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NONNEGATIVE LINEARIZATION AND QUADRATIC 
TRANSFORMATION OF ASKEY-WILSON POLYNOMIALS 

RYSZARD SZWARC 

ABSTRACT. Nonnegative product linearization of the Askey-Wilson polynomials is 
shown for a wide range of parameters. As a corollary we obtain Rahman's result on the 
continuous #-Jacobi polynomials with a > (3 > — 1 and a + /3 + 1 > 0. 

1. Introduction. If \pn } ^ 0 is a system of polynomials such that/?„ is a polynomial 
of degree n, then every polynomial can be expressed as a linear combination of finitely 
many members of {pn}™=Q. In particular this applies to all the productspnpm. In this way 
we get 

(1) pn(x)pm(x) = J^ c(n> m> k)pk{x). 

The numbers c(n9 m, k) are called the linearization coefficients. Formula (1) is called the 
product linearization. 

When {pn}%Lo *s a system of orthogonal polynomials, then the linearization coeffi
cient c(n, m, k) can be computed from (1) as the integral of the triple product pnpmpk. 
Sometimes it can be computed explicitly, like in the case of ultraspherical polynomi
als (see [2, 4]). Usually, as for the Jacobi polynomials, explicit formulas expressing 
c(n, m, k) are not available. 

It is of great interest to determine whether the linearization coefficients are nonneg
ative. This property has many important consequences. It gives rise to a convolution 
structures associated with the polynomials /?„, and opens up the posssibility of applying 
Banach algebra techniques in the study of orthogonal polynomials. We address the reader 
to [5, 11] for more details. 

In 1970 Richard Askey [1] found a set of conditions that imply nonnegative product 
linearization. His conditions are given in terms of the coefficients in the three term re
currence formula orthogonal polynomials satisfy. Askey's result could be applied to a 
wide class of polynomials, including the Jacobi polynomials and their ^-analogs. How
ever in the case of the Jacobi polynomials it does not give the whole range of parameters 
for which nonnegative linearization was known to hold. 22 years later in [11] new condi
tions were found which applied to the Jacobi polynomials come close to the actual range, 
found by Gasper [5,6], where the nonnegative linearization hold. It gives the exact range 
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for the ultraspherical polynomials. On the way these results imply nonnegative product 
linearization also for the associated polynomials. 

All the results mentioned above assume certain monotonicity conditions of the co
efficients in the three term recurrence formula. Sometimes these coefficients are too 
complicated the expressions to apply the results directly. For example in [11] instead 
of examining the Jacobi polynomials, we studied the so called generalized Chebyshev 
polynomials and then used the relation between these polynomials and the Jacobi poly
nomials. The advantage of doing so is that the recurrence formula for the generalized 
Chebyshev polynomials is much simpler than the one for the Jacobi polynomials. 

The Askey-Wilson polynomials pn(x\ a, b, c, d \ q) contain the continuous g-Jacobi 
polynomials as a special case and the Jacobi polynomials as a limit case. We construct the 
system of polynomials qn(x; a, b, c, d \ q) related to the Askey-Wilson in the same way 
as the generalized Chebyshev polynomials are related to the Jacobi polynomials. The 
recurrence formula for the polynomials qn{x\ a, b,c,d\ q) turns up to be much simpler 
then the one for Askey-Wilson polynomials. Using results of [11] we give conditions 
on the parameters a, b, c and d which imply nonnegative product linearization of the 
polynomials qn(x; a, b,c,d\ q), and thus of the polynomials pn(x\ a, b, c, d \ q) taking 
into account the relationship between these two classes of polynomials. 

As a corollary we obtain Rahman's result [ 10] on the continuous q-Jacobi polynomials 
with a > /3 > - 1 and a + /3 + 1 > 0. 

Recently Koornwinder obtained nonnegative product linearization for the Askey-
Wilson polynomialspn(x; qï, qï+a, q^, —q^~a \ q). He used quantum groups theoretic 
methods. The polynomials show up as spherical matrix coefficients of irreducible repre
sentations of quantum groups. The linearization coefficients are then positive multiples 
of the multiplicities of the irreducible representations in the decomposition of tensor 
product of two such representations. In [9] Koornwinder calls for an analytic proof of 
his result. 

