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Abstract

We discuss a minimisation problem of the degree of the Chow–Mumford (CM) line bun-
dle among all possible fillings of a polarised family with fixed general fibers, motivated by
the study of the moduli space of K-stable Fano varieties. We show that such minimisation
implies the slope semistability of the fiber if the central fiber is smooth.
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1. Introduction

We work over the complex number field C throughout this paper. By a polarised variety
(V, L), we mean a pair of a projective variety V and an ample Q-line bundle L on V .
A polarised family (X ,L) → C consists of a smooth projective curve C , a variety X with a
projective flat morphism X → C , and a relatively ample Q-line bundle L on X .

The minimisation of the degree of the CM line bundle (which we call the CM degree or
the Donaldson–Futaki (DF) invariant) in a certain class of polarised families was considered
in [21] in the context of compactification problem of moduli space. They observed that
for a family of canonically polarised varieties with semi-log canonical singularities (named
KSBA-stable family after Kollár–Shepherd–Barron [10], and Alexeev [1]) over a punctured
curve, the KSBA-stable compactification indeed minimises the CM degree. Moreover, [16]
proved similar statements for families of other classes of polarised varieties such as Calabi–
Yau varieties and Fano varieties with large alpha-invariant which are known to be K-stable.
By this observation, we expect that the K-stable compactification of Fano families should
minimise the CM degree, which leads to the separatedness of K-moduli [16]. Furthermore,
in a private communication, Odaka told the author about the following conjecture which
seems not yet to appear in the literature.

CONJECTURE 1·1 (Odaka). Let (X ,L= −KX ) → C be a family polarised by the
anti-canonical class over a smooth curve C with a fixed closed point 0 ∈ C. Then, the
fiber X0 over 0 ∈ C is K-semistable if and only if CM (XC ′,LC ′) ≤ CM (X ′,L′) holds
for any pointed curve (C ′, 0′) → (C, 0) and any polarised family (X ′,L′) → C ′ which is
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isomorphic to (XC ′,LC ′) over C ′ \ {0′}, where (XC ′,LC ′) = (X ,L) ×C C ′. Moreover, the
strict inequality holds for any normal (X ′,L′) which is not isomorphic to the normalisation
of (XC ′,LC ′) if and only if X0 is K-stable.

We give a remark on the existence of the filling which minimises the CM degree. It has
been recently proved in [2] that the K-semistability is the open condition. So Conjecture 1·1,
if true, implies that the CM-minimiser does not exist if a general fiber is not K-semistable.
Furthermore, the existence of a K-semistable filling is nothing but the properness of the
moduli space of K-polystable Fano varieties, which is one of the main remaining problems
on K-moduli. Therefore, it is expected that the process of minimising CM degree (as in
[11]), leading to the K-semistable filling through Conjecture 1·1, might play an important
role to prove the properness of the moduli space.

The aim of this paper is to investigate the relation between the minimisation problem of
the CM degree and the K-stability to approach the above conjecture. In particular, our main
theorem is the following:

THEOREM 1·2. Let (X ,L) → C be a polarised family and (X0,L0) be the fiber
over a closed point 0 ∈ C. Assume that X0 is a smooth variety and that the inequality
CM (X ,L) ≤ CM (X ′,L′) holds for any polarised family (X ′,L′) → C isomorphic to
(X ,L) over C \ {0}. Then, the fiber (X0,L0) is slope semistable.

The notion of the slope stability of polarised varieties is introduced in [19] as a weak
version of the K-stability, that is, the K-stability for a special class of test configurations
obtained by a deformation to the normal cone. In comparison with Conjecture 1·1, we note
that Theorem 1·2 holds for not only Fano families, but also any polarised families, although
we assume the smoothness of the central fiber. Also, note that the minimisation assumption
in Theorem 1·2 is weaker than that in Conjecture 1·1 in the sense that we do not need the
minimisation over base changes in Theorem 1·2.

