result of the Training step 

was a set of ML models stored in a user-specified directory. 

With the models trained, the pipeline can start to detect the spatial position of hands with respect to the 

VR environments global coordinate system. The Track step uses the web cameras to detect hand 

landmarks in 2D camera pixel coordinates and the ML models use the data to predict the location of the 

hands spatial position. The web cameras operate separate threads with OpenCV gathering the stream 

data. The stream data is then piped through Mediapipe –  a ML model developed by Google researchers 

–  that detects 21 hand landmarks (e.g., joints and knuckles) in (𝑥, 𝑦) pixel values.  

 
Figure 3. A low-cost non-instrusive spatial hand tracking pipeline 
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The landmark positions for each camera are then synchronised with NaN values used when the hands 

were not detected. The synchronised data passes to the ML models and, based on the combination of 

data available, the appropriate ML model was selected to predict the (𝑥, 𝑦, 𝑧) for each joint. 

The pipeline can operate in real-time with plots showing the spatial position of an individual's hands. 

Data can recorded for further post-processing and used to create spatial video replays. Data can also be 

streamed to a VR environment, such as Unity or Unreal, to enable a user's hands to be made visible in 

the VR environment where they can become game objects and used to interact with other game objects 

in the environment – controller-free interaction. 

Affordances include the ease of set-up and operation, the low-cost in infrastructure needed to run, and 

scalability with 𝑛 web cameras permitted. The web cameras can be positioned in any location to help 

with occlusion as well as where it is practical in the environment where an individual is going to be 

performing the product-process interaction. 

4. Experiment 
Cox et al. (2023) hand tracking study was used to evaluate the performance of the pipeline. The pipeline 

was configured to track hands in the area shown in Figure 4a. The set-up used three cameras resulting 

in 7 ML models for the camera combinations. 

A participant then traced a pre-defined path etched into a foam board using their index finger (Figure 

4b). The participant placed their finger in the start position and the pipeline initiated. When the camera 

views appeared on the computer screen, and they could see their hand in the viewers, the participant 

was instructed to start tracing the path. The participant was asked to trace it in a steady and continuous 

motion and to keep their finger in the final resting position until the cameras deactivated. The participant 

had 1min 30secs to complete the tracing task. 

 
Figure 4. An individual configuring and using the pipeline to detect hand position 

The calculated hand positions were then stored and later analysed to evaluate the performance of the 

system. Performance was measured through four metrics: 

1. Capture success rate 

2. ML training statistics 

3. Tracking completeness 

4. Path accuracy 
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The capture success rate evaluated the calibration step and whether each of the cameras were able to 

identify the HMD charuco marker during the capture exercise. A 100% successful capture would mean 

all the cameras reported data during the calibration exercise. The ML training statistics examined the 

prediction performance of the 7 ML models. The analysis took 10% of the training data as a test set and 

used the Root Mean Square Error as the performance measure. Tracking completeness assessed the 

performance of the tracking element of the pipeline. 100% would mean that the index finger was 

identified by the three cameras throughout the task. Path accuracy was evaluated through two metrics. 

The first analysed the histogram of 𝑧 values being returned from the pipeline. Given the path was on a 

flat plane relative to the VR's global coordinate system, the expectation was that the reported 𝑧 values 

would be tightly bounded around a single mean value. It is important to note that each camera was 

angled down on the area and thus, the path would not appear flat relative to their co-ordinate systems. 

The second metric examined the index landmarks 𝑥, 𝑦 positions captured during the task and compared 

them against the ideal path. The distance of the captured positions with respect to the ideal path lines 

was computed using the following equation: 

𝑑 =
|𝑎𝑥0+𝑏𝑦𝑜+𝑐|

√𝑎2+𝑏2
  (1) 

Where d is the distanced a, b and c are the coefficients of the line and x0 and y0 is the point away from 

the line. The smallest difference from the point and the path lines was taken as the error. 

5. Results 
A total of 12,947 data points were captured during the calibration step (15 min of moving the HMD 

around the scene of interest). Table 2 shows an excerpt of the captured data. 44% (5,673) of the captured 

data featured x, y pixel positions from all three cameras. Given that neither camera was occluded during 

the calibration step, there exists an opportunity to improve the processing of the charco marker. On 

inspection of the videos captured, motion blur from moving the HMD during the calibration step was 

deemed to be a main contributing factor to the data loss. 

