
18 Cosmology

Very quickly after Einstein published his general theory, a number of researchers attempted
to apply Einstein’s equations to the universe as a whole. This was a natural, if quite
radical, move. In Einstein’s theory the distribution of energy and momentum in the universe
determines the structure of space–time, and this applies as much to the universe as a whole
as to the region of space, say, around a star. To get started, these early researchers made
an assumption which, while logical, may seem a bit bizarre. They took the principles
enunciated by Copernicus to their logical extreme and assumed that space–time was
homogeneous and isotropic, i.e. that there is no special place or direction in the universe.
They had virtually no evidence for this hypothesis at the time – definitive observations of
galaxies outside of the Milky Way were only made a few years later. It was only decades
later that evidence in support of this cosmological principle emerged. As we will discuss,
we now know that the universe is extremely homogeneous when viewed on sufficiently
large scales.

18.1 The cosmological principle and the FRW universe

To implement the principle, just as for the Schwarzschild solution we begin by writing
the most general metric consistent with an assumed set of symmetries. In this case the
symmetries are homogeneity and isotropy in space. A metric of this form is called a
Friedmann–Robertson–Walker (FRW) metric. We can derive this metric by imagining our
three-dimensional space, at any instant, as a surface in a four-dimensional space. There
should be no preferred direction on this surface; in this way we impose both homogeneity
and isotropy. The surface will then be one of constant curvature. Consider, first, the
mathematics required to describe a (2 + 1)-dimensional space–time of this sort. The three
spatial coordinates would satisfy

x2
1 + x2

2 = k
(
R2 − x2

3
)
, (18.1)

where whether k = ±1 is positive or negative depends on whether the space has positive
or negative curvature. Then the line element on the surface is (for positive k):

d�x2 = dx2
1 + dx2

2 + dx2
3 = dx2

1 + dx2
2 + (x1dx1 + x2dx2)

2

x2
3

. (18.2)
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246 Cosmology

The equation of the hypersurface gives

x2
3 = R2 − x2

1 − x2
2. (18.3)

Setting x1 = r′ cos θ , x2 = r′ sin θ , we have

d�x2 = R2dr′2

R2 − r′2 + r′2dθ2. (18.4)

It is natural to rescale according to r′ = r/R. Then the metric takes the form, now for
general k,

d�x2 = dr′2

1 − kr2 + r2dθ2. (18.5)

Here k = 1 for a space of positive curvature; k = −1 for a space of negative curvature;
k = 0 is a spacial case, corresponding to a flat universe.

We can immediately generalize this to three dimensions by allowing the radius R to be
a function of time, R → a(t). In this way we obtain the Friedmann–Robertson–Walker
(FRW) metric:

ds2 = −dt2 + a2(t)
(

dr2

1 − kr2 + r2dθ2 + r2 sin2 θ dφ2
)

. (18.6)

By general coordinate transformations this can be written in a number of other convenient
and commonly used forms, which we will encounter in the following.

First we will evaluate the connection and the curvature (see Section 17.1). Again, the
reader should evaluate a few of these terms by hand and perform the complete calculation
using one of the programs mentioned in the exercises in the previous chapter. The non-
vanishing components of the Christoffel connection are

�i
0j = ȧ

a
δi

j , �0
ij = gij

ȧ
a

, �i
jk = gil

2
(glj,k + glk, j − gjk,l) (18.7)

and those of the curvature are

R00 = −3
ä
a

, Rij = gij

(
ä
a

+ 2H2 − 2
k
a2

)
. (18.8)

Here H is known as the Hubble parameter,

H = ȧ
a

, (18.9)

and represents the expansion rate of the universe. Today

H = 100h km s−1 Mpc−1, h = 0.73 ± 0.03. (18.10)

The assumptions of homogeneity and isotropy greatly restrict the form of the stress tensor:
Tμν must take the perfect fluid form

T00 = ρ, Tij = pgij, (18.11)
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247 18.1 The cosmological principle and the FRW universe

where ρ and p are the energy density and the pressure and are assumed to be functions only
of time. Then the (0, 0) component of the Einstein equation (17.61) gives the Friedmann
equation,

ȧ2

a2 + k
a2 = 8πGN

3
ρ, (18.12)

where GN is Newton’s gravitational constant (see Eq. (17.67)). The i, j components give:

2ä
a

+ ȧ2

a2 + k
a2 = −8πGNρ. (18.13)

There is also an equation which follows from the conservation of the energy momentum
tensor, i.e. Tμν;ν = 0. This is

d(ρa3) = −pd(a3). (18.14)

This equation is familiar in thermodynamics as the equation of energy conservation if we
interpret a3 as the volume of a system. Suppose that we have the equation of state p = wρ,
where w is a constant. Then Eq. (18.14) says that