It turns out that the theorems of Section 2 cannot be applied to these polynomials 
for any nonzero value of a. That is why, in Section 3, we derive other criteria that 
give nonnegative product linearization for the above polynomials but with the restric
t i o n - ^ <o < 5. 

ACKNOWLEDGEMENT. I am grateful to Tom Koornwinder for informing me of his 
paper and sending me a preprint. 

2. Askey-Wilson polynomials and quadratic transformation. The Askey-Wilson 
polynomials are given in terms of the basic hypergeometric series 4^3. This function is 
a ^-analog of the generalized hypergeometric series 4F3 and is defined as 

\a\,a2,a3,a4 1 °° (au a2, «3, a4; q\ xk 

L bub2,bi J k=0 (bub2,b3)k {q\q)k 

where 
n k-\ 

(a\9a2,...9a„;q)k = I I I K 1 ~ <*rf)-
i=\j=0 
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The Askey-Wilson polynomials are defined by 

p„(x; a, b,c,d \ q) 

(2) 
= a n(ab, ac, ad; q)n ^ 

q~n, qn~labcd, ael\ ae~w 

;<? ,? 
ab, ac, ad 

where x = cos 9. 
It turns out that the polynomialspn(x; a, b,c,d\ q) are invariant for the permutations 

of the parameters a, b, c, d. These polynomials first appeared in [3], where the recurrence 
relation and orthogonality measure have been computed explicitly. According to Rahman 
[10], setting a = qa+ï, b = —q^î and c = —d = qï yields the continuous g-Jacobi 
polynomials. 

The Askey-Wilson polynomials satisfy the recurrence relation 

2xpn(x) = Anpn+i(x) + [a+ a~x - (A„ + Cn)]p»(x) + Cnpn-\(x\ (3) 

where 

(4) 

and 

(5) 

Pn(x) 
a"pn(x; a, b,c,d\ q) 

{ab, ac, ad; q\ 

An = 

C„ = 

(1 - abcdqn-{){\ - abqn){\ - acqn)(\ - adqn) 
a{ 1 - abcdq2"-x )( 1 - abcdqln) 

a{\ - qn)(\ - bcqn){\ - bdqn~x)(\ - cdqn~x) 
( 1 - abcdq2n~2)( 1 - abcdq2n~l ) 

The polynomials pn(x) are the Askey-Wilson polynomials normalized at the point 

pn{l-(a + a-l)) = \. 

The tilded polynomials are no longer invariant for the permutations of a, b, c, d, unless 
the parameter a is fixed by the permutation. An advantage of dealing withpn(x) is the 
fact that the sum of the coefficients in the recurrence formula (3) is constant and equal 
to a + a~l. 

Let q„(x; a, b,c,d\ q) be the polynomials defined by the recurrence relation 

2xqn(x; a, b,c,d\q) = lnqn+\(x; a, b,c9d\ q) 

+ ctnqn-\(x;a,b,c,d\ q\ 
(6) 

where 

(7) 

&2n — —ab 

(*2n+\ = -

72«+l = 

(\ - qn)(\ - cdqn~x) 
1 - abcdq2n~x 

(1 - abcdqn-x){\ - abqn) 
\-abcdq2n~x 

a(l ~ bcqn)(l - bdqn) 
6(1 - abcdq2") ' 

(I - acqn)(\ - adq") 
(1 - abcdq2n) 
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The polynomials qn(x; a, b,c,d \ q) are invariant for the following transformation of the 
parameters. 

(8) q„(x; a, b,c,d\q) = qn(x; -a, - b, - c, -d\ q) 

(9) qn(x\ a, b,c9d\q) = qn{x\ a, b9d9c\ q). 

Thus we can always assume that a is positive. Observe that we have 

(10) a2n +72H = l—ab and a2n+\ + l2n+\ = 1 - ab~\ 

A key point is a relation between the polynomials q2n(x\ a, b, c, d \ q) and the Askey-
Wilson polynomialspn(x\ a, b9c,d\ q) normalized at j(a + a~l). Namely we have 

(11) qin(x\ a, b,c,d\ q) — pn\2a~[x2 + - (6 + è - 1) ; a, b, c,d \ q). 

