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ON PENDENT DROPS IN A CAPILLARY TUBE

G. HUISKEN

The energy functional for a pendent drop in a capillary tube is

neither convex nor bounded from below. We obtain local minima of

the energy by making the physically reasonable assumption that

the gravitation or the prescribed volume of the drop is small.

0. Introduction

We consider a drop of prescribed volume V hanging from inside the

top of an upside down capillary tube. Let the bounded domain ftcfr ,

n > 2 , denote the cross-section of the tube and assume that the top of the

tube and the surface of the drop can be represented as graphs of functions

ty and u on ft . For convenience of notation i t is preferable to make a

change of the coordinate system, that i s , we reverse the cylinder and

assume the gravitation to be directed upward. Then i|> becomes the bottom

of the tube and we have

(0.1) u > ipn , V = \ u - t|» dx .
1 J 1

u > ipn , V = \ u - t|»
1 J« 1

Now the physical principle of virtual work leads to the variational problem

(0.2) E(v) = f ( l + l ^ l 2 ) ^ - f f V2dx + I gixfc

•*• min i n K
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344 G. Hu i sken

where K is some suitable convex function space. Here K > 0 is the
00

capillarity constant and 3 € L (80) is the cosine of the contact angle

between u and the cylinder walls. E represents the energy of our system

and we have a minus sign in front of K since the gravitation is upward

directed. We assumed that there is no contribution to the energy from the

bottom of the tube, that is that the liquid will 'wet' the obstacle ^

A natural choice of K would be

(0.3) K± = H
X'm(n) n {u > ̂ j n if v-^dx = v\

and in the case of downward directed gravitation the corresponding

variatlonal problem was solved by Gerhardt in [2], [4], In our case it is

not possible to minimize E in K since the energy is not bounded from

below on this set. However, it was shown in [6], that the corresponding

variational inequality to (0.2) admits a solution under the physically

reasonable assumption that the capillarity constant K or the volume V

is small enough (see [6] or Chapter 2 below). If we consider these

solutions as critical points of the energy functional, the question arises

whether there are critical points which actually minimize the energy at

least compared with functions which are not too far away.

To make the terminology 'not too far away' precise, we introduce the

sets

(0.U) K2 = BV(U) n {^ < „ < ^ } n

and

(0.5) # 3 = fl1'"(fi) r, {^ < V £ *2} « j j V-^dx = v\ n {\Dv\m 2 N]

where 4>~ > "Ĵ  i s a second obstacle and N i s some large constant . To

ensure t ha t these se t s are not empty, we have to assume

f ip - \\>(0 .6) f ip - \\> dx > V .

Assuming su i t ab le smoothness of the data we can show that the minimizing

problem (0.2) can be solved in K and K for any K and V .
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Moreover, if N and i|< are large enough we can ensure that for suitable

small < or V the constraints ty and N are not reached by the

solution. These solutions can then be considered as hanging drops, which

minimize the energy in K^ respectively K . Furthermore, a minimum of

E in L , which is strictly away from the constraints ty and N ,

satisfies a variations! inequality as in [6] and has therefore all the

regularity properties established in [6] and [7].

Giusti [5] used a second obstacle to show the existence of pendent

drops in a different setting.

Notation. We denote by lf'P(Q) the Sobolev spaces and by BV{ti)

the space of functions of bounded variation. H is the n-dimensional

Hausdorff measure and | • \a> the supremum norm on fl . We shall denote by

a = c( . . .) various constants, whereas indices will be used if a constant

recurs at another place.

1. Minima in BV{Q)

From now on we consider the more general energy functional

QvdH 1(1.1) E(v) = f [l+lDvf^dx + f [ H(x, t)dtdx - | f v2dx + [

where

(1.2) 3 € i"(3fi) , H € C 0 ' 1 ^ " x R)

satisfy

(1.3) |6| < 1 - a , a > 0 ,

and

(1.1*) f r > 0 , sup H(x, t) < a(l+t) , a > 0 , for a l l t > 0 .

We assume that ftcFT , n > 2 , is a bounded domain with Lipschitz

boundary 3£2 satisfying an interior sphere condition of radius R .

Here ft is said to satisfy an ISC of radius R , if for any boundary

https://doi.org/10.1017/S0004972700021079 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021079


346 G. Hu i sken

point xQ € 3fi there exists a bal l B of radius R such that B c Q andxQ

xQ

This inter ior sphere condition is imposed in view of the following

resu l t (see [3 ] , Remark 2 ) .

LEMMA 1. Let Q. be as above; then

(1.5) \v\dH 5 I |Z>y|dx + a • I \v\dx for all v € BV(ti)
J 3ft n > ft 'Q.

where ft = {x € fi | dist(ar, 3fi) < e} y a depends on z , R, 8ft and

0 < e 5 i?/2 i s arbitrary.

