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A b s t r a c t . We present an analytic kinematic model for the evolution 
of a supernova remnant beginning with the Sedov-Taylor adiabatic stage 
and continuing through the radiative stage. Using this model, we obtain 
the luminosity of the radiative shock and the hot interior. 

I. Introduction 
A strong explosion in a homogeneous uniform medium results in a blast wave whose 

adiabatic evolution is well-understood in terms of the classic Sedov-Taylor (ST) solution 
(Sedov 1959; Taylor 1950). We can model the early evolution of spherical supernova 
remnants (SNRs) with this solution, where the radius Ra grows with time t in a power 
law: 

*•=(?)">• a, 
where E is the energy of the explosion, p0 is the ambient density, and the numerical 
constant f is found to be 2.026 for 7 = 5/3 (Ostriker and McKee 1987). As the hot 
gas begins to radiate, however, the evolution deviates from this solution, and, with 
less energy available to drive the remnant, the expansion rate slows. If one wishes 
to calculate analytically the continuous luminosity from an evolving SNR, one must 
possess both accurate kinematics and a sufficient knowledge of the distribution and 
thermal development of the hot gas. Although here we outline the methods and obtain 
the total SNR luminosity, in Cioffi and McKee (1987; [CM]) we obtain the broad-band 
spectrum and calculate the X-ray emission. These luminosities match those found in 
hydrodynamical simulations. 

II. Kinematics, Cooling, and Radiation 
Radiative losses in the SNR first set in near the edge and lead to the formation of a 

dense shell of gas which is driven into the ambient interstellar medium by the pressure 
of the hot interior gas - in other words, a pressure-driven snowplow (PDS). If the cooling 
function A (erg cm3 s_ 1) falls with the square root of the temperature T, then, as first 
realized by Kahn (1976), the entropy of a shocked parcel of gas is an explicit function 
of time alone. We can thus determine the time at which an element of gas first cools 
to zero temperature, t,f. The discontinuity in the shock velocity seen in a numerical 
simulation (see Figure 1) confirms that a shell forms at this time, but since cooling has 
affected the evolution prior to tsf, we begin the PDS stage a factor of e sooner at 

t E3/14 

tpdB = -f = 1-33 x 10* y yr. (2) 

Here we have used a cooling function A = 1.6 x 10~ 1 9 f m T - 1 / 2 erg cm3 s _ 1 , where the 
metallicity fm = 1 for cosmic abundances (Cioffi, McKee and Bertschinger 1987; [CMB]; 
also see Cox 1986). 
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Figure 1. The logarithmic derivative vat/Ra versus time. 

In Figure 1 we show the logarithmic derivative vat/Ra from a hydrodynamical sim
ulation of an SNR expanding into an interstellar medium of hydrogen density n0 = 
0.1 c m - 3 . The standard PDS power-law solution (McKee and Ostriker 1977) would 
show a straight horizontal line at vat/Ra = 2/7, which is discontinuous with the ST 
solution and, when compared to the hydrodynamical simulation, is too small after the 
formation of the shell. The SNR retains the "memory" of additional pressure from the 
ST stage, and cannot relax to a 2/7 index. We thus choose an asymptotic index of 3/10, 
and join the PDS solution to the ST solution by means of an "offset" power law (CMB): 

Rs — Rpds 
4 t 

- i3 /10 

where Rpda is obtained from the ST solution at tf&a: 

Rpda = 14.0 
E, 

2 / 7 
SI 

3 /7 1/7 

n0' fm 
pc. 

(3) 

(4) 

Figure 1 shows how well the analytic logarithmic derivative agrees with that from the 
simulation through the transition across the formation of the shell. The luminosity of the 
radiative shock is L = \p0v* (4»ri?^) and we find that the product R*va almost always 
agrees with the simulation to within 20% except near t„f, where v, falls too quickly. 
CMB show that this fit remains good so long as t £, 20tpda. 
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Figure 2. The thermal structure of an SNR. 
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Figure 3. Total luminosity versus time. 
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We need to integrate through the hot gas to calculate the radiation from the interior. 
If we again use the T - 1 / 2 cooling law, and the solutions (3), we can construct Figure 
2, which shows the cooling of an SNR in terms of the normalized times at which a gas 
element was shocked, xa = tg/tpj, (CM). At any fixed time x = t/tpda, one proceeds 
vertically along the x, axis to ascertain the thermal structure of the remnant. At the 
separation time, xsep = 1.92, we "flag" the gas element which will be the first to cool 
completely. At the shell formation time, xaf = 2.72, this element cools to zero tempera
ture and separates the SNR into three zones: i) an extremely narrow, hot region behind 
the shock; ii) a cold shell and iii) the hot interior, which consists of material shocked 
prior to xeep. The cold shell grows from both sides as the interior cools and the material 
behind the now-radiative shock also cools. One other time of interest is i|ate = 5.29; 
after this time any hot gas remaining in the interior of the SNR was shocked during the 
remnant's ST expansion. 

At a given time t we can sum the emission from all elements which were shocked 
at prior times ta, where we again assume a T - 1 / 2 cooling law. We fully explain the 
methods in CM. Figure 3 shows the excellent results from this approach. 

III. Summary 
Lack of space prevents consideration of two additional contributions to the lumi

nosity (see CM): We can calculate the emission at early times from the reverse-shocked 
ejecta (e.g., McKee 1974) in a manner similar to that just outlined for the interior gas. 
Secondly, we note that for a real SNR in interstellar space, dust grains may supply a 
large luminosity during part of the evolution (e.g., Graham et al. 1987). This addi
tional energy loss will shorten the PDS onset time somewhat (Dwek 1981), modifying 
our results slightly, but not strongly affecting the X-ray emission. 

To achieve an accurate (,$ 20%) analytic luminosity from SNRs in all stages of 
evolution, the overall kinematics, Rs(t) and ve(t), must be very accurate (;$ 5%) to 
obtain the correct radiative shock luminosity L ~ Rlv^, and the thermal history of the 
shocked gas must be calculated. Through understanding the dynamics of SNR expansion 
and the use of offset power laws, we have obtained a simple expression for accurate 
kinematics. The assumption of a T - 1 / 2 cooling law then allows a determination of the 
thermal structure and luminosity of a post Sedov-Taylor SNR. 
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