This is because by using (6) twice we get 

4x2q2n(x) = I2n+\l2nq2n+2(x) 

+ («2«+272«+i + a2n+\l2n)q2n(x) + a2na2n^q2n_2(xX 

where qn(x) = qn(x\ a, b,c,d\ q). Next, observe that (5), (7) and (10) imply 

aAn — l2n+\l2n, 

aCn = oc* «2/1-1, 

(1 - ab){\ - ab~X) = l2n+\l2n + («2/2+272/z+l + (X2n+\l2n) + <*2/I«2/I-1 • 

Therefore (12) can be written as 

Ax2q2n{x) = fl^W2«+2W + a[(\ - a&Xa"1 - 6_1) - (A + Cn)]q2n(x) + aCnq2n-2(x). 

This together with (3) immediately gives (11) 
In the same way one can derive the relation 

x~lq2n+\(x, a, b,c,d \ q) = 2(1 — ab)~]pn{la~xx2 + -(b + b~l); a, bq, c, d \ q). 

In particular combining (4), (6), (11) and (13) gives 

pn(x\ a, b9c,d\ q) 

\-abcdqn~x 

1 - abcdqln~x •pn(x\ a, bq, c9d\q) 

b(\ - q")(\ - acq"-])(\ - adqn-])(\ - cdq^) 
(14) X-abcdq^ * - l ( x ; «' * * C' ^ 

and 

2[x — -{b + b~])]pn(x; a, bq, c,d\q) 

pn+i(x;a,b,c,d\ q) 
1 - abcdq2" 

{\-baqn){\-bcq"){\-bdqn) 
( 1 5 ) b{l-abcdq») P ^ *' M ^ q)' 
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THEOREM 1. Let a, b, c, d and q satisfy 
(i) 0 < q < 1, 

(ii) ac <l,ad< l9bc <l,bd< 1, 
(iii) a>0,b<0andcd<0, 
(iv) a + b<0andc + d<0, 
(v) ab+\ >0andcd + q>0. 

Then the polynomials qn{x; a, b, c, d\ q) have nonnegativeproduct linearization. 

Using (3), (11) and the fact that the Askey-Wilson polynomialspn{x\ a, b,c,d\ q) are 
invariant for the permutation of a, b, c and d, gives 

THEOREM 2. Let the parameters a, b, c, d and q satisfy 

(i) 0<q<l, 
(ii) ac <\,ad< 1, be <\,bd< 1, 

(iii) ab<0andcd<0, 
(iv) a + b<0andc + d<0, 
(v) ab+\ >0andcd + q>0. 

Then the Askey-Wilson polynomials pn{x; a, b, c, d\ q) have nonnegative product lin
earization. 

Observe that when a — qa+î, b = —qP+ï, and c = — d = q? the assumptions of 
Theorem 1 are satisfied if and only if a > (3 > — 1 and a + (3 + 1 > 0. The polynomials 
pn(x', a, b,c,d | q) corresponding to this choice of parameters are called the continuous 
#-Jacobi polynomials and denoted by P^,f3\x; q). Thus Theorem 2 yields the following. 

COROLLARY 1 (RAHMAN [10]). LetO <q < 1. The continuous q-Jacobi polynomi
als I*n\x; q) have nonnegative product linearization if a > (3 > — 1 anda+fi+\ > 0. 

PROOF OF THEOREM 1. The assumptions (ii) and (iii) of the theorem imply that 
the coefficients an and ln defined by (7) are positive. Thus by the Favard theorem the 
polynomials qn(x\ a, b,c,d \ q) are orthogonal polynomials. We are going to apply [11, 
Thm. 1, p. 966]. This theorem states that nonnegativity of the product linearization holds 
if 

OCn <ln 

(*n+ln <««+2+7«+2, 

where ocn and 7« are the coefficients in the recurrence formula (7) satisfied by the poly
nomials qn(x\ a, b,c,d \ q). 