Then, assuming a l l these conditions to hold, we have

THEOREM 1. Let \\>. € Cr' (ft) , i = 1, 2 . Then the minimizing

problem

(1.6) E{v) •* min in X

has a solution u for any K and V , if (0.6) holds.

Proof. I t i s obvious that

(1.7) E{v) > -C for a l l t> € K2

for some constant C , since V is between the two bounded functions ty.

and 4"2 • N o w l e t U7 ^ e a minimizing sequence of the variational problem

( 1 . 6 ) . I f we define

(1.8) w = ̂  + V ( a ^ f j

then w € X in view of (0.6) and eventually we have

(1.9) E[vz) 5 E(w) .

Again using i|i < t) S i|/ we conclude

(1.10) |DuJoa; < f l+|z>yJ2] dx < £(u) + C
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where t h e cons t an t depends on I'i'oloo' K> ^» ^ a n (^ l^(*» $•) \m >

i = 1 , 2 . Thus, t h e sequence

(1.11) [ \DvAdx + f \vAdx

is uniformly bounded. Then, as in ( [2] , Theorem 2.1) we can find a sub-

sequence of the i>£ converging in L (fi) to some function u € BV(ti) .

I t was also shown in [2], that the expression

f BvdH(1.12) [ [l+lDvf^dx + f f H(x, t)dtdx + f
h Jfi Jo

is lower semicontinuous with respect to this convergence. To handle the

term

(1.13) - f f v*dx

we observe that in view of tjj S u7 5 i(/_ the Lebesgue dominated
1 i- c.

convergence theorem can be applied. Therefore

(l.lU) E{u) S lim inf #(^7)

and u is the desired solution.

THEOREM 2. If we choose

(1.15) i|>2 = ^ + M , M > 0 3

/or arbitrary but fixed K and W we can /in<2 V > 0 .,

then

tnat /or any 0 < 7 < V tne solution u of (1.6)

Z-ies strictly below \l>2 ;

(ii) for M large enough and V or K small enough the
solution u of (1.6) will be strictly below ty .

Proof. The conclusion of the theorem follows from the estimate

(1.16) u - ^ - c± • (e2+K-|*2IJ
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where the constants depend on H, n, a, ti, 3fi, |<J> 1̂  and |zty !„, • To

establ i sh the estimate, we choose the t es t function

(1.17) V = <J) + min(u-* , k) + T^T- • f max[u-%-k, o)
I x • \u\ iQ l

for any 0 5 k < M . Since

(1.18) min(w-^ , k) + max(w-ij) -k, o) = M - \J»

we have I v - ty dx = V . The estimate

(1.19) ^ < u S * 2

follows from 0 5 k S W and the fact that w € X? . Therefore v € X?

and

(1.20) E{u) < E(v) .

We obtain

(1.21) f ( l + l z ^ l 2 ) ^ < f (l+|Z)u|2)^dx + f Z(v-u)dX .

K ! f (V

+ - • {u-v)(u+v)dx + H(x, t)dtdx

The first term on the right hand side can be estimated by

x + f
h\A{k)

f (l+|Dlp I2] dx + f
U(k) <• 1 > h\A{k)

S 2 • | » | • \A{k)\ + f
1

where we used the nota t ion A(k) = {x € fi | u-ty > k} and

= Hn(A(k)) . Furthermore we get from (1.3) and ( 1 . 5 ) ,

(1.23) I &{v-u)dH < (1-a) f \D(v-u)\dx+ e_/ p • f \v-u\dx
Jan " - 1 Jn fl/ Jfi

u - <l> -
U(k) x

+ 2 • o . • u - <l> - kdx
R'2 x
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Moreover

(1.210 | • [ (u-v){u+v)dx 5 2 • K • |ij)oL • [ u - ^ - kdx .
2 h 2 >A{k) X

The last term in (l.2l) can be estimated by

(1.25) (|ff(-, 0)|00+|fff., ^ L - m f l + -[£|- + I ^ L J ) • f u - ̂ -

where we used the assumptions (1.1*) in a similar manner as in ( [ 6 ] ,

Estimate 2.1U). So we f inal ly conclude, from (1 .21) ,

(1.26) a ' \ \Du\dx 5 3 • |£ty, | • \A(k) | + e • f w - ik - kdx
>A(k) 1 °° U{k)

where

Up to a numerical constant this is exactly inequality (2.16) in [6], and

the estimate (I.l6) now follows in the same way as in [6].

REMARK. We can not expect the function u to be regular in general,

since there might be sections with vertical gradient. To avoid this

possibility, we impose an additional gradient constraint in the next

section.