Sketch of the proof of the main theorem.
Let Z ⊂X0 be a proper closed subscheme and c ∈ (0, ε(Z ,L0)) be a rational number,

where ε(Z ,L0) is the Seshadri constant of Z with respect to L0. Take the deformation to
normal cone over Z

πZ : TZ = BlZ×{0}(X0 ×A1) −→X0 ×A1

polarised by a relatively ample Q-line bundle LZ ,c = π∗
Z p∗

1L0(−cEZ ), where p1 :X0 ×
A1 →X0 is the first projection and EZ is the Cartier exceptional divisor. Let TZ → P1 be the
natural compactification of TZ →A1. We need to show the inequality DF (TZ ,LZ ,c) ≥ 0 in
order to prove slope semistability of the central fiber (X0,L0).

To show the inequality, we define another polarised family (B,M) → C by

π :B = BlZ X −→X , M= π∗L(−cE),

where E is the Cartier exceptional divisor. We relate the difference of the CM degree(
CM (B,M) − CM (X ,L)

)
to DF (TZ ,LZ ,c) by making use of a degeneration technique as

follows. First we take the deformation of X to the normal cone X0 ×A1 of X0, that is, blow
up X ×A1 along X0 × {0}. Let Z be the strict transform of Z ×A1 ⊂X ×A1. Then, the
blow-up of the total family along Z gives a deformation of B to TZ ∪X0 X . Although there
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may exist exceptional divisors of the blow-up contained in the central fiber of the deforma-
tion in general, we show that the smoothness of X0 ensures there are no such exceptional
divisors. Then we have the equality

CM (B,M) − CM (X ,L) = DF (TZ ,LZ ,c)

by the flatness. Thus, by using the minimising assumption, we get the inequality

DF (TZ ,LZ ,c) ≥ 0

to reach the conclusion.

2. Preliminaries

The aim of this section is to recall some definitions and related results used in the proof
of the main theorem.

2·1. Test configurations and the DF invariant

In this subsection, we recall the definition of test configurations and the DF invariant,
which appear in the definition of K-stability.

Definition 2·1. A test configuration (X ,L) for a polarised variety (V, L) consists of the
following data:

(i) a variety X admitting a projective flat morphism f :X →A1;
(ii) an f -ample Q-line bundle L on X ;

(iii) a C∗-action on (X ,L) compatible with the natural C∗-action on A1 via f ,

such that the restriction (X ,L)|C∗ over C∗ is C∗-equivariantly isomorphic to (V, L) ×C∗.
If we only assume that L is f -semiample instead of f -ample, then (X ,L) is called a

semi-test configuration. A test configuration (X ,L) is said to be trivial if X is equivariantly
isomorphic to the trivial family V ×A1 with the trivial action on the first factor V .

Given a test configuration (X ,L) for an n-dimensional polarised variety (V, L), there is
a C∗-action on H 0(X0,Lk

0) for a sufficiently divisible positive integer k induced by that on
the central fiber (X0,L0). If we decompose the C-vector space H 0(X0,Lk

0) into eigenspaces
with respect to the action of C∗, the eigenvalues can be written as some power of t ∈C∗. We
call the exponent as the weight of the action on each eigenvector. The total weight w(k) is
the sum of the weight over the eigenbasis. By the equivariant Riemann–Roch theorem, we
have an expansion

w(k) = w0kn+1 + w1kn + O(kn−1). (2·1)

Also we write an expansion of χ(V, L)

χ(V, Lk) = a0kn + a1kn−1 + O(kn−2)

for sufficiently divisible k.

Definition 2·2 ([5]). In the above notation, the Donaldson–Futaki invariant for a test
configuration (X ,L) is defined as

DF (X ,L) = a1w0 − a0w1.
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Note that we can naturally extend the definition of the Donaldson–Futaki invariant to
arbitrary semi-test configurations (see [19]).

We do not use the following definition of K-stability in the proof of Theorem 1·2, but we
introduce it to clarify the motivation of our study.

Definition 2·3 ([5], see also [20]). A polarised variety (V, L) is:

(i) K-semistable if the Donaldson–Futaki invariant DF (X ,L) is nonnegative for any
test configuration (X ,L) for (V, L);

(ii) K-polystable if it is K-semistable and DF (X ,L) = 0 only if X is isomorphic to
V ×A1 outside some closed subset of codimension at least 2;

(iii) K-stable if it is K-semistable and DF (X ,L) = 0 only if X is C∗-equivariantly iso-
morphic to the trivial test configuration outside some closed subset of codimension
at least 2.