It can be computed that by setting z = qn we get 

(16) OC2n+2-CC2n 

_ _ abcd(cd + q)z2 - q( 1 + q)cd{ab + 1 )z + q(cd + q) 
(q — abcdz2)(\ — abedqz2) 

(17) a2n+3 - oc2n+\ 
abcdq(c + d)z2 - (1 + q)cd(a + b)z + (c + d) 

= -a(\ - q)z-
(1 - abcdz2){\ - abcdq2z2) 
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By assumptions we have 0 < — ab < 1 and 0 < —cd < q. Hence 0 < abed < q. 
Thus in both formulas the denominators are nonnegative. One can verify that under the 
assumptions (i)-(iv) a l s o the numerators are nonnegative. Hence we obtain 

a-in /* —ab, and ocin+\ /* —ab~]. 

Moreover, in view of (10) we have 

l2n \ 1 and l2n+\ \ 1. 

By (iv) we get 0 < — ab < 1. Dividing (iii) by a2 gives also 0 < —ab~x < 1. Therefore 
&n < 7«- This completes the proof. • 

3. Polynomials considered by Koornwinder. In [9] Koornwinder showed by 
quantum group theoretic methods that the Askey-Wilson polynomialspn(x\ q^, —q1+a, 
qï,—qï~° | q) have nonnegative product linearization for any real value of a. Unfor
tunately Theorem 2 can be applied here only in the case a — 0. Therefore we have to 
resort to other methods. 

We will give an analytic proof of Koornwinder's result for — ̂  < a < \. Incidentally 
this is the case when the corresponding orthogonality measure does not admit mass points 
(see [3, Thm. 2.2]). We were not able to use our methods in the case |cr| > j . 

In view of further applications the assumptions in the next proposition are made as 
weak as possible. 

PROPOSITION 1. Let the numbers q, a, b, c and d satisfy 
(0 0 < q < 1, 

(ii) ac <\,ad< 1, be <\,bd< 1, 
(iii) a>0, b<0, cd<0, \b\ < 1, 
(iv) abcd(cd + q)z2 - ( 1 + q)cd(ab +\)z + (cd + q)> 0, 

abcdq(c + d)z2 - (1 + q)cd(a + b)z + (c + d) > 0, where z = qn, 
(v) si < 0, \Jabcds\ < si, where 

(18) sx =(ab + q)(c + d) + (a + b)(cd + ql 

(19) s2 = (a + b)(ab + q)cd + (c + d)(cd + q)ab. 

Then the polynomials qn(x; a, b,c,d\ q) have nonnegative product linearization. 

PROOF. We will apply Theorem 3(i) of [12]. To this end we have to consider the 
orthonormal polynomials. 

Since the parameters a and b have opposite signs the polynomials qn(x\ a, b,c,d \ q) 
are orthogonal polynomials. The corresponding orthonormal polynomials qn(x\ a, b, c, 
d | q) satisfy the recurrence relation 

xqn{x\ a, b,c9d\q) = \nqn+\ (*; a, b,c,d\ q) 

+ \n^xqn-\(x\a,b,c,d \ q\ 
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where 

(21) A2 = an+xln 

and a„, 7« are defined by (7). We will show that the sequences \\n_\ and \\n_x + X\n
 a r e 

nondecreasing, and A2^., < \\n. Then Theorem 3(i) of [12] will give the conclusion. 
By (ii) and (iii) the coefficients an and ln are positive, so are A„. Let 

(22) A(«) = A L - , + A i . 

Then it can be computed that 

(23) h(n)= z
S]abcdz2 ~ (* + ^S2Z + aSl

 a(b + b-\\ 
(1 — abcdz2){q2 — abcdz2) 

where z = qn and si, $2 are given by (18) and (19). Then 

abcdz2 — (1 + q)\J abcdz + q 
(1 — abcdz2)(q2 — abcdz2) 

+ fl(i+ff)(v/^^i ~^2>2 _ + , _, 
( l - f l ^ ^ z 2 ) ^ 2 - ^ c J z 2 ) l J 

<X?lZ 

(1 + Vabcdz)(q + \J abcdz) 

a{\ + q){yabcds\ — s^z1 

(1 — abcdz2)(q2 — abcdz2) 
-a(b + b~l). 