Table 3 presents the result from the ML training statistics for the 7 camera combinations – input data 

size and RMSE score. The input data sizes reveal the impact of the data loss with fewer points for the 

two and three camera combinations. Nonetheless, the RMSE score shows a significant performance 

improvement when two or more cameras are used to predict spatial positions. This was to be expected 

as a single camera lacks sufficient data to determine depth therefore relying on the probability 

distribution of the historic data to give an indication of where the object is likely to be. The addition of 

more than two cameras offers little increase in performance and thus, multiple cameras only need to be 

considered for situations where occlusion or data loss may be an issue. The accompanying figure shows 

how the accuracy improves with the size of dataset for the 3 camera ML model withe model quickly 

converging to an accuracy of 0.00725. Additional data aids in reducing the variance in prediction. The 

results indicate that individuals do not need to spend considerable time collecting and training the 

pipeline.  

Table 2. An excerpt of data collected during the calibration phase 

 
 

Table 4 details the results from the path tracing study. A total of 2,556 data points were captured during 

the exercise. In addition, to the pipeline was able to identify the hand using all three cameras for the 
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entire task, which enabled the three camera ML model to be used to predict the spatial location of the 

index finger. The first path analysis metric was the variance in the 𝑧 value and is shown in Figure 5a as 

a histogram. The minimum, maximum, mean and standard deviation were 0.988m, 1.084m, 1.067m, 

and 0.004m, respectively. This shows there is very little movement of the hand in the z-direction 

showing that the depth can be accurately captured through the pipeline.  

Table 3. Training results for different camera combinations (12,947 data points total) 

 

Table 4. Captured points and the number of camera that captured them 

 

 
Figure 5. An individual configuring and using the pipeline to detect hand position 

Figure 5 also shows the variance of the 𝑥, 𝑦 values reported with the idealised path overlaid in Figure 

5b and a histogram of the error against the path in Figure 5c. The minimum, maximum, mean and 

standard deviation are 0.000m, 0.018m, 0.003m, and 0.003m, respectively. The results again show a 

high degree of accuracy from the pipeline featuring cameras situated approximately a metre away from 

the working area. 

6. Discussion 
The results of the pipeline have shown promise that a user’s spatial hand interaction of a product-process 

within a design and/or manufacturing context captured. The approximate accuracy of 3mm offers the 

opportunity to capture product-process interactions. Further, there are very few constraints in terms of 
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configuring and deploying the pipeline and the relative low-cost hardware used compared to other 

solutions on the market could support wider adoption. 

The study reported remains preliminary and further evaluations performing a variety of product-process 

interactions are required to provide a more complete picture of the utility of the pipeline. Improvements 

and future work include: 

• Providing guidelines in terms of camera positioning or adjustment in order to provide the highest 

resolution of the intended working area. 

• Post-processing the path data to detect, flag and remove anomalous readings. 

• refinement of the pipeline codebase to increase data capture and processing rates. 

• Post-processing the paths and classifying ours of activity within the path. 

• Testing and validating the tracking accuracy with a larger group of participants. 

• Testing the usability of the pipeline for designers as a design support tool. 

• Examining the ethical and privacy implications of capturing hand tracking data through the 

pipeline. 

The pipeline was tested with web cameras operating at 720p 30FPS resulting in a data rate of 1260 

landmark readings per second. A 10 min session would give a 756,000 data points. The pipeline can 

therefore amass a large amount of data on a product-process interaction and future work is required to 

interpret this data to provide valuable insights and meaning for designers to act on. Examples include 

post-processing the data to identify common activities and/or interactions that can be classified through 

language, such as grasping, twisting, and turning. Post-processing the data in this manner would product 

product-process interaction narratives that designers can interpret and act upon. The data could also be 

replayed through 3D and immersive VR environments providing Spatial Video Replays. It would be 

interesting to compare the insights generated by designers using the spatial video replays compared to 

contemporary video recordings for the product-process interaction. One hypothesis is that they could 

enhance the learning of a process as individuals can view the interaction episode from different angles 

and even overlay their hands with the hands of the replay to help them emulate the experience. The 

replays could also form the input into soft robotic applications where they wish to emulate an individual 

in performing a process. 

The pipeline can also provide spatial hand positions in real-time. The data could then be fed into the VR 

environment that it has been trained for to provide controller free user interaction in VR systems. This 

could be useful for designers when interacting with geometry in VR and enable emulation of experiences 

such as clay modelling. 

7. Conclusion 
There has and continues to be a desire to capture product-process interaction across design, 

manufacturing, and prototyping activities. This paper contributes a pipeline that captures spatial hand 

positions. The preliminary study showed the pipeline can attain an accuracy of ≈ 3mm. Further 

advantages of the pipeline are its minimal constraints on set-up, ability to handle occlusion through 

multiple cameras, and low-cost relative to commercial solutions. These solutions are opening a whole 

new stream of data regarding product-process interaction (30-60FPS of 42 hand landmarks) and the next 

step is to learn how these solutions can provide information and insights that could support design. 
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