Note that we assume non-triviality in codimension 1 of test configurations in the definition
of K-(poly)stability [11, 20]. If V is normal, we only need to consider non-trivial normal test
configurations for K-(semi)stability since the Donaldson–Futaki invariant does not increase
by normalization [19, remark 5·2].

2·2. The CM degree

In this paper, we only need to treat the degree of the CM line bundle over a curve, which
we define a priori as follows. For more details, we refer to [7].

Definition 2·4. For a polarised family (X ,L) → C with a fiber (Xt ,Lt) of dimension n,
write

χ(Xt ,Lk
t ) = a0kn + a1kn−1 + O(kn−2) (2·2)

χ(X ,Lk) = b0kn+1 + b1kn + O(kn−1) (2·3)

for sufficiently divisible positive integer k. The coefficient ai is independent of the choice of
a fiber since χ is constant over a flat family. Let g(C) denote the genus of C . Then the CM
degree is defined as

CM (X ,L) = a1b0 − a0b1 + (1 − g(C))a2
0 .

This value is nothing but the degree of the CM line bundle λC M [8, 18] of L on C .

Remark 2·5. Given a normal test configuration (X ,L) →A1 for a normal polarised variety
(V, L), let (X ,L) → P1 denote the natural C∗-equivariant compactification, that is, we add
the trivial fiber (V, L) × {∞} over ∞ ∈ P1. Then it is well known (see for example [4, 15])
that the total weight w(k) on H 0(X0,L0) can be written as

w(k) = χ(X ,Lk
) − h0(X0,Lk

0).

Using the asymptotic Riemann–Roch formula, we get the equalities

w0 = b0, w1 = b1 − a0
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using the notation in (2·1). Thus, the CM degree of (X ,L) coincides with the
Donaldson–Futaki invariant of (X ,L). In this viewpoint, the CM degree is often called
the Donaldson–Futaki invariant, too.

2·3. Slope stability

In this subsection, we recall the notion of the slope semistability of polarised varieties
introduced in [19].

Let (V, L) be an n-dimensional polarised variety. Write

χ(V, Lk) = a0kn + a1kn−1 + O(kn−2)

for sufficiently divisible positive integer k. Then the slope of (V, L) is defined as

μ(V, L) = a1

a0
.

Let Z ⊂ V be a proper closed subscheme defined by an ideal IZ and take the blow-up along Z

σ : V̂ = BlZ V −→ V .

Let E be the Cartier exceptional divisor corresponding to the inverse image of IZ on V̂ .
Then, the Seshadri constant ε(Z , L) of Z with respect to L is defined as

ε = ε(Z , L) := sup{x > 0 | σ ∗L(−x E) : ample}.
For a rational number x ∈ (0, ε(Z , L)], write

χ(V̂ , (σ ∗L(−x E))k) = a0(x)kn + a1(x)kn−1 + O(kn−2)

for a sufficiently divisible k. Here, a0(x) and a1(x) are polynomials of x . Then the slope
along Z with respect to c ∈ (0, ε] ∩Q is defined as

μc(IZ , L) =
∫ c

0 (a1(x) + a′
0(x)

2 )dx∫ c
0 a0(x)dx

.

Definition 2·6 ([19]). (V, L) is slope semistable if the inequality

μ(V, L) ≥ μc(IZ , L)

holds for any proper closed subscheme Z ⊂ V and any rational number c ∈ (0, ε].
The slope semistability is a (strictly) weaker notion than the K-semistability as in Theorem

2·8. To see this, first take a deformation to the normal cone over Z

π : TZ = BlZ×{0}(V ×A1) −→ V ×A1

and let F be the Cartier exceptional divisor. We define a Q-line bundle LZ ,c := π∗ p∗
1 L(−cF)

for c ∈ (0, ε] ∩Q, where p1 : V ×A1 → V is the first projection.

LEMMA 2·7. In the above setting, LZ ,c is ample over A1 for c ∈ (0, ε). Moreover, L Z ,ε is
semiample over A1 if σ ∗L(−εE) is semiample.

Proof. See [19, proposition 4·1].
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Thus, we can see (TZ ,LZ ,c) as a (semi-)test configuration of (V, L) for c ∈ (0, ε) and for
c = ε if σ ∗L(−εE) is semiample.