ρ ∝ a−3(1+w). (18.15)

Three special cases are particularly interesting. For non-relativistic matter, the pressure is
negligible compared with the energy density, so w = 0. For radiation (relativistic matter),
w = 1/3. For a Lorentz-invariant stress tensor Tμν = �gμν , we have p = −ρ so w = −1.
For these cases, it is worth remembering that

radiation, ρ ∝ a−4; matter, ρ ∝ a−3; vacuum, ρ = const. (18.16)

After taking account of the conservation of stress–energy and the Bianchi identities,
only one of the two Einstein equations we have written down is independent; and it is
conventional to take this as the Friedmann equation. This equation can be rewritten in
terms of the Hubble parameter:

k
H2a2 = 8πGNρ

3H2 − 1. (18.17)

Examining the right-hand side of this equation, it is natural to define a critical density

ρc = 3H2

8πGN
, (18.18)

and to define  as the ratio of the density and the critical density,

 = ρ

ρc
. (18.19)

So k = 1 corresponds to > 1, k = −1 to < 1 and k = 0, a flat universe, to = 1. It is
also natural to break up  into various components, such as those due to radiation, matter
or cosmological constant. As we will discuss shortly,  today is equal to unity within
experimental errors; its main components are some unknown form of matter, baryons and
dark energy (perhaps a cosmological constant):

 dm = 0.267,  b = 0.049,  de = 0.683. (18.20)
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248 Cosmology

The present error bars are of order 3% or less on these quantities (the most recent data is
from the Planck satellite). Note that the total is close to unity. The present expansion rate
is also known to be at the 2% level.

The history of the universe divides into various eras, in which different forms of energy
were dominant. The earliest era for which we have direct observational evidence is a period
lasting from a few seconds after the big bang to about 100 000 years, during which the
universe was radiation dominated. From the Friedmann equation, setting k = 0, we have
that

a(t) = a(t0)t1/2, H = 1
2t

. (18.21)

For the period of matter domination, which began about 105 years after the big bang and
lasted almost to the present:

a(t) ∝ t2/3, H = 2
3t

. (18.22)

The universe appears today to be passing from an era of matter domination to a phase
in which a (positive) cosmological constant dominates. Such a space is called a de Sitter
space, with Hubble parameter Md:

a(t) ∝ eHdt, Hd = 8πGN

3
�. (18.23)

In the radiation-dominated and matter-dominated periods, H is, as we can see from the
formulas above, roughly a measure of the age of the universe. One can define the age of
the universe more formally as:

t =
∫ a(t) da

ȧ
=

∫ da
aH

. (18.24)

The present value of the Hubble constant corresponds to t ≈ 13.8 billion years. To obtain
this correspondence between the age and the measured H0, it is important to include both
the matter and the cosmological constant parts of the energy density. Note, in particular,
that the integral is dominated by the most recent times, where H is smallest.

18.2 A history of the universe

As little as 50 years ago, most scientists would have been surprised at just how much we
would eventually know about the universe: its present composition, its age and its history,
back to times a couple of minutes after the big bang. We have direct evidence of phenomena
at much earlier times, though the full implications of this evidence are difficult to interpret.
We understand how galaxies formed and the abundance of the light elements. And we
have a treasure trove of plausible speculations, some of which we should be able to test
over time.

In this section we outline some basic features of this picture. Examining the FRW
solution of Einstein’s equations, we see that the scale factor a(t) gets monotonically smaller
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249 18.2 A history of the universe

in the past. The Hubble parameter H becomes larger. So, at some time in the past, the
universe was much smaller than it is today. More precisely, the objects we see, or their
predecessors, were far closer together. Far enough back in time, the material we currently
see was highly compressed and hot. So, at some stage, it is likely that the universe was
dominated by radiation. Recall that, during a radiation-dominated era,

a ∼ t1/2, H = 1
2t

. (18.25)

If we suppose that the universe remains radiation dominated as we look further back in
time, we face a problem. At t = 0 the metric is singular – the curvature diverges. This is a
finite time in the past, since ∫ today

0
dt
√−g00 (18.26)

converges as t → 0. This is not simply a feature of our particular assumptions about
the equation of state or the precise form of the metric but a feature of solving Einstein’s
equations; it is a consequence of the singularity theorems due to Penrose and Hawking.
The meaning of this singularity is a subject of much speculation. It might be smoothed
out by quantum effects, or it might indicate something else. For now we simply have to
accept that extremely early times are inaccessible to us. To start, we will suppose that at
time t0 the universe was extremely hot, with temperature T0, and reasonably homogeneous
and isotropic. We will then allow the universe to evolve, using Einstein’s equations, the
known particles and their interactions and the basic principles of statistical mechanics. As
we will see, we can safely take T0 to be at least as large as several MeV (corresponding to
temperatures larger than 1010 K).

To make further progress we need to think about the content of the universe and how it
evolves as the universe expands. The universe cannot be precisely in thermal equilibrium
but, for much of its history, it has been very nearly so, with matter and radiation evolving
adiabatically. To understand why the expansion is adiabatic, note first that H−1 is the time
scale for the expansion. If the universe is radiation dominated,

H ∼ T 2

Mp
, (18.27)

where Mp is the Planck mass. The rate for interactions in a gas will scale with T, multiplied
perhaps by a few powers of coupling constants. For temperatures well below the Planck
scale the reaction rates will be much more rapid than the expansion rate. So, at any given
instant, the system will nearly be in equilibrium.

It is worth reviewing a few formulas from statistical mechanics. These formulas can be
derived by elementary considerations or by using the methods of finite-temperature field
theory, as discussed in Appendix C. For a relativistic weakly coupled Bose gas,

ρ = π2

30
gT 4, p = ρ

3
, (18.28)

https://doi.org/10.1017/9781009290883.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290883.024


250 Cosmology

while, for a similar Fermi gas,

ρ = 7
8
π2

30
gT 4, p = ρ

3
. (18.29)

Here g is a degeneracy factor that counts the number of physical helicity states of each
particle type. In the non-relativistic limit, for both bosons and fermions we have

n = g
(

mT
2π

)3/2
exp

[
− (m − μ)

T

]
(18.30)

ρ = mn, p = nT � ρ. (18.31)

For temperatures well below m, the density rapidly goes to zero unless μ �= 0. Note that
μ may be non-zero when there is a (possibly approximately) conserved quantum number.
Perhaps the most notable example is the baryon number.

We should pause here and discuss an aspect of general relativity which we have not
considered up to now. A gravitational field alters the behavior of clocks. This is known as
the gravitational red shift. We can understand this in a variety of ways. First, if we have
a particle at rest in a gravitational field then the proper time is related to the coordinate
time by a factor √g00. Consider, alternatively, the equation for a massless scalar field with
momentum k in an expanding FRW universe. This is just Dμ∂μφ = 0. Using the non-
vanishing Christoffel symbols, with φ(�x, t) = ei�k·�xφ(t),

φ̈(k)+ 3Hφ̇(k)+ k2

a2(t)
φ = 0. (18.32)

As a result of the last term, the wavelength effectively increases as a(t). A photon red-shifts
in precisely the same way.

The implications of this for the statistical mechanical distribution functions are inter-
esting. Consider, first, a massless particle such as the photon. For such a particle, the
distribution is ∫ d3k

(2π)3
1

ek/T − 1
. (18.33)

The effect of the red shift is to maintain this form of distribution but to change the
temperature, T(t) ∝ 1/a(t). So even if the particles are not in equilibrium, they maintain
an equilibrium distribution appropriate to the red-shifted temperature. This is not the case
for massive particles.

Let us imagine, then, starting the clock when the universe is at temperatures well above
the scale of QCD but well below the scale of weak interactions, say at 10 GeV. In this
regime the density of Ws and Zs is negligible, but the quarks and gluons behave as nearly
free particles. So we can take an inventory of the bosons and fermions that are light
compared with T. The bosons include the photon and the gluons; the fermions include
all the quarks and leptons except the top quark. So the effective g, which we might call
g10, is approximately 98. This means, for example, that

ρ ≈ g10π
2

30
T 4 (18.34)
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251 18.2 A history of the universe

and the Hubble constant is related to the temperature through

H =
(

8π
3

GN
π2

30
g10T 4

)1/2

, (18.35)

where GN is Newton’s gravitational constant (see Eq. (17.67)). This allows us to write a
precise formula for the temperature as a function of time:

T =
(

16π
3

GN
π2

30
g10

)−1/4 (1
t

)1/2
. (18.36)

As the universe cools, QCD changes from a phase of nearly free quarks and gluons to a
hadronic phase. At temperatures below mπ, the only light species are the electron and the
neutrinos. By this time, the antineutrons have annihilated with neutrons and the antiprotons
with protons, leaving a small net baryon number, the total number of neutrons and protons.
There is, at this time, of order one baryon per billion photons. We will have much more to
say about this slight excess later.

At this stage, interactions involving neutrinos maintain an equilibrium distribution of
protons and neutrons. We can give a crude, but reasonably accurate, estimate of the
temperature at which neutrino interactions drop out of equilibrium by asking when the
interaction rate becomes comparable to the expansion rate. The cross section for neutrino–
proton interactions is

σ(ν + p → n + e) ≈ G2
FE2, (18.37)

where GF is the Fermi constant (see Eq. (3.3)), and the number density of neutrinos is

nν ≈ π2

30
gTT3. (18.38)

Combining this with our formula Eq. (18.35) for the Hubble constant as a function of T
gives, for the decoupling temperature Tν ,

T3
ν ≈ G−2

F M−1
p (18.39)

or

Tν ≈ 2 MeV. (18.40)

This corresponds to a time of order 100 s after the big bang. At this point neutron decays
are not compensated by the inverse reaction, but many neutrons will pair with protons to
form stable light elements such as D and He. At about this time the abundances of the
various light elements are fixed.

There is a long history of careful, detailed, calculations of the abundances of the light
elements (H, He, D, Li, . . .) which result from this period of decoupling. The abundances
turn out to be a sensitive function of the ratio of baryon and photons, nB/nγ . Astronomers
have also made extensive efforts to measure this ratio. A comparison of observations and
measurements gives, for the baryon to photon ratio,

nB

nγ
= 6.1+0.3

−0.2 × 10−10. (18.41)

We will see that this result receives strong corroboration from other sources.
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252 Cosmology

The universe continues to cool in this radiation-dominated phase for a long time. At
t ≈ 105 years the temperature drops to about 1 eV. At this time electrons and nuclei can
combine to form neutral atoms. As the density of ionized material drops, the universe
becomes essentially transparent to photons. This is referred to as recombination. The
photons now stream freely. As the universe continues to cool the photons red-shift,
maintaining a Planck spectrum. Today, these photons behave as if they had a temperature
T ≈ 3 K. They constitute the cosmic microwave background radiation (CMBR). This
radiation was first observed in 1963 by Penzias and Wilson and has since been extensively
studied. It is very precisely a black body, with characteristic temperature 2.7 K. We will
discuss other features of this radiation shortly.

It is interesting that, given the measured value of the matter density, matter and
radiation have comparable energy densities at the recombination stage. At later times
matter dominates the energy density, and this continues to be the case to the present time.

In our brief history, another important event occurs at t � 109 years. If we suppose
that initially there were small inhomogeneities, these remain essentially frozen, as we will
explain later, until the time of matter–radiation equality. They then grow with time. From
observations of the CMBR we know that these inhomogeneities were at the level of one
part in 105. At about 1 billion years after the big bang, these then grow enough to be non-
linear, and their subsequent evolution is believed to give rise to the structure – galaxies,
clusters of galaxies, and so on – that we see around us.

One surprising feature of the universe is that most of the energy density is in two forms
which we cannot see directly. One is referred to as the dark matter. The possibility of
dark matter was first noted by astronomers in the 1930s, from observations of the rotation
curves of galaxies. Simply using Newton’s laws one can calculate the expected rotational
velocities and one finds that these do not agree with the observed distribution of stars and
dust in the galaxies. This is true for structures on many scales, not only galaxies but clusters
and larger structures. Other features of the evolution of the universe are not in agreement
with observation unless most of the energy density is in some other form. From a variety of
measurements,  m, the fraction of the critical energy density (see Eq. (18.18)) in matter,
is known to be about 0.3. Nucleosynthesis and the CMBR give a much smaller fraction
in baryons,  b ≈ 0.05. In support of this picture, direct searches for hidden baryons give
results that are compatible with the smaller number; they have failed to find anything like
the required density to give  m.

Finally, it appears that we are now entering a new era in the history of the universe.
For the last 14 billion years, the energy density has been dominated by non-relativistic
matter. But, at the present time, there is almost twice as much energy in some new form,
with p < 0, referred to as dark energy. The dark energy is quite possibly a cosmological
constant, �. Current measurements are compatible with w = −1 (p = −ρ).

The picture we have described has extensive observational support. We have indicated
some of this: the light element abundances and the observation of the CMBR. The
agreement of these two quite different sets of observations for the baryon to photon ratio
is extremely impressive. Observations of supernovae, the age of the universe and features
of structure at different scales all support the existence of a cosmological constant (dark
energy) constituting about 70% of the total energy.
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253 Exercises

This is not a book on cosmology, and the overview we have presented is admittedly
sketchy; there are many aspects of this picture we have not discussed. Fortunately there
are many excellent books on the subject, some of which are mentioned in the suggested
reading.

Suggested reading

There are a number of good books and lectures on the aspects of cosmology discussed
here. Apart from the text of Weinberg (1972), mentioned earlier, these include the texts of
Kolb and Turner (1990), Dodelson (2004) and Weinberg (2008).

Exercises

(1) Compute the Christoffel symbols and the curvature for the FRW metric. Verify the
Friedmann equations.

(2) Verify Eq. (18.32).
(3) Consider the case of de Sitter space, Tμν = −�gμν with positive �. Show that the

space expands exponentially rapidly. Compute the horizon, i.e. the largest distance
from which light can travel to an observer.
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