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ABSTRACT. With present day technology the technique which provides the 
greatest precision in astrometric and geodetic measurement is Very Long 
Baseline Interferometry (VLBI) (Robertson, 1975; Dravskykh, 1981; 
Gubanov, 1983). The precision of present day astrometrical measurements 
by VLBI exceeds those of the best modern optical observations by an 
order and a half of magnitude and is capable of further improvement by 
the future development of phase stable, wide band, global networks and 
by the future deployment of VLBI antennas in space. Such precision of 
observation places the technique of VLBI well within the regime of 
special and general relativity. The present paper presents an analysis 
of relativistic effects on VLBI measurements with an accuracy of 0.0001 
arc seconds. 

1. INTRODUCTION 

1.1 Long Baseline Interferometry Observations 

In conducting long baseline interferometry observations, a microwave 
signal from an extra-galactic radio source is independently recorded at 
each antenna site, together with appropriate timing information derived 
from synchronized atomic clocks, on magnetic tape. The tape recorded 
data is subsequently cross correlated at a special purpose correlator 
facility. Since the natural radio emissions are broad band white noise 
the recorded signals will not correlate unless the magnetic tapes are 
relatively delayed by an amount equal and opposite to the differential 
propagation delay between the antennas before cross correlation is 
attempted. For most applications to astrometry and geodynamics the inter­
ferometer delay, T , which maximizes the cross correlation and its first 
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time derivative, T , constitute the fundamental observables from which 
all other quantities of interest are inferred. 

1.2 Newtonian Interferometer Time Delay 

It is well known that in Newtonian physics time is considered to 
possess absolute properties which are independent of an observer's state 
of motion or position in a gravitational field. If we consider a source 
of radiation fixed at position r Q and (possibly mobile) receptors at 
positions r-^(t) and ^ ( t ) then the interferometer static geometric time 
delay T Q(t) is given by 

T Q(t) = ^ [ | r o - r l ( t ) | - |r o - ? 2 ( t ) | ] 

where we have introduced the convention that the time delay is considered 
positive if the signal arrives at antenna #2 before it arrives at antenna 
#1. If the source of radiation is at a great distance (which is almost 
always the case in VLBI when using extra-galactic sources) then the 
effects of parallax on the arrival of the wave fronts at the two antenna 
sites is negligible and the radiation can be regarded as a plane wave 
originating from a direction given by the unit vector k. In this case it 
is relatively easy to show that the static geometric time delay can be 
written as 

T o(t; = ± k-b(t) 

where we have introduced the interferometer baseline vector b{t) given by 

Mt) = r 2 u ) - r x U ) • 
In this paper we shall not consider the effects of the atmosphere and 
ionosphere nor the effects of the electronic delays in the VLBI data 
acquisition system on the measured time delay, all of which are of 
considerable importance in the practical application of the technique. 

1.3 Relativistic Interferometer Time Delay 

The breakdown of Newtonian physics in its ability to correctly describe the 
observed interferometer time delay can be attributed to a combination of 
the effects of both special and general relativity. These effects include: 
(1) relativity of simultaneity between relatively moving coordinate 
frames (this is an expression of the effects of aberration on the 
microwave radiation) 
(2; relative differences in the rate of proper time between clocks at 
the two antenna sites 
(3) curvature and position dependent metrical properties of the 
trajectory of the microwave radiation generated by gravitational fields 
of the solar system. 

The precision of delay measurement by VLBI depends on the effective 
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band width of the cross correlated signals. Using band width synthesis 
techniques delay measurement precision is of the order of 50 picoseconds 
or less which exceeds the precision with which the clocks at each 
antenna site are synchronized and so a model for the relative behaviour 
of the clocks on each baseline is required for the reduction of VLBI 
data. In the las't decade the frequency and time stability of laboratory 
clocks has reached the level of a few parts in 1 0 ^ for integration 
intervals of the order of one hundred to several thousand seconds 
(Jimenez, ly79; Hellwig, 1979; Vessot, 1979). The use of super conducting 
cavity oscillators coupled to cooled hydrogen masers is expected to 
yield a further factor of ten improvement (Vessot, 1979). Even though 
the performance of the frequency standards in routine use for VLBI 
appears to be about two orders of magnitude lower than the best labora­
tory performances it would appear that future clock performances provide 
the motivation for examining the relativistic effects on VLBI time delay 
to the order of parts in 1 0 ^ . 

2. CLOCK SYNCHRONIZATION 

VLBI time delay is a measure of the time interval between the arrival of 
a given wave front at the two antenna sites as reckoned by the differ­
ences in the readings of the two clocks marking the two events and so 
the issue of clock synchronism is central to the technique. The synchro­
nization of a pair of clocks at the same position r in three dimensional 
space is accomplished by simply setting the second clock to "read the 
same time 1 1 as the first. The synchronization of a pair of clocks at 
separate locations in three dimensional space requires a conventional 
definition. This problem was first addressed clearly by Einstein who 
proposed the following defining convention for clock synchronism. 