THEOREM 2·8. In the above notation, the Donaldson–Futaki invariant DF (TZ ,LZ ,c) is a
positive multiple of

(
μ(V, L) − μc(IZ , L)

)
for any rational number c ∈ (0, ε) and for c = ε

if σ ∗L(−εE) is semiample. In particular, (V, L) is slope semistable if it is K-semistable.

Proof. See [19, section 4].

Remark 2·9. As in [17], a blow-up of P2 at two points is slope semistable, although it is not
K-semistable. So this example shows that the slope semistability is indeed strictly weaker
than the K-semistability.

3. Deformation to test configurations

We fix a polarised family (X ,L) → C such that the fiber (X0,L0) over a fixed closed
point 0 ∈ C is a variety. The aim of this section is to construct a deformation of another
polarised family over X to a test configuration of the central fiber (X0,L0), and compare
their CM degrees.

3·1. Construction

We refer to [9] for a detailed description of a deformation to the normal cone, which we
use for the construction. L is not necessarily ample over C in this subsection.

First we take a deformation to the normal cone over X0

σ : V = BlX0×{0}(X ×A1) −→X ×A1.

Then the central fiber V0 of V →A1 can be written as a union

V0 = X̂
⋃
X0

P

glued along X0. Here X̂ ∼=X is the strict transform of X × {0} and P is the exceptional
divisor. Note that since the normal bundle of X0 × {0} is trivial, P is isomorphic to X0 × P1

and so has a natural C∗-action induced by that on P1. P is glued to X̂ along one of the
C∗-invariant fiber X0 × {∞} ⊂X0 × P1 ∼= P .

Consider a closed subscheme Z ⊂X set-theoretically supported in X0. Let Z be the strict
transform of Z ×A1 ⊂X ×A1 on V . Then Z gives a flat degeneration of Z ⊂X to a C∗-
invariant closed subscheme Z0 ⊂ P by Lemma 3·1 below. We take the blow-up along Z

� :W = BlZ V −→ V (3·1)

and let G be the Cartier exceptional divisor. Identify the general fiber of V →A1 with X
and let

π0 : T = BlZ0 P −→ P,

π :B = BlZ X −→X
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denote the strict transform of P and Vt
∼=X on W respectively, and

E0 = G|T ,

E = G|B
be each Cartier exceptional divisor. We have the following diagram:

E ⊂B π ��
� �

�

X
� �

�

X × {t}
� �

�

G ⊂W � �� V σ �� X ×A1 q1 �� X .

E0 ⊂ T π0 ��
� �

�

P
p1 ��

� �

�

X0 × {0}
� �

�

We fix a positive rational number c and define a Q-line bundle F := (�∗σ ∗q∗
1L)(−cG)

on W , where q1 :X ×A1 →X is the first projection. We identify the strict transform of
X̂ ⊂ V on W with X̂ , since the restriction of � is the identity map. By restricting F to each
component of fibers, we have

F |T = (π∗
0 p∗

1L0)(−cE0) =:N ,

F |X̂ =L,

F |B = π∗L(−cE) =:M,

where p1 :X0 × P1 →X0 is the first projection. When N is ample over P1 (under the
morphism T → P ∼=X0 × P1 → P1), then (T ,N ) is a compactified test configuration for
(X0,L0) and the general fiber (B,M) of (W,F) →A1 is a polarised family, since the
ampleness is an open condition.

Next we show how we can treat the above deformation algebraically (see also [12,
13]). Let

R=OX [t, IX0 t
−1]

=OX [t] + IX0 t
−1 + I 2

X0
t−2 + · · · ⊂OX [t, t−1]

be the extended Rees algebra (see [6, 6·5]) of the ideal IX0 ⊂OX defining X0. Then, as in
[13, lemma 4·1] we have isomorphisms of OX -algebras

R⊗C[t] C[t, t−1] ∼=OX [t, t−1],
R⊗C[t] C[t]/(t) ∼=

⊕
k≥0

(I k
X0

/I k+1
X0

) ∼=OX0[s], (3·2)

so that we can discribe the above deformation algebraically as

V◦ := V \ X̂ = SpecXR−→A1
t
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with the central fiber

V◦
0 = V0 \ X̂ =X0 ×A1

s .

Let I ⊂OX be a sheaf of ideals which defines a subscheme supported in (the thickening
of) X0. For a non-zero local section f of I defined around the generic point of X0, let
k = ordX0( f ) be the minimum integer such that f ∈ I k

X0
and define

f̃ := f t−k ∈ I k
X0

t−k ⊂R,

in( f ) := [ f ] ∈ I k
X0

/I k+1
X0

⊂
⊕
k≥0

(I k
X0

/I k+1
X0

) ∼=OX0[s]

as local sections of R and OX0[s] respectively. Here, [ f ] denotes the image of f ∈ I k
X0

in

I k
X0

/I k+1
X0

. Moreover, we define the sheaf Ĩ on W to be the sheaf of ideals locally generated

by { f̃ | f ∈ I } in R and the sheaf in(I ) on X0 ×A1
s to be the sheaf of ideals locally generated

by {in( f ) | f ∈ I } in OX0[s].
LEMMA 3·1. In the above setting, the following hold:

(i) we have the equalities

Ĩ = I [t, t−1] ∩R

= I [t] + I ∩ IX0

t
+ I ∩ IX0

2

t2
+ · · · ⊂R,

in(I ) = Ĩ ·OX0[s] ⊂OX0[s];
(ii) if I ⊂OX defines a closed subscheme Z ⊂X set-theoretically supported in X0, then

Ĩ defines Z ⊂ V◦ (the strict transform of Z ×A1 ⊂X ×A1 on V). Also, in(I ) defines
Z0 ⊂X0 ×A1

s ;
(iii) R/ Ĩ is flat as a sheaf of C[t]-modules, and so Z is flat over A1.

Proof. (1) Ĩ ⊂ I [t, t−1] ∩R is clear by the definition. In order to see the opposite inclusion,
it suffices to show that f t−k ∈ Ĩ for any f ∈ I ∩ I k

X0
. If ordX0( f ) = k, this follows from

the definition of Ĩ . If ordX0( f ) > k, take any g ∈ I such that ordX0(g) = k, then we get

f t−k = ˜( f + g) − g̃ ∈ Ĩ . Thus we obtain the first equality. The last equality follows since
the image of f̃ in (R/tR) ∼=OX0[s] is [ f ] ∈ I k

X0
/I k+1

X0
.

(2) By the first equality in (1), Ĩ is the largest ideal in R among ideals which coincide with
I [t, t−1] when they are extended to OX [t, t−1]. So Ĩ defines the scheme theoretic closure
of Z ×C∗ in V , which is nothing but Z . It also follows that in(I ) defines Z0 from the last
equality in (1).

(3) is in [13, lemma 4·1] and can be proved exactly in the same way as [12, lemma 4·1],
but here we provide a direct proof. The flatness is clear outside 0 ∈A1

s . To show the flatness
over 0 ∈A1

s , we only need to check that t is a non-zero divisor in R/ Ĩ , since (t) is the
only non-trivial ideal in the base C[t](t). Take any g ∈R such that gt ∈ Ĩ . Writing down
as g = ∑

i fi t−i , we have fi ∈ I i
X0

for i ≥ 0. On the other hand gt = ∑
i fi t−i+1 ∈ Ĩ implies

fi ∈ I ∩ I i−1
X0

for i ≥ 1 and fi ∈ I for i ≤ 0. Combining the above, we get fi ∈ I ∩ I i
X0

for

i ≥ 1 and fi ∈ I for i ≤ 0, which shows g ∈ Ĩ .
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3·2. Comparision of the CM degree

In this subsection, we show equality of the CM degree of the polarised families under a
certain assumption and then discuss when the assumption is satisfied. We keep the notation
in Subsection 3·1.

PROPOSITION 3·2. Assume that the central fiber W0 of W in (3·1) consists of only 2
irreducible components, that is,

W0 = X̂
⋃
X0

T .

Then, the equality

CM (T ,N ) = CM (B,M) − CM (X ,L)

holds.

Proof. By flatness and the assumption, we have the equality

χ(T ,N ) + χ(X ,L) − χ(X0,L0) = χ(B,M).

Comparing the coefficient of kn+1 and kn , we get

bT
0 + bX

0 = bB
0 ,

bT
1 + bX

1 − a0 = bB
1 ,

where bT
i , bX

i , bB
i are the coefficients of the expansion (2·3) in Definition 2·4 for each fam-

ily. Notice that the coefficient ai of the expansion (2·2) in Definition 2·4 is the same for each
family. Thus,

CM (T ,N ) =a1bT
0 − a0bT

1 + a2
0

=a1(b
B
0 − bX

0 ) − a0(b
B
1 − bX

1 + a0) + a2
0

=(a1bB
0 − a0bB

1 + (1 − g(C))a2
0)

− (a1bX
0 − a0bX

1 + (1 − g(C))a2
0)

= CM (B,M) − CM (X ,L).

We give a sufficient condition for the assumption in Proposition 3·2.

LEMMA 3·3. Let I be the ideal defining the closed subscheme Z ⊂X supported in X0. If
Ĩ m = ( Ĩ )m holds for any positive integer m, then the central fiber W0 of W in (3·1) consists
of only 2 components.

Geometrically, the assumption says that any thickening of Z is still flat over A1.

Proof. Define

W◦ :=W \ X̂ = BlZ V◦ −→A1
t

so that we need to prove that the central fiber W◦
0 coincides with the restriction T |P1\{∞} =

BlZ0×{0}(X0 ×A1
s ).It is enough to show an isomorphism of R-algebra
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134 KENTARO OHNO( ⊕
m≥0

( Ĩ )m
)
⊗C[t]C[t]/(t) ∼=

⊕
m≥0

in(I )m .

From the assumption and the flatness, we have

( Ĩ )m ⊗C[t] C[t]/(t) = Ĩ m ⊗C[t] C[t]/(t)
∼= Ĩ m ·OX0[s]
= ( Ĩ )m ·OX0[s]
= in(I )m .

Indeed, the first and the third equalities follow from the assumption and the second follows
from the flatness of R/ Ĩ m . Thus we get the assertion by taking the direct sum.

4. Proof of the main theorem

The following lemma is needed to ensure that the assumption in Lemma 3·3 is satisfied in
the setting of Theorem 1·2.

LEMMA 4·1. Let A be a regular ring essentially of finite type over a field k. Assume
(h) ⊂ A is a prime ideal such that A/(h) is also a regular ring and an ideal I ⊂ A contains
h. Then, for positive integers j < m, I m ∩ (h j ) = h j I m− j holds.

Proof. The inclusion h j I m− j ⊂ I m ∩ (h j ) is clear, so we prove the opposite inclusion. First
we may assume A is complete by taking completion with respect to its maximal ideal.
Let {x2, . . . , xn} denote the lift of regular sequence of parameter of A/(h) to A, then
{x1, x2, . . . , xn} is a regular sequence of parameter of A where we define x1 = h, which
induces the isomorphism A ∼= k[[x1, x2, . . . , xn]] (see [14, section 28 the proof of lemma
1]). So we replace A by a formal power series ring k[[x1, x2, . . . , xn]] and h by x1. Then
we can write I = (x1, f1, . . . , fs), where each fi is a formal power series of x2, . . . , xn . Let
B = k[[x2, . . . , xn]] be a subalgebra of A, and J be an ideal in A generated by f1, . . . , fs .
Let f ∈ A be an element of I m ∩ (x j

1 ). Since f ∈ I m , we can write

f = xm
1 g0 + xm−1

1 g1 + · · · + x1gm−1 + gm, gi ∈ J i .

We may take each gi from B for i > 0. Indeed, we can write

gi =
∑

1≤k1≤···≤ki ≤s

fk1 · · · fki Fk, Fk ∈ A,

where k denotes a tuple (k1, . . . , ki ). By decomposing as

Fk = Gk + x1 Hk, Gk ∈ B, Hk ∈ A,

we get

gi =
∑

1≤k1≤···≤ki ≤s

fk1 · · · fki Gk + x1

∑
1≤k1≤···≤ki ≤s

fk1 · · · fki Hk .