The sequence 
z2 

(1 — abcdz2)(q2 — abcdz2) 
is obviously positive and nonincreasing. So is the sequence 

z 
*(«) = 

(1 + V' abcdz)(q + \J abcdz) 
because 

z( l - f l ) ( l ->/f léâfe) 
* ( / i + l ) - * ( « ) = 

(1 + V' abcdz)(q + \/abcdz)(\ + q\J abcdz) 

Hence the sequence h(n) is nondecreasing beacuse by our assumptions 

s\ < 0 and \Jabcds\ — $2 < 0. 

In view of (10) the sequence A2
/7_1 = otirHin-x is nondecreasing if the sequence a-m 

is nondecreasing and o^/i-i is nonincreasing. By (16) and (17) this occurs exactly when 

abcd(cd + q)z2 -q(\+ q)cd(ab + l)z + (cd + #) > 0 

abcdq(c + </)̂ 2 - (1 + ?)a/(a + 6)z + (c + </) > 0 

We also get that \\n — a2n+\l2n is nonincreasing. Thus since ab < 0 and |6| < 1 we 
obtain 

Ai,-, /-ab<~-a/\\n. 
In this way all the assumptions of [12, Thm. 3(i)] are satisfied. This completes the proof 
of the theorem. • 
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THE0REM3. With the assumptions of Theorem 1 the Askey-Wilson polynomials pn{x; 
a, b, c, d\ q) have nonnegativeproduct linearization. 

THEOREM 4. Let the numbers q, a, b, c and d satisfy 
(i) 0 < q < 1, 

(ii) ac <\,ad< 1, be <\,bd< 1, 
(iii) a>0, b<0, cd<0, \b\ < 1, 
(iv) cd + q>0, ab+\ > 0, c + d > 0, a + 6 + c + d < 0, 

(abedq + l)(c + </) > (1 + g)cd(a + b), 
(v) 51! < 0, \Jabcds\ < si, 

where s\ and s2 are given by (18) and (19). 
Then the polynomials qn(x; a, b, c, d \ q) have nonnegative product linearization. 

PROOF. It suffices to show that the assumption (iv) of Proposition 1 is satisfied. In
deed, the first inequality is obvious since all three terms in the expression 

abcd(cd + q)z2 - (1 + q)cd(ab + \)z + (cd + q) 

are nonnegative. 
Let 

g(n) = abcdq(c + cfyz2 - (1 + q)cd(a + b)z + (c + d). 

Then using the fact that abq > — 1 and c + d > 0 we obtain 

g(« + 1) - g(n) = abcdq(c + J)(<72 - l)^2 - (1 + #)cd(a + Z?)(l - q)z 

= -cd{\ - q2)[abq(c + d)-(a + b)} 

> -cd(\ - q2)[-(c + d)-(a + b)]>0. 

Hence the sequence g(n) is nondecreasing. Thusg(«) > 0 if and only if g(0) > 0. But 

g(0) = (abedq + l)(c + d) - (1 + q)cd(a + 6) > 0. 

Thus all the assumptions of Proposition 1 are satisfied. • 

COROLLARY 2 ([KOORNWINDER [9]). The Askey- Wilson polynomials 

pn(x;qï, -q2+\q\ - qi~a \ q) 

have nonnegative product linearization for 0 < q < 1 and any real value of a such that 

PROOF. Set (3 = q° and 

a = c = qï, b = -qî(3~] d=-q^[3. 

Since p„(x; a, b, c, d \ q) does not change when we switch b and d we can restrict 
ourselves to the case 0 < a < ^, i.e., 
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Observe that the assumptions of Theorem 4 are satisfied. Indeed, (ii) is obvious. We 
have a > 0, b < 0 and cd < 0. Also 

This gives (iii). Concerning (iv) we have 

cd + q = q(l-0)>O, 

ab+\ = l-q0~l >0, 

a + b + c + d-=qL2(2-f3-0~l)<O. 

Moreover using the notation (18) and (19) we get 

s2=qSl=-2qi(3-l(l-(3)2. 

Hence ^i < Oand 
2̂ — Vabcds\ — 0. 

The assumptions of Theorem 4 are thus satisfied. • 
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