Two clocks at position r and r keeping time scales t and t are said 
to be synchronized if they both assign the same time of emission t e to 
a light signal emitted from position r e« The time of emission is to be 
determined in each case by: 
(1) noting the times t, t" of reception of the signal at each location 
r, r', 
(2) subsequently subtracting from these times of reception the intervals 
At, At"* required for the signal to propagate from the point of emission 
to the respective clock locations. 

The two clocks are synchronized if 

t" - At" = t - At . 

This is the basis of clock synchronization by Loran-C transmissions and 
by the reception of emissions from earth satellites such as Navstar GPS. 
The technique of clock synchronization by a satellite transponder is 
similar in principle and differs only in the fact that the source of 
synchronizing emissions is co-located with one of the clocks. In the 
case of the satellite transponder a signal is emitted from position r 
at time t and received, via a satellite link, at position r" at time t^. 
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The signal is returned via the satellite link to position r arriving at 
time t + St. The clocks are synchronized if 

which is identical to the previous synchronizing condition with 

In applying these clock synchronization techniques to clocks on the 
earth, any motion of the clocks relative to the source of the synchron­
izing emission subsequent to the signal emission will affect the nature 
of the achieved synchronization. For a source of synchronizing emission 
"at rest" relative to the solar system barycentre; if the effects of 
earth orbital motion and earth rotation are accounted for in calculating 
the signal propagation delays then the clocks will appear synchronized 
in a nonrotating barycentric frame. If the effects of the earth's 
orbital motion are neglected in calculating the signal propagation delays 
the clocks will appear synchronized in a nonrotating geocentric frame. 
The failure to account for the effects of earth rotation when synchron­
izing earth bound clocks will give rise to nontransitive synchronization 
effects (Ashby and Allan, 1979). 

In classical physics the relative rate of ideal clocks is considered to 
be exactly unity, independent of the clocks motion or position. 
Relativity theory recognizes that the relative rates of ideal clocks 
will differ from unity according to the relative motion and relative 
position of the clocks. Except in special circumstances, free running 
ideal clocks, whose epochs have been once synchronized, will not remain 
synchronous unless the rates of at least one of the clocks is adjusted. 
A time scale in which the rates of otherwise ideal free running clocks 
are adjusted for purposes of synchronization with a single "master clock" 
is known as a coordinate time scale. In the presence of local gravita­
tional fields, space-time is considered to be asymptotically flat at 
large distances from the gravitating masses and it is customary to intro­
duce a coordinate time scale in which local coordinate clock epochs and 
rates are adjusted so that the coordinate clocks run synchronously with 
an ideal clock at rest at infinity. 

3. PROPER TIME AND COORDINATE TIME 

The relationship between propertime and coordinate time is expressed by 
the space-time metric. In a coordinate system in which the space-time 
metric tensor has components g^ v, the proper time interval ds separating 
space-time coordinate positions x^ and x^1 + dx^, both on the world line 
of the clock, is given by 

At = - At 
At' = 0 . 

https://doi.org/10.1017/S0074180900148272 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900148272


EARTH BASED AND COSMIC LONG BASELINE INTERFEROMETRY 259 

where c is the velocity of light. The solar system is characterized by 
"weak" gravitational fields and the space-time metric tensor can be 
written in the form g^ v = + nyv> w n e r e hyv K < ^ a n c * w n e r e ^yv the 
metric tensor of flat space-time with signature (+1, -1, -1, - 1 ) . The 
post-Newtonian approximation to the solar system space-time metric 
expressed in a barycentric nonrotating Cartesian coordinate system with 
x° = ct, x 1 = x, x 2 = y, x 3 = z, has the form (Will, 1974) 

g 
_ - , 2$ , 23$ 2 , , 0 r A - 1 H o + /— + 4 —,— £ — j oo 2 4 4 ^ 4 c c c c 

7 a J 1 » W, 
8 0 J

 = " 2 A l 3 " 2 A 2 
c j 

where p = p(r) is the local rest mass density and 

J, r-r 
*(r) = - G J WX J d r 

vol.' 
is the Newtonian gravitational potential and where 

J lr - M Q ( r ) _ J ^ / dV> 
vol. 

, 2 x fi * ̂  I ft . + I B P ( ° 
4 P ( r 0 

8(r) = B^v' + 3 2$ + ̂  33TT + ^ 

A(r^ = T P ( r O [ ( r - r > v ( r ^ ) 

J |r - r'l 3 

vol. | r r I 

f p ( r ' )v . ( r ' ) V r )
 = ^ d V 

i2 
J- dV' 

vol. 

p ( r ' ) [ ( r - 0 - v l O ] [ r r r ; ] 
r ^ ^ - J - d V 

i r * r vol. 1 

The quantities it and p are the internal energy per unit rest mass and 
the local isotropic stress (pressure) respectively, measured in a 
comoving Lorentz frame. The numerical value of the dimensionless post-
Newtonian parameters 3, Y , 3-^ 32> ^4' ̂ 1 a n d ^2 d e P e n d o n t n e c n o i c e 
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of gravitational theory, 
values of unity. 

We shall assume their general relativity 

For antennas in the vicinity of the earth, including orbital antennas at 
altitudes of up to 4000 kilometers, the above general expressions for 
the post-Newtonian space-time metric can be greatly simplified while 
retaining accuracy of parts in 10 . The barycentric position vector r 
can be regarded as the vector sum, r" = r e + r"g, of | e , the barycentric 
position vector of the earth's centre of mass, and r , the geocentric 
position vector of the antenna relative to the earttr s centre of mass. 
The local mass density field can be subdivided into two components 

p(r) = p eQr) + p (r) where p (r) is the mass density field of the earth 
g 8 

and p e(r) is the mass density field of bodies external to the earth. 
Substituting this expression for the^mass density field into the_^integral 
for the Newtonian potential gives $(r) = $ (r) + $ (r) where $ (r) is 

e 8 
the Newtonian potential of the earth's mass and $ e(r) is the Newtonian 
potential of the masses external to the earth. For antennas in the 
vicinity of the earth, including antennas in orbit with altitudes of up 
to 4000 kilometers, we have 

10 
» c 

£ 4 x 10 - 1 0 

2 
c 

10 

and so to an accuracy of parts in 10"^ we can write 

g = 1 + —o + J— 
°oo 2 4 c c 

2Y$ 1 

and 

ds,"*\ 
dF ( r ) = 

c 

* e
2 l r ) 1 /2 
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Now for antennas in the vicinity of earth 

$ (r) = $ (r +r ) = $ (r ) + V$ (r )*r + O C l O " 1 7 ) e e e g' e e / e v e' g 

where 

V$ (r ) = - a 
e v e e 

and a e is the barycentric acceleration of the earth's centre of mass. 
Following Thomas (1975;, the use ot the identity 

— a • r = v *v — — - (v • r ) 
e g e g dt e g' 

allows us to obtain the following expression 

where 

*<*e> = ~ 1 V e 2 ] 

c 

9(r ) = (r ) - i v 2 ] g c
2 g g 2 g 

£(r e) = " ^ [ 3 ^ ( r e ) + Y $ e ( r e ) v e
2 - | c 2 ^ 2 ( r g ) ] 

c 

-> -> -> 
It is useful to express iJjQr ) , G(r ) , and e(r ) in terms of their 

-> + e g + e + + 
mean values <ty(r )>> <6 (r )>, and <0(r )> and variations Ai}j(r ) , A6(r ) , _̂  e g e e g 
and Ae(r^) about their means. In which case we have 

f = 1 " 7 dF <VV + <^ ( ?e> > + < 9 ( t g ) > + < e ( V > 

+ Ai|/(re) + A 0 ( r g ) + Ae(r e> 
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In particular for the earth in a Keplerian orbit about the sun with 
major axis a, eccentricity e, and mean anomaly f, 

GM 

e 

where M is the mass of the sun. Element orbital mechanics gives 

2 G M e * (r ) + 1/2 v - - -r-1 

e e e 2a 

1 _ 1 + e cos f 
e a(l-e ) 

from which it follows that 

GM 2 ^, * © 3+e <t<r.» = - — 
2ac 1-e 

< £(r e)> - -rf 
a c 

; 2 m - r2-(l-F)e 2 _ 9+(6+16F)e2+e4 

2 2 2 2 
(1-eV 32(l-eV 

where F = <cos f> 

These results are similar to those of Brumberg (1972) when the formulas 
presented here are reduced in accuracy to five parts in 10"^ in which 
case the expressions take the form 
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& - l - T » * T - l 
c 

For antennas in space for which, 6400 km £ £ 22400 km, it is 
necessary to take 

GM GM 
cO = + 

i ~^ i I i r +r r i e g ' 1 g' 
where M$is the mass of the earth; and for antennas in space for which, 
22400 km £ r^ £ 7x10^ km it is necessary only to take 

GM 

r +r 
e g' 

To an accuracy of five parts in 1 0 ^ one can also take 

+2 2 + + r = v + v *v e e g 
If the formulas presented here are further reduced in accuracy to five 
parts in 10^ then it is only necessary to take 

GM 
4> = — 2 — 

r +r 
e g 1 

and to take 

+2 2 r = v 
e 

4. RELATIVISTIC EXPRESSION OF INTERFEROMETER TIME DELAