# SOME APPLICATIONS OF ARTAMONOV-QUILLEN-SUSLIN THEOREMS TO METABELIAN INNER RANK AND PRIMITIVITY 

C. K. GUPTA, N. D. GUPTA AND G. A. NOSKOV


#### Abstract

For any variety $\mathcal{V}$ of groups, the relative inner rank of a given group $G$ is defined to be the maximal rank of the $\mathcal{V}$-free homomorphic images of $G$. In this paper we explore metabelian inner ranks of certain one-relator groups. Using the well-known Quillen-Suslin Theorem, in conjunction with an elegant result of Artamonov, we prove that if $r$ is any " $\Delta$-modular" element of the free metabelian group $M_{n}$ of rank $n \geq 2$ then the metabelian inner rank of the quotient group $M_{n} /\langle r\rangle$ is at most [ $n / 2$ ]. As a corollary we deduce that the metabelian inner rank of the (orientable) surface group of genus $k$ is precisely $k$. This extends the corresponding result of Zieschang about the absolute inner ranks of these surface groups. In continuation of some further applications of the Quillen-Suslin Theorem we give necessary and sufficient conditions for a system $g=\left(g_{1}, \ldots, g_{k}\right)$ of $k$ elements of a free metabelian group $M_{n}, k \leq n$, to be a part of a basis of $M_{n}$. This extends results of Bachmuth and Timoshenko who considered the cases $k=n$ and $k \leq n-3$ respectively.


1. Introduction. The inner rank $\operatorname{Ir}(G)$ of an aribtrary group $G$ is defined to be the maximal rank of the free homomorphic images of $G$. This concept is dual to the outer $\operatorname{rank} d(G)$ of $G$ which is the minimal rank of free groups which have $G$ as their homomorphic image, and one has the inequality $\operatorname{Ir}(G) \leq d(G)$ (see, Lyndon and Schupp [11, Chapter I]). Computation of the inner rank of a given group is, in general, a very difficult problem. Among the most general results is the following theorem due to Jaco [8]: $\operatorname{Ir}\left(G_{1} * G_{2}\right)=\operatorname{Ir}\left(G_{1}\right)+\operatorname{Ir}\left(G_{2}\right)$. Restricting to the study of one-relator groups, some of what is known about the inner rank of $G=\left\langle x_{1}, \ldots, x_{n} ; r\right\rangle$ may be summarized as follows (see [11] for proofs): (i) if $r=\left[x_{1}, x_{2}\right] \cdots\left[x_{2 k-1}, x_{2 k}\right], n=2 k$, then $\operatorname{Ir}(G)=k$ (Zieschang [23]); (ii) if $r=x_{1}^{N} \cdots x_{n}^{N}, N \geq 2$, then $\operatorname{Ir}(G)=[n / 2]$, the greatest integer value of $n / 2$ (Lyndon [10], see Zieschang [23] for the case $N=2$ ); (iii) $\operatorname{Ir}(G)=n-1$ if and only if $r$ lies in the normal closure of a primitive element of $F=\left\langle x_{1}, \ldots x_{n}\right\rangle$ (Steinberg [16], [17]); (iv) if $r=s\left(x_{1}, \ldots, x_{n-1}\right) x_{n}^{k}, k \geq 2$, is such that $s$ is neither a proper power nor a primitive in $F=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ then $\operatorname{Ir}(G)<n-1$ (Baumslag and Steinberg [4]); (v) if $r=r\left(x_{1}, \ldots, x_{n}\right)=\Pi_{i<j}\left[x_{i}^{a_{j j}}, x_{j}^{a_{i j}}\right]^{b_{i j}}$, with $a_{i j}$ all distinct 2-powers and $a_{i j} b_{i j}=N$, for some sufficiently large 2-power $N$, then $\operatorname{Ir}(G)=1$ (Stallings [15]). Examples of $n$-generator one-relator groups with the prescribed inner rank $k=1, \ldots, n-1$, are easily found. For instance the group $G=\left\langle x_{1}, \ldots, x_{n} ; r\right\rangle$ with the Stallings'relator

[^0]$r=r\left(x_{1}, \ldots, x_{n-k+1}\right)$ on the first $n-k+1$ generators, is the free product $\left\langle x_{1}, \ldots, x_{n-k+1} ; r\right\rangle *$ $\left\langle x_{n-k+2}, \ldots, x_{n}\right\rangle$ and hence, using results of Stallings and Jaco above, $\operatorname{Ir}(G)=1+(k-1)=$ $k$.

If a group $G$ maps onto $F_{n}$ then it maps onto $F_{n} / V$ for any fully invariant subgroup $V$ of $F_{n}$. Thus, for any group $G$ and any variety $\mathcal{V}$ of groups, we can define its relative inner rank $\operatorname{Ir}_{\mathcal{V}}(G)$ to be the maximal rank of the $\mathcal{V}$-free homomorphic images of $G$. It follows that $\operatorname{Ir}(G) \leq \operatorname{Ir}_{\mathcal{V}}(G)$ for any variety $\mathcal{V}$. Using the well-known Quillen-Suslin Theorem ([13], [18]) in conjunction with a result of Artamonov ([1], [2]), in this paper we explore metabelian inner ranks of certain one-relator groups. Specifically, we prove that if $r$ is any " $\Delta$-modular" element of the free metabelian group $M_{n}$, then the metabelian inner rank of the quotient group $M_{n} /\langle r\rangle$ is at most [ $n / 2$ ] (Theorem 4.2). We deduce that the metabelian inner rank of the (orientable) surface group of genus $n$ is precisely $n$ (Corollary 4.3). The corresponding result of Zieschang ((i) above) about the absolute inner ranks of these surface groups follows as a consequence (Corollary 4.4).

In continuation of some further applications of the Quillen-Suslin Theorem, in Section 5 we give necessary and sufficient conditions for a system $\mathbf{g}=\left(g_{1}, \ldots, g_{k}\right)$ of $k$ elements of a free metabelian group $M_{n}, k \leq n$, to be a part of a basis of $M_{n}$ (Theorem 5.3). This extends results of Bachmuth [3] and Timoshenko [22] for the cases $k=n$ and $k \leq n-3$ respectively (see also Roman'kov [14]).
2. Some results of Suslin and Artamonov. Let $\Lambda$ be a commutative ring with 1. A vector $\nu=\left(v_{1}, \ldots, v_{m}\right) \in \Lambda^{m}$ is said to be unimodular $\operatorname{if} \operatorname{id}(\nu)=\operatorname{ideal}\left\{v_{1}, \ldots, v_{m}\right\}=\Lambda$. A well-known result of Suslin is the following:

Theorem 2.1 (SUSLIN [18]). If $\Lambda=\Lambda_{n}=Z\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right], n \geq 1$, is the Laurent polynomial ring then $\mathrm{GL}_{m}(\Lambda), m \geq 1$, acts transitively on the set of all unimodular vectors $\left(v_{1}, \ldots, v_{m}\right) \in \Lambda^{m}$. Equivalently, when $\Lambda$ is a Laurent polynomial ring then every vector $\nu=\left(v_{1}, \ldots, v_{m}\right)$ can be transformed to the base vector $e_{1}=(1,0, \ldots, 0)$ upon multiplication by a suitable matrix from $\mathrm{GL}_{m}(\Lambda)$.

Let $\nu \in \Lambda^{m}$ be a vector. Following Artamonov [1] we call $\nu \Delta$-modular if $\operatorname{id}(\nu)=$ $\Delta=\Delta_{n}=\operatorname{id}\left\{\left(x_{1}-1\right), \ldots,\left(x_{n}-1\right)\right\}$, the fundamental ideal of the Laurent polynomial ring $\Lambda$. The standard $\Delta$-modular vector is, of course, $X=\left(x_{1}-1, \ldots, x_{n}-1,0, \ldots, 0\right)$. Using Suslin's theorem, Artamanov has proved the following result (see also [6], [9]):

Theorem 2.2 (ARTAMANOV [1]). The group $\mathrm{GL}_{m}\left(\Lambda_{n}\right)$ acts transitively on all $\Delta$ modular vectors $\left(v_{1}, \ldots, v_{m}\right) \in \Lambda_{n}^{m}$.

Let $k \in\{1, \ldots, n\}$ be arbitrary but fixed and denote by $I_{k}$ the ideal generated by $\left\{x_{k+1}-1, \ldots, x_{n}-1\right\}$. Let $G=\operatorname{GL}_{m}\left(\Lambda_{n}, I_{k}\right), m \geq n$, be the congruence subgroup of $\mathrm{GL}_{m}(\Lambda)$ with respect to the ideal $I_{k}$ and the subgroup

$$
H=\left[\begin{array}{cc}
\mathrm{GL}_{k}(\Lambda) & * \\
0 & \mathrm{GL}_{m-k}(\Lambda)
\end{array}\right] .
$$

Then the above result of Artamonov is the case $k=n$ of the following extended version.

Theorem 2.3 (ARTAMONOV [2]). The congruence subgroup $G=\mathrm{GL}_{m}\left(\Lambda_{n}, I_{k}\right)$ acts transitively on the set of all $\Delta$-modular vectors $\nu=\left(v_{1}, \ldots, v_{m}, 0, \ldots, 0\right)$, such that $\nu \equiv X$ $\left(\bmod I_{k}\right)$ where $X=\left(x_{1}-1, \ldots, x_{n}-1,0, \ldots, 0\right)$ is the standard $\Delta$-modular vector.

Viewing $\Lambda_{n}^{n}$ as the free $\Lambda$-module with an arbitrary but fixed basis $\left\{e_{1}, \ldots, e_{n}\right\}$, let $l: \Lambda_{n}^{n} \rightarrow \Delta_{n}$ be the $\Lambda$-linear functional defined by: $l\left(e_{i}\right)=x_{i}-1$. Then, by the wellknown Magnus embedding (see, for instance, [7] Chapter I), the free metabelian group $M_{n}$ of rank $n$ is freely generated by the matrices

$$
X_{i}=\left[\begin{array}{cc}
x_{i} & e_{i}  \tag{1}\\
0 & 1
\end{array}\right], \quad 1 \leq i \leq n .
$$

Moreover, the matrix

$$
X=\left[\begin{array}{ll}
x & \nu \\
0 & 1
\end{array}\right], \quad \nu \in \Lambda^{n},
$$

belongs to $M_{n}$ if and only if $x$ belongs to $U=U_{n}$, the multiplicative subgroup in $\Lambda$ generated by $x_{i}, 1 \leq i \leq n$, and $\nu$ satisfies the fundamental relation: $l(\nu)=x-1$.

Now let $\varphi: M_{n} \rightarrow M_{k}, k \leq n$, be a homomorphism between free metabelian groups $M_{n}$ and $M_{k}$ with basis $\left\{X_{1}, \ldots, X_{n}\right\}$ and $\left\{X_{1}, \ldots, X_{k}\right\}$ respectively. Then it is easy to see (see [3], [1], [2]) that $\varphi$ defines a ring homomorphism " $\lambda \rightarrow \bar{\lambda}$ " between $\Lambda_{n}$ and $\Lambda_{k}$ which maps $U_{n}$ to $U_{k}$, and also defines a map $\tilde{\varphi}: \Lambda_{n}^{n} \rightarrow \Lambda_{k}^{n}$, such that

$$
\varphi\left[\begin{array}{cc}
x & \nu  \tag{2}\\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\bar{x} & \nu \tilde{\varphi} \\
0 & 1
\end{array}\right] .
$$

As an important example we consider the standard epimorphism $\pi: M_{n} \rightarrow M_{k}\left(\leq M_{n}\right)$, which fixes $X_{1}, \ldots, X_{k}$ and maps other generators to 1 . Then $\tilde{\pi}$ acts as follows:

$$
\nu \tilde{\pi}=\left(v_{1}, \ldots, v_{n}\right) \tilde{\pi}=\left(\bar{v}_{1}, \ldots, \bar{v}_{k}\right), \quad \nu \in \Lambda_{n}^{n} .
$$

An easy computation based on matrix multiplication (see [2]) shows that $\tilde{\varphi}$ defined above is semi-linear:

$$
\begin{equation*}
\left(\nu_{1}+\nu_{2}\right) \tilde{\varphi}=\left(\nu_{1}\right) \tilde{\varphi}+\left(\nu_{2}\right) \tilde{\varphi} ; \quad(\lambda \nu) \tilde{\varphi}=\bar{\lambda}(\nu \tilde{\varphi}) \tag{3}
\end{equation*}
$$

for any $\nu_{1}, \nu_{2}, \nu \in \Lambda_{n}^{n}$ and any $\lambda \in \Lambda_{n}$. From formula (2) we get

$$
\begin{equation*}
l(\nu \tilde{\varphi})=\bar{x}-1=(\overline{l(v)}) \tag{4}
\end{equation*}
$$

This relation between the ring homomorphism "-": $\Lambda_{n} \rightarrow \Lambda_{k}$ and the semi-linear homomorphism $\tilde{\varphi}: \Lambda_{n}^{n} \rightarrow \Lambda_{k}^{n}$ suffices to guarantee that the pair $(-, \tilde{\varphi})$ determines the group homomorphism $\varphi: M_{n} \rightarrow M_{k}$.

When $n=k, \varphi: M_{n} \rightarrow M_{k}$ is an automorphism if and only if "一" is an automorphism of $\Lambda=Z\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, and $\tilde{\varphi}$ is a semi-linear automorphism of $\Lambda^{n}$, such that

$$
\varphi\left[\begin{array}{ll}
x & e \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\bar{x} & e \tilde{\varphi} \\
0 & 1
\end{array}\right] .
$$

It is clear that "一" preserves the multiplicative subgroup $U$ of $\Lambda$. Now $U-1 \subseteq \Delta$ implies that $\bar{\Delta} \subseteq \Delta$ and from the invertibility of "一" we deduce $\bar{\Delta}=\Delta$. If

$$
r=\left[\begin{array}{cc}
1 & \Sigma r_{i} e_{i} \\
0 & 1
\end{array}\right] \in M_{n}
$$

is such that $\operatorname{id}\left\{r_{1}, \ldots r_{n}\right\}=\Delta$ then we say that $r$ is " $\Delta$-modular". If $r$ is a $\Delta$-modular element of $M_{n}$, then the co-ordinate action of $\tilde{\varphi}$ is given by:

$$
\left(r_{1}, \ldots, r_{n}\right) \tilde{\varphi}=\left(\bar{r}_{1}, \ldots, \bar{r}_{n}\right) A
$$

where $A$ is the matrix of $\tilde{\varphi}$. By Theorem 2.2 the vector $\left(\bar{r}_{1}, \ldots, \bar{r}_{n}\right)$ is $\Delta$-modular, so the co-ordinates of $\nu=\left(\bar{r}_{1}, \ldots, \bar{r}_{n}\right) A$ lie in $\Delta$. But $\nu A^{-1}=\left(\bar{r}_{1}, \ldots, \bar{r}_{n}\right)$, so

$$
\Delta=\bar{\Delta}=\operatorname{id}\left\{\bar{r}_{1}, \ldots, \bar{r}_{n}\right\} \subseteq \operatorname{id}\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \Delta
$$

which means that $\nu$ is $\Delta$-modular. We have thus proved the following:
LEMMA 2.4. If $r \in M_{n}$ is $\Delta$-modular then $r \alpha$ is $\Delta$-modular for all $\alpha \in \operatorname{Aut}\left(M_{n}\right)$.
3. Epimorphisms of free metabelian groups. Let $M_{n}$ and $M_{k}, k \leq n$, be free metabelian groups with basis $\left\{X_{1}, \ldots, X_{n}\right\}$ and $\left\{X_{1}, \ldots, X_{k}\right\}$ respectively. We include a proof of the following variation of Artamonov's theorem which gives a description of an arbitrary epimorphism $\varphi: M_{n} \rightarrow M_{k}, k \leq n$, in terms of the standard epimorphism and the automorphisms of $M_{n}$ and $M_{k}$.

Theorem 3.1 (CF. ARTAMONOV [2]). Let $\varphi: M_{n} \rightarrow M_{k}, k \leq n$, be an arbitrary epimorphism. Then there exist automorphisms $\alpha \in \operatorname{Aut}\left(M_{n}\right), \beta \in \operatorname{Aut}\left(M_{k}\right)$ such that $\alpha \varphi \beta$ is the standard epimorphism $\pi: M_{n} \rightarrow M_{k}$.

Proof. Working modulo the commutator subgroups and using automrophisms of $M_{n}$ induced by the absolutely free group $F_{n}$, if necessary, we may assume that

$$
\varphi\left[\begin{array}{cc}
x & \nu \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\bar{x} & \nu \tilde{\varphi} \\
0 & 1
\end{array}\right],
$$

where $\bar{x}_{1}=x_{1}, \ldots, \bar{x}_{k}=x_{k}, \bar{x}_{k+1}=\cdots=\bar{x}_{n}=1$. Expressing $\nu$ as an element of the module $\Lambda_{n}^{n}$ with basis $\left\{e_{1}, \ldots e_{n}\right\}$, we see that $\nu \tilde{\varphi}=\left(\bar{v}_{1}, \ldots, \bar{v}_{n}\right) A$ where $A$ is an $n \times k$ matrix over the Laurent polynomial ring $\Lambda_{k}=Z\left[x_{1}^{ \pm 1}, \ldots, x_{k}^{ \pm 1}\right]$. Thus $\tilde{\varphi}$ induces a $\Lambda_{k^{-}}$ linear epimorphism $\tilde{\varphi}: \Lambda_{k}^{n} \rightarrow \Lambda_{k}^{k}$. Evidently, $\operatorname{ker} \tilde{\varphi}$ is a direct summand of $\Lambda_{k}^{n}$ and so is projective. Thus, by the well-known Quillen-Suslin-Swan Theorem ([13], [19], [20]), it follows that $\operatorname{ker} \tilde{\varphi}$ is free. Thus there exists a basis $\left\{\nu_{1}, \ldots, \nu_{n}\right\}$ of $\Lambda_{k}^{n}$ such that
(i) $\left\{\nu_{1} \tilde{\varphi}, \ldots, \nu_{k} \tilde{\varphi}\right\}$ constitutes a basis for $\Lambda_{k}^{k}$, and
(ii) $\operatorname{ker} \tilde{\varphi}=\Lambda_{k} \nu_{k+1}+\cdots+\Lambda_{k} \nu_{n}$.

In particular, the vector $\left(l\left(\nu_{1} \tilde{\varphi}\right), \ldots, l\left(\nu_{k} \tilde{\varphi}\right)\right)$ is $\Lambda_{k}$-modular which, by Artamonov's Theorem 2.2, can be transformed to the standard vector $\left(x_{1}-1, \ldots, x_{k}-1\right)$ by an element of $\mathrm{GL}_{k}\left(\Lambda_{k}\right)$. After the corresponding transformation of the basis $\left\{\nu_{i}: 1 \leq i \leq n\right\}$ we may assume that $l\left(\nu_{i} \tilde{\varphi}\right)=x_{i}-1$ for $1 \leq i \leq k$. Using (4) this gives, $l\left(\nu_{i} \tilde{\varphi}\right)=x_{i}-1=\left(\overline{l\left(v_{i}\right)}\right)$
for $1 \leq i \leq k$. Clearly, ker $"-"=\operatorname{id}\left\{x_{k+1}-1, \ldots, x_{n}-1\right\}=I_{k}=I$. Working modulo $I^{2}$, and applying to $\left\{\nu_{1}, \ldots, \nu_{n}\right\}$ elementary transformations we can assume that $l\left(\nu_{i}\right) \equiv x_{i}-1\left(\bmod I^{2}\right)$ for all $1 \leq i \leq n$. Now, by Artamonov's Theorem 2.3, there exists a matrix $C \in H$ (see Section 2 ), such that

$$
\left(l\left(\nu_{1}\right), \ldots, l\left(\nu_{n}\right)\right) C=X=\left(x_{1}-1, \ldots, x_{n}-1\right),
$$

and for a new basis $\left\{w_{1}, \ldots, w_{n} \mid w_{i}=\Lambda \nu_{i}\right\}$, we have $l\left(w_{i}\right)=x_{i}-1$. Furthermore, $w_{k+1}, \ldots, w_{n}$ generate $\operatorname{ker} \tilde{\varphi}$ modulo $I^{2}$, and $w_{1} \tilde{\varphi}, \ldots, w_{k} \tilde{\varphi}$ form a basis for $\Lambda_{k}^{k}$. Thus the matrices $\left[\begin{array}{cc}x_{i} & w_{i} \\ 0 & 1\end{array}\right], i=1, \ldots, n$ form a basis for $M_{n}$. The first $k$ of them map under $\varphi$ to a basis for $M_{k}$ and the remainder map to 1 . This completes the proof of the theorem.

REMARKS. Let $F_{n, \mathcal{V}}=\left\langle x_{1}, \ldots, x_{n} ; \mathcal{V}\right\rangle$ be the free group of rank $n$ of an arbitrary variety $\mathcal{V}$, and let $\varphi: F_{n, \mathcal{V}} \rightarrow F_{k, \mathcal{V}}, k \leq n$, be an arbitrary epimorphism. A natural and important question of independent interest is to ask: do there exist automorphisms $\alpha \in$ $\operatorname{Aut}\left(F_{n, \mathcal{V}}\right), \beta \in \operatorname{Aut}\left(F_{k, \mathcal{V}}\right)$ such that $\alpha \varphi \beta$ is the standard epimorphism $\pi: F_{n, \mathcal{V}} \rightarrow F_{k, \mathcal{V}}$ $\left(x_{i} \rightarrow x_{i}, 1 \leq i \leq k ; x_{i} \rightarrow 1, k+1 \leq i \leq n\right)$ ? It is easily seen to be true when $\mathcal{V}$ is assumed to be a nilpotent variety. By Theorem 3.1, it is true when $\mathcal{V}$ is the variety of metabelian groups. A combinatorial proof of this result will be much desired.
4. Metabelian inner ranks of certain one-relator groups. In this section we prove that if the relator $r$ of an $n$-generator one-relator metabelian group is $\Delta$-modular then its metabelian inner rank is at most $[n / 2]$. We shall need:

LEMMA 4.1. Let $\pi: M_{n} \rightarrow M_{k}, k \leq n$, be the standard epimorphism of free metabelian groups of matrices (given by the Magnus embedding (1)) sending $X_{k+1}, \ldots, X_{n}$ to 1 and fixing $X_{1}, \ldots, X_{k}$. Let $r$ be any $\Delta$-modular element of $M_{n}$. If $2 k>n$ then $r \pi \neq 1$.

Proof. We may identify the matrix

$$
r=\left[\begin{array}{cc}
1 & \Sigma r_{i} e_{i} \\
0 & 1
\end{array}\right] \in M_{n}
$$

with its 12-entry $r_{1} e_{1}+\cdots+r_{n} e_{n}$. Thus, regarding $r$ as the vector $\left(r_{1}, \ldots, r_{n}\right)$, it suffices to prove that $r \pi \neq 0$. As a homomorphism of the matrix groups, our standard epimorphism $\pi$ is induced by the standard ring epimorphism:

$$
Z\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}, e_{1}, \ldots, e_{n}\right] \rightarrow Z\left[x_{1}^{ \pm 1}, \ldots, x_{k}^{ \pm 1}, e_{1}, \ldots, e_{k}\right]
$$

which sends $x_{k+1}-1, \ldots, x_{n}-1, e_{k+1}, \ldots, e_{n}$ to 0 and fixes the other variables. So, $\pi$ acts on $r=\left(r_{1}, \ldots, r_{n}\right)$ as follows

$$
r \pi=\left(\bar{r}_{1}, \ldots, \bar{r}_{k}, 0, \ldots, 0\right)
$$

where $\bar{r}_{i}$ is the image of $r_{i} \in Z\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ in $Z\left[x_{1}^{ \pm 1}, \ldots, x_{k}^{ \pm 1}\right]$ under the standard ring epimorphism.

Assume to the contrary that $r \pi=0$. Then we have $\bar{r}_{1}=\cdots=\bar{r}_{k}=0$. Since $r$ is $\Delta$-modular, it follows that $\bar{r}=\left(0, \ldots, 0, \bar{r}_{k+1}, \ldots, \bar{r}_{n}\right)$ is $\Delta_{k}$-modular, where $\Delta_{k}$ is the fundamental ideal of $Z\left[x_{1}^{ \pm 1}, \ldots, x_{k}^{ \pm 1}\right]$. Consequently, $\bar{r}_{k+1}, \ldots, \bar{r}_{n}$ generate $\Delta_{k}$. Since $\Delta_{k}$ can not be generated by fewer than $k$ elements, we must have $n-k \geq k$, contrary to the choice of $k$.

We can now prove our principal result of this section.
Theorem 4.2. If r is a $\Delta$-modular element of the free metabelian group $M_{n}$ then the metabelian inner rank $\operatorname{Ir}\left(M_{n} /\langle r\rangle\right) \leq[n / 2]$.

Proof. Assume to the contrary that there exists an epimorphism $\varphi: M_{n} /\langle r\rangle \rightarrow M_{k}$, with $k>n / 2$. Alternatively, we can consider $\varphi$ as an epimorphism $\varphi: M_{n} \rightarrow M_{k}$, which sends $r$ to 1. By Theorem 3.1, we have automorphisms $\alpha \in \operatorname{Aut}\left(M_{n}\right)$ and $\beta \in \operatorname{Aut}\left(M_{k}\right)$ such that $\alpha \varphi \beta$ is the standard epimorphism $\pi: M_{n} \rightarrow M_{k}$. Thus $1=r \varphi=r \alpha^{-1} \pi \beta^{-1}$, which gives $r \alpha^{-1} \pi=1$. On the other hand $r \alpha^{-1}$ is $\Delta$-modular by Lemma 2.4 and consequently, by Lemma $4.1, r \alpha^{-1} \pi \neq 1$ which gives the desired contradiction.

Let $M_{2 n}$ be the free metabelian group of rank $2 n$ generated by the Magnus matrices

$$
X_{i}=\left[\begin{array}{cc}
x_{i} & u_{i} \\
0 & 1
\end{array}\right], \quad Y_{i}=\left[\begin{array}{cc}
y_{i} & v_{i} \\
0 & 1
\end{array}\right], \quad 1 \leq i \leq n .
$$

The matrix image of the element $r=\left[X_{1}, Y_{1}\right] \cdots\left[X_{n}, Y_{n}\right]$ in $M_{2 n}$ is of the form:

$$
\left[\begin{array}{cc}
1 & \Sigma_{i}\left(y_{i}-1\right) u_{i}-\left(x_{i}-1\right) v_{i} \\
0 & 1
\end{array}\right] .
$$

There exists an obvious epimorphism of $M_{2 n} /\langle r\rangle$ to $M_{n}: X_{i} \rightarrow X_{i}, Y_{i} \rightarrow 1$. We assert that $M_{2 n} /\langle r\rangle$ can not be mapped epimorphically on to $M_{n+1}$. To see this we simply observe that as a vector, $r=\left(y_{1}-1, \ldots, y_{n}-1,1-x_{1}, \ldots, 1-x_{n}\right)$ is $\Delta$-modular. By Lemmas 2.4 and 4.1, we have $r \alpha \pi \neq 1$ for any $\alpha \in \operatorname{Aut}\left(M_{2 n}\right)\left(\pi: M_{2 n} \rightarrow M_{n+1}\right.$ is standard). Thus, by Theorem 3.1, $r \varphi \neq 1$ for any epimorphism $\varphi: M_{2 n} \rightarrow M_{n+1}$. We thus have the following metabelian analogue of Zieschang's result:

Corollary 4.3. Let $G_{n}=\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} ;\left[x_{1}, y_{1}\right] \cdots\left[x_{n}, y_{n}\right]\right\rangle$ be the surface group of genus $n$. The metabelian inner rank of $G$ is equal to $n$.

Now, let $F_{2 n}=\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\rangle$ be free of rank $2 n$ and consider the element $r=\left[x_{1}, y_{1}\right] \cdots\left[x_{n}, y_{n}\right]$ in $F_{2 n}$. Then, by Corollary 4.3, $\operatorname{Ir}\left(F_{2 n} /\langle r\rangle\right) \leq \operatorname{Ir}_{M}\left(G_{n}\right)=n$. Passing on to metabelian groups we see, as above, that $r \varphi \neq 1$ for any epimorphism $\varphi: M_{2 n} \rightarrow M_{n+1}$. We thus have the following:

Corollary 4.4 (Zieschang [23]). The inner rank $\operatorname{Ir}\left(G_{n}\right)$ of the orientable surface group $G_{n}=\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} ;\left[x_{1}, y_{1}\right] \cdots\left[x_{n}, y_{n}\right]\right\rangle$ is precisely $n$.

REmarks. We note that for the $\Delta$-modularity of $r \in M_{n}$, it is necessary that $r$ lies in the commutator subgroup $M_{n}^{\prime}$. Further, viewing $r$ as the vector $\left(r_{1}, \ldots, r_{n}\right)$ over the integral group ring $Z M^{a b}\left(M^{a b}=M_{n} / M_{n}^{\prime}\right)$, it is clear that $r=\left(r_{1}, \ldots, r_{n}\right)=$ $\left(\partial r / \partial x_{1}, \ldots, \partial r / \partial x_{n}\right)$, the Fox derivatives of the co-ordinates of $r$. Then the $\Delta$-modularity
of $r$ implies that $\Delta=\operatorname{id}\left\{\partial r / \partial x_{i} ; i=1, \ldots, n\right\}$. We have just seen that $r=$ $\left[x_{1}, y_{1}\right] \cdots\left[x_{n}, y_{n}\right]$ is a $\Delta$-modular element of $M_{2 n}$ and that $r \alpha$ is also $\Delta$-modular for every automorphism $\alpha \in \operatorname{Aut}\left(M_{2 n}\right)$. It seems very likely that the set $\left\{r \alpha ; r=\left[x_{1}, y_{1}\right] \cdots\left[x_{n}, y_{n}\right]\right.$, $\left.\alpha \in \operatorname{Aut}\left(M_{2 n}\right)\right\}$ characterizes all the $\Delta$-modular elements of $M_{2 n}$. Also, it would be of interest to know whether or not the other metabelian analogues of the results about the inner ranks mentioned in the Introduction are also valid. In particular, we ask the analogue of Jaco's Theorem: is the metabelian inner rank of the free product of two metabelian groups additive?
5. Bases in free metabelian groups. Let $M_{n}$ be the free metabelian group freely generated by the Magnus matrices $X_{1}, \ldots, X_{n}$. We shall need the following variation of the well-known criterion due to Bachmuth [3] for a system of $n$ elements of $M_{n}$ to form a basis of $M_{n}$.

Proposition 5.1. The matrices $\left[\begin{array}{cc}y_{i} & \nu_{i} \\ 0 & 1\end{array}\right], 1 \leq i \leq n$, form a basis of $M_{n}$ if and only if $y_{i}, 1 \leq i \leq n$, constitute a basis of the free abelian group generated by $x_{i}, 1 \leq$ $i \leq n$, and the vectors $\nu_{i}, 1 \leq i \leq n$, generate the Laurent polynomial ring $\Lambda=$ $Z\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$.

Proof. Without loss of generality, we can assume that $y_{i}=x_{i}, 1 \leq i \leq n$, so that the matrices $\left[\begin{array}{cc}x_{i} & \nu_{i} \\ 0 & 1\end{array}\right], 1 \leq i \leq n$, generate a free metabelian group $\tilde{M}_{n} \subseteq M_{n}$. We need to prove the inclusion $M_{n} \subseteq \tilde{M}_{n}$. Let $\tilde{l}$ be a $\Lambda$-linear functional on $\sum_{1 \leq i \leq n} \Lambda \nu_{i}$ defined by $\tilde{l}\left(\nu_{i}\right)=x_{i}-1, i=1, \ldots, n$. To prove that $\left[\begin{array}{cc}x_{i} & e_{i} \\ 0 & 1\end{array}\right] \in \tilde{M}_{n}, 1 \leq i \leq n$, we must verify the relation $\tilde{l}\left(e_{i}\right)=x_{i}-1, i=1, \ldots, n$. Indeed, let $\nu_{i}=\Sigma_{j} e_{j} b_{i j}, b_{i j} \in \Lambda$; then $x_{i}-1=\tilde{l}\left(\nu_{i}\right)=\Sigma_{j}\left(x_{j}-1\right) b_{i j}$, so that the matrix $B=\left(b_{i j}\right)$ stabilizes the vector $X=\left(x_{1}-1, \ldots, x_{n}-1\right)$. Since the $\left\{\nu_{1}, \ldots, \nu_{n}\right\}$ is a basis of $\Sigma_{i} \Lambda e_{i}$, it follows that $B \in \mathrm{GL}_{n}(\Lambda)$. Consequently, $B^{-1}=\left(a_{i j}\right) \in \mathrm{GL}_{n}(\Lambda)$ and also stabilizes the $X$. This, in turn, yields

$$
\tilde{l}\left(e_{i}\right)=\tilde{l}\left(\Sigma_{j} \nu_{j} a_{i j}\right)=\Sigma_{j} \tilde{l}\left(\nu_{j}\right) a_{i j}=\Sigma_{j}\left(x_{j}-1\right) a_{i j}=\left(x_{i}-1\right),
$$

as was to be proved.
We shall also need the following criterion for projectivity of certain factor modules.
Proposition 5.2 (Buchsbaum and Eisenbud [5]). Let $\Lambda$ be an arbitrary commutative domain and let $V$ be the submodule of $\Lambda^{n}$ generated by the elements $\nu_{i}=$ $\left(a_{i 1}, \ldots, a_{i n}\right), 1 \leq i \leq t \leq n$. For each $m \leq t$, let $J_{m}$ be the ideal in $\Lambda$ generated by all $m \times m$-minors of the matrix $\left(a_{i j}\right)$. Then the factor module $\Lambda^{n} / V$ is projective of rank $n-k$ if and only if $J_{k}=\Lambda$ and $J_{k+1}=0$.

We can now prove the following primitivity criteria.

Theorem 5.3 (CF. Roman'Kov [14]). Let $M=M_{n}$ be the free metabelian group with the (Magnus) basis $X_{i}=\left[\begin{array}{cc}x_{i} & e_{i} \\ 0 & 1\end{array}\right], 1 \leq i \leq n$, and let $g_{i}=\left[\begin{array}{cc}y_{i} & \nu_{i} \\ 0 & 1\end{array}\right], 1 \leq i \leq k$, $\nu_{i}=\Sigma_{j} e_{j} a_{i j}$, be certain elements of $M$. Define $J_{m}=\operatorname{id}\left\{m \times m\right.$ minors of the matrix $\left.\left(a_{i j}\right)\right\}$, $1 \leq m \leq n$, an ideal of the Laurent polynomial ring $\Lambda=Z\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. Then the following are equivalent:
(i) $\left\{g_{1}, \ldots, g_{k}\right\}$ is part of a basis of $M_{n}$;
(ii) $\left\{y_{1}, \ldots, y_{k}\right\}$ is a part of a basis of the free abelian group $U\left(=U_{n}\right)$ generated by $x_{1}, \ldots, x_{n}$, and $\left\{\nu_{1}, \ldots, \nu_{k}\right\}$ is a part of a basis of the module $\Lambda^{n}=\Sigma_{i} \Lambda e_{i}$;
(iii) $\left\{y_{1}, \ldots, y_{k}\right\}$ is a part of a basis of the free abelian group $U$ and $J_{k}=\Lambda$.

PROOF OF (i) $\Rightarrow$ (ii). If $\left\{g_{1}, \ldots, g_{k}\right\}$ is a part of a basis $\left\{g_{1}, \ldots, g_{n}\right\}$ of $M$ then the matrices $X_{i}, 1 \leq i \leq n$, can be expressed as words in $g_{i}, 1 \leq i \leq n$. In particular, $e_{i} \in \Sigma_{j} \Lambda \nu_{j}$. This means that $\left\{\nu_{1}, \ldots, \nu_{n}\right\}$ generates $\Lambda^{n}=\Sigma_{j} \Lambda e_{j}$, and consequently $\left\{\nu_{1}, \ldots, \nu_{k}\right\}$ is part of a basis of $\Lambda^{n}$.

Proof of (ii) $\Rightarrow$ (i). Applying Nielsen transformations to $\left\{g_{1}, \ldots g_{k}\right\}$, if necessary, we may assume that $y_{i}=x_{i}$ for $1 \leq i \leq k$. Let $\left\{\nu_{1}, \ldots, \nu_{k}\right\}$ be a part of a basis $\left\{\nu_{1}, \ldots, \nu_{n}\right\}$ of $\Lambda^{n}$. It seems natural to prove that the matrices $X_{i}^{*}=\left[\begin{array}{cc}x_{i} & \nu_{i} \\ 0 & 1\end{array}\right], 1 \leq i \leq n$, form a basis of $M_{n}$. However, while the fundamental relation $l\left(v_{i}\right)=x_{i}-1$ may be assumed to hold for $1 \leq i \leq k$, it may not be valid for $i=k+1, \ldots, n$. Consequently, the matrices $X_{i}^{*}, k+1 \leq i \leq n$, may not necessarily lie in $M_{n}$. We must therefore re-organize the part $\left\{\nu_{k+1}, \ldots, \nu_{n}\right\}$ of our basis. By hypothesis, $\left(l\left(v_{1}\right), \ldots, l\left(v_{n}\right)\right)$ is a $\Delta$-modular vector with $l\left(v_{i}\right)=x_{i}-1$ for $1 \leq i \leq k$. For $j \geq k+1$, we write $l\left(v_{j}\right)=\Sigma_{i}\left(x_{i}-1\right) c_{i j}+d_{j}$, where $d_{j}$ depends only on $\left\{x_{k+1}, \ldots, x_{n}\right\}$. Then $\bar{l}\left(v_{j}-\Sigma_{i}\left(x_{i}-1\right) c_{i j}\right)=d_{j}$, for $k+1 \leq j \leq n$. Thus adding to $\nu_{k+1}, \ldots, \nu_{n}$ appropriate linear combinations of $\nu_{1}, \ldots, \nu_{k}$, we may assume that $l\left(\nu_{k+1}\right), \ldots, l\left(\nu_{n}\right)$ depend only on $x_{k+1}, \ldots, x_{n}$. Now, $\nu_{1}, \ldots, \nu_{n}$ generate $\Lambda^{n}$, so $l\left(\nu_{1}\right) \ldots, l\left(\nu_{n}\right)$ generate $\Delta$. Reducing modulo the ideal $I=\operatorname{id}\left\{\left(x_{1}-1\right), \ldots,\left(x_{k}-1\right)\right\}$, we see that the vector $\nu=\left(l\left(\nu_{k+1}\right), \ldots, l\left(\nu_{n}\right)\right)$ is $\Delta_{n-k}$-modular in $Z\left[x_{k+1}^{ \pm 1} \ldots, x_{n}^{ \pm 1}\right]$. By Theorem 2.2 there exists a matrix $A \in \mathrm{GL}_{n-k}\left(\Lambda_{n-k}\right)$, such that $\nu A=\left(\left(x_{k+1}-1\right), \ldots,\left(x_{n}-1\right)\right)$. Thus, replacing $\nu_{k+1}, \ldots, \nu_{n}$ by their suitable linear combinations we may assume that $\nu_{1}, \ldots \nu_{n}$ possess the property $l\left(v_{j}\right)=x_{j}-1$ for all $j$. This, in turn, implies that the matrices $X_{i}^{*}, 1 \leq i \leq n$, belong to $M_{n}$, and by Proposition 5.1 they generate $M_{n}$.

Proof of (ii) $\Rightarrow$ (iii). Since the ideals $J_{m}$ remain invariant under multiplication of the matrix $\left(a_{i j}\right)$ by invertible matrices over $\Lambda$, the proof follows from the fact that the $k \times k$-minors of the $k \times n$-matrix with respect to $\left\{e_{1}, \ldots e_{k}\right\}$ generate $\Lambda$.

Proof of (iii) $\Rightarrow$ (ii). As before we can assume, without loss of generality, that $y_{i}=x_{i}$ for $1 \leq i \leq k$. The condition that $\left\{\nu_{1}, \ldots, \nu_{k}\right\}$ is a part of a basis of $\Lambda^{n}$ is equivalent to the condition that the factor-module $\Lambda^{n} /\left(\Lambda \nu_{1}+\cdots+\Lambda \nu_{k}\right)$ is free of rank $n-k$. By Proposition 5.2, the projectivity of the factor-module is, in turn, equivalent to $J_{k}=\Lambda$ and $J_{k+1}=0(c f$. Noskov [12]).

This completes the proof of the theorem.

Remarks. The case $k=n$ is much easier. The corresponding criterion, due to Bachmuth [3], is the invertibility of the Jacobian matrix ( $\partial g_{i} / \partial x_{j}$ ) of Fox derivatives over the Laurent polynomial ring $\Lambda=Z\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. Timoshenko [22] has the same criterion as in Theorem 5.3 for the primitivity of a given system $\mathbf{g}=\left(g_{1}, \ldots, g_{k}\right)$ in $M_{n}$ but with the restriction that $k \leq n-3$. Roman'kov [14] has also proved that the same criterion holds independent of the choice of $k$. Our proof uses different approach.

Theorem 5.3 yields algorithmic decidability of primitivity in the free metabelian group $M_{n}$ of a given system $\mathbf{g}=\left(g_{1}, \ldots, g_{k}\right), k \leq n$. This follows from the fact that the problem clearly reduces to the existence of a solution of a system of linear equations over $\Lambda=Z\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ which, in turn, can be effectively decided (Timoshenko [21]).

ACKNOWLEDGEMENTS. This work was completed while the third author visited the University of Manitoba. He thanks the Department of Mathematics for its hospitality.

## References

1. V. A. Artamonov, Projective metabelian groups and Lie Algebras, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), 226-236.
2. $\qquad$ The categories of free metabelian groups and Lie algebras, Comment. Math. Univ. Carolin. 18(1977), 143-159.
3. S. Bachmuth, Automorphisms of free metabelian groups, Trans. Amer. Math. Soc. 118(1965), 93-104.
4. Gilbert Baumslag and Arthur Steinberg, Residual nilpotence and relations in free groups, Bull. Amer. Math. Soc. 70(1964), 283-284.
5. David A. Buchsbaum and David Eisenbud, What makes a complex exact?, J. Algebra 25(1973), 259-268.
6. J. R. J. Groves and Charles F. Miller, III, Recognizing free metabelian groups, Illinois J. Math. 30(1986), 246-254.
7. Narain Gupta, Free Group Rings, Amer. Math. Soc., Contemporary Math. 66(1987).
8. William Jaco, Geometric realizations for free quotients, J. Austral. Math. Soc. 14(1972), 411-418.
9. P. A. Linnell, A. J. McIsaac and P. J. Webb, Bounding the number of generators of a metabelian group, Arch. Math. 38(1982), 501-505.
10. R. C. Lyndon, Products of powers in groups, Comm. Pure Appl. Math. 26(1973), 781-784.
11. Roger C. Lyndon and Paul E. Schupp, Combinatorial Group Theory, Ergeb. der Math. u. ihrer Grenz. 89, Springer-Verlag, New York, 1977.
12. G. A. Noskov, On genus of a free metabelian group, Novosibirsk (509), Vychislitelny Centre of Akad. Nauk. USSR, 1984, preprint.
13. Daniel Quillen, Projective modules over polynomial rings, Invent. Math. 36(1976), 167-171.
14. V. A. Roman'kov, Criteria for the primitivity of a system of elements of a free metabelian group, Ukrain. Mat. Zh. 43(1991), 996-1002.
15. John R. Stallings, Quotients of the powers of the augmentation ideal in a group ring. In: Annals of Math. Study 84(1975), 101-118.
16. Arthur Steinberg, On free nilpotent quotient groups, Math. Z. 85(1964), 185-196.
17. $\qquad$ On equations in free groups, Michigan Math. J. 18(1971), 87-95.
18. A. A. Suslin, Projective modules over polynomial rings are free, Dokl. Akad. Nauk SSSR 229(1976), 1063-1066.
19. On , On the structure of a special linear group over polynomial rings, Izv. Akad. Nauk SSSR Ser. Mat. 41(1977), 235-252.
20. Richard G. Swan, Projective modules over Laurent polynomial rings, Trans. Amer. Math. Soc. 237(1978), 111-120.
21. E. I. Timoshenko, Certain algorithmic questionsfor metabelian groups, Algebra and Logic 12(1973), 132137; Russian edition: Algebra i Logika 12(1973), 232-240.
22. $\ldots$ On embedding of given elements into a basis of free metabelian groups, Russian, preprint.
23. H. Zieschang, Über einfache Kurven auf vollbrezeln, Abh. Math. Sem. Univ. Hamburg 25(1962), 231-250.

University of Manitoba
Winnipeg, Manitoba
R3T 2N2
e-mail: cgupta@ccu.umanitoba.ca

University of Manitoba
Winnipeg, Manitoba
R3T 2N2
e-mail: ngupta@ccu.umanitoba.ca

Institute of Information Technology and Applied Mathematics
Omsk 644
Russia
e-mail:noskov@univer.omsk.su


[^0]:    The first author was supported by NSERC, Canada.
    Received by the editors August 26, 1992.
    AMS subject classification: 20F99 20F05, 20H25.
    (c) Canadian Mathematical Society 1994.