The first term is an element of B ∩ J i since f1, . . . , fs are elements in B. Replace gi by∑
fk1 · · · fki Gk ∈ B and gi−1 by gi−1 + ∑

fk1 . . . fki Hk ∈ J i , and repeat this for i = m, m −
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1, · · · , 1. Thus we can assume gi ∈ B for i > 0. Then we have gi = 0 for i > m − j since
f ∈ (x j

1 ). So we get

f = x j
1 (xm− j

1 g0 + · · · + gm− j ) ∈ x j
1 I m− j

as desired.

We now prove Theorem 1·2.

Proof of Theorem 1·2. Let Z ⊂X0 be a proper closed subscheme and c ∈ (0, ε(Z ,L0)] be a
rational number. First we assume c ∈ (0, ε(Z ,L0)). Take the blow-up

π0 : BlZ×{0}(X0 ×A1) −→X0 ×A1,

π : BlZ X −→X ,

and denote the Cartier exceptional divisor as E0 and E respectively. Then, (TZ ,LZ ,c) :=(
BlZ×{0}(X0 ×A1), π∗

0 p∗
1L0(−cE0)

) →A1 is a test configuration by Lemma 2·7. Let
(T ,N ) = (TZ ,LZ ,c) → P1 be the natural compactification. Following the construction in
Subsection 3·1, we take the degeneration of the family (B,M) := (

BlZ X , π∗L(−cE)
) →

C to (T ,N ) ∪X0 (X ,L) whose total family is (W,F). Note that (B,M) is a polarised
family by the argument in Subsection 3·1.

Let I and IX0 be the ideal defining Z and X0 in X , respectively. Using the algebraic
description of the deformation, Ĩ can be written as

Ĩ = I [t] + IX0

t
+ IX0

2

t2
+ · · · ⊂R,

since IX0 ⊂ I . So ( Ĩ )k can be computed as

( Ĩ )k = I k[t] + I k−1 IX0

t
+ I k−2 IX0

2

t2
+ · · · ⊂R.

On the other hand, similarly we can write as follows:

Ĩ k = I k[t] + I k ∩ IX0

t
+ I k ∩ IX0

2

t2
+ · · · ⊂R.

We have the equality

Ĩ k = ( Ĩ )k

for any positive integer k, since the equality

I k ∩ I j
X0

= I k− j I j
X0

holds for any positive integers j ≤ k. Indeed, we may check this locally at a point x in X0,
so let A :=Ox,X . Then A is regular since X0 and C are both smooth and X → C is flat. The
restriction of IX0 to SpecA ⊂X is a principal prime ideal (h) of A and the restriction of I is
an ideal containing h, since Z is scheme theoretically supported in X0. Since X0 is smooth,
A/(h) is regular. Thus, we can apply Lemma 4·1 and get the equality.
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By Lemma 3·3, the central fiber W0 of the total family W →A1 consists of only 2
irreducible components, and so we can apply Proposition 3·2 to get the equality

CM (T ,N ) = CM (B,M) − CM (X ,L).

But by the assumption on the minimisation of CM degree, we have

CM (B,M) − CM (X ,L) ≥ 0,

which implies the inequality

DF (TZ ,LZ ,c) = CM (T ,N ) ≥ 0,

where the first equality follows from Remark 2·5. Thus we can get the desired slope
inequality by Theorem 2·8.

For c = ε(Z ,L0), the slope inequality follows from the above argument and the continuity
of slope of Z with respect to c.

A postscript note. Soon after the first version of this paper had been posted on the arXiv,
the author was informed that Blum and Xu [3] proved the separatedness of the K-moduli,
which had been the original motivation for our study. Moreover, they told the author that they
proved one direction of Conjecture 1·1 and that C. Li and X. Wang independently obtained
the same result; the K-semistable filling implies the CM-minimisation.

Acknowledgements. The author would like to express great gratitude to his supervisor
Yoshinori Gongyo for his continuous encouragement and valuable advice. He is also deeply
grateful to Yuji Odaka for sharing his problem, for teaching him the backgrounds and the
related notions, and for his warm encouragement. The author is supported by the FMSP
program at the University of Tokyo.