2. Regular minima

In [6] we assumed that

(2.1) 6 € ̂ '"(Sfi) , H € ̂ '"(R* x R)

satisfy the conditions (1.3) and (l.lt). We denoted by A the minimal

surface

(2.2)

1 operator

Au
n

i=±

and used the notation

(2.3) (Au,

, a1 = D.u/[l+\Du\2)h

hi v ha n~1

Then we had the following result on the existence of critical points of the
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energy functional.

THEOREM 3. Let Q be a bounded domain of R" , n > 2 , with

boundary of class C ' a , and let the functions g and H satisfy the

conditions above. Then the variational inequality

( 2 . U ) <Au+H{x, U)-<U, V-U> > 0 for all v € #,

has a solution u € /^ '"( f i ) n ff2'2(R) n ^ " ( 0 ) £ /we assume <|* € C2(JT)

and if K or V is small enough. The solution has continuous tangential

derivatives at the boundary and in the case n = 2 we have u € u~(£2) .

If we impose on ip. the further condition

(2.5) J - a 1 (Oik) • y. > B on 312

w>jer« y ^ s *^ e outer unit normal to Sfl and i / 3f2 € C ' ,

B € ^'"""OfJ) , then u 6 ff2'°°(n) .

Now assume tha t Q, 3 and # axe as in Theorem 3 and tha t ij> has

the form

(2.6) * 2 = ^ + « , ^ € C^iT) , M > 0 .

Then we have

THEOREM 4. The minimizing problem

(2.7) E(v) •* min in K

has a solution u for any K, V, M, N , provided these quantities are

such that K is not empty.

If N and M are large enough and < or V is small enough, u.

satisfies

(2.8) l ^ o ' ™ 5 * - 1 > «o - * 2 -
 x •

Then uQ is also a solution to the variational inequality (2.U) and the

same regularity results as in Theorem 3 apply.
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REMARKS, ( i ) A solution uQ satisfying (2.8) can be considered as a

hanging drop which minimizes the energy in the set K- .

( i i ) K and V depend on N and M in the sense that i f N, M are

enlarged, K or 7 has to be taken correspondingly smaller.

( i i i ) The proof of Theorem h yields an existence result for the

variational inequality (2.1*) without using an abstract fixed point theorem

as in [6] .

Proof of Theorem 4. (i) K is a bounded, closed and convex set in

tt] (ft) and E is bounded from below on K . I t is easy to see that

then some minimizing sequence tends uniformly to a solution w of (2.7) .

(ii) We look at the new problem

(2.9) EAv) •* min in K

where

(2.10) E (v) = [ (l+|z>y|2)^dx + f ( H(x, t)dtdx

- K • u • vdx + SvdH , -

Jfi ° - Jan " - 1

E is a convex functional of the type Gerhardt considered in [2]. He

minimized those functionals in the set

(2.11) BK(fi) " {v > ^ | [

but the regularity results in [4] showed, that the solution is in ^ ' " ( f t )

and therefore a solution of (2.9).

Now, for the (unique) solution u of (2.9) we can establish exactly

the same estimate as in Theorem 2. This follows from the fact that the

te s t function

(2.12) v = i|) + min(w -i|> , r) + T4T f max{u -tfi -r)dx
J. XX |«| jjj XX

is in K and from the inequality
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(2.13) MQ < * 2 .

Thus we can choose M as large and K or V as small that

In order to get a similar estimate for the gradient of u , we observe

that u. also solves the variational inequality

(2.15) (Au±+H[x, I^I-KWQ, V-U±) > 0 for all v € K .

Moreover, i t was shown in [2] , that there is a Lagrange multiplier X € IR

such that u also satisfies

(2.16) (Au^+Hix, W1)-KM0+X, V-u±)> 0

fo r a l l v € K' = ^ ' " ( f l ) <•> {u > ^ J .

To this variational inequality we want to apply the gradient estimate in

( [6] , Theorem 1.2):

"We can choose N as large and K or V as small that

(2.17) I ^ L - * - i , " |a*0Ls N .»

Actually, the gradient estimate in [6] was established for solutions of the

related boundary value problem. But u can be approximated by solutions

of boundary value problems and i t was shown in [6], that the gradient

estimate for the approximating solutions is independent of the

approximation parameters.

In view of (2.lit), (2.15) and (2.17) the conclusion of the theorem now

follows from

LEMMA 2. If N, M, K and V are such that u € K , then we have

Proof of Lemma 2. We can compute

*iK>) =*K) -I n
(2.18)
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and therefore

(2.19) EjuJ = ̂ (i^) + (Sfco)-^)) " | f
ii

In view of the assumptions of the lemma we have

(2.20) E[uQ) 2 ff(U]L) .

Thus, i f uQ £ it, we have

(2-21) E^uJ <E1{U1) ,

a contradiction to the minimizing property of u .

F ina l ly , from Lemma U.I in [6] we have

COROLLARY. The solution u of ( 2 . 7 ) is unique if K is small

enough.
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