REFERENCES

[1] V. ALEXEEV. Moduli spaces Mg,n(W ) for surfaces. In: Higher Dimensional Complex Varieties:
Proceedings of the International Conference Held in Trento, Italy, June 15-24, 1994, page 1 (Walter
de Gruyter, 1996).

[2] H. BLUM, Y. LIU and C. XU. Openness of K-semistability for Fano varieties. arXiv preprint
arXiv:1907.02408 (2019).

[3] H. BLUM and C. XU. Uniqueness of K-polystable degenerations of Fano varieties. Ann. of Math.,
190(2), (2019), 609–656.

[4] S. BOUCKSOM, T. HISAMOTO and M. JONSSON. Uniform K-stability, Duistermaat–Heckman
measures and singularities of pairs. In Ann. l’Inst. Fourier 67, (2017), pages 743–841.

[5] S. K. DONALDSON. Scalar curvature and stability of toric varieties. J. Differential Geom., 62(2),
(2002), 289–349.

[6] D. EISENBUD. Commutative Algebra: With a View Toward Algebraic Geometry (Springer, 1995).
[7] J. FINE and J. ROSS. A note on positivity of the CM line bundle. Int. Math. Res. Notices, 2006(2006),

id. 95875.
[8] A. FUJIKI and G. SCHUMACHER. The moduli space of extremal compact Kähler manifolds and

generalised Weil–Petersson metrics. Publ. Res. Inst. Math. Sc., 26(1), (1990), 101–183.
[9] W. FULTON. Intersection Theory. Ergeb. Math. Grenzgeb. (3). (Springer Berlin Heidelberg, 1997).

[10] J. KOLLÁR and N. I. SHEPHERD-BARRON. Threefolds and deformations of surface singularities.
Invent. Math., 91(2), (1988), 299–338.

[11] C. LI and C. XU. Special test configuration and K-stability of Fano varieties. Ann. Math., 180, (2014),
197–232.

[12] C. LI and C. XU. Stability of valuations and Kollár components. J. Eur. Math. Soc., 22(8)(2020),
2573–2627.

https://doi.org/10.1017/S0305004121000141 Published online by Cambridge University Press

https://arXiv.org/abs/1907.02408
https://doi.org/10.1017/S0305004121000141


Minimising CM degree and slope stability 137

[13] Y. LIU and Z. ZHUANG. Birational superrigidity and K-stability of singular Fano complete
intersections. Internat. Math. Res. Notices, 202(1)(2018), 382–401.

[14] H. MATSUMURA. Commutative ring theory. Cambridge Stud. Adv. Math. (Cambridge University
Press, Cambridge, 1986).

[15] Y. ODAKA. A generalisation of the Ross–Thomas slope theory. Osaka J. Math., 50(1), (2013),
171–185.

[16] Y. ODAKA. On the moduli of Kähler–Einstein Fano manifolds. In: Proceedings of Kinosaki Algebraic
Geometry Symposium (2013), arXiv preprint arXiv:1211.4833.

[17] D. PANOV and J. ROSS. Slope stability and exceptional divisors of high genus. Mathe. Ann., 343(1),
(2009), 79–101.

[18] S. T. PAUL and G. TIAN. CM stability and the generalised Futaki invariant I. arXiv preprint
arXiv:math/0605278 (2006).

[19] J. ROSS and R. THOMAS. A study of the Hilbert–Mumford criterion for the stability of projective
varieties. J. Algebraic Geom., 16(2), (2007), 201–255.

[20] J. STOPPA. A note on the definition of K-stability. arXiv preprint arXiv:1111.5826 (2011).
[21] X. WANG, C. XU, et al. Nonexistence of asymptotic GIT compactification. Duke Math. J., 163(12),

(2014), 2217–2241.

https://doi.org/10.1017/S0305004121000141 Published online by Cambridge University Press

https://arXiv.org/abs/1211.4833
https://arXiv.org/abs/math/0605278
https://arXiv.org/abs/1111.5826
https://doi.org/10.1017/S0305004121000141


https://doi.org/10.1017/S0305004121000141 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000141

	Minimising CM degree and slope stability of projective varieties
	Introduction
	Preliminaries
	Test configurations and the DF invariant
	The CM degree
	Slope stability

	Deformation to test configurations
	Construction
	Comparision of the CM degree

	Proof of the main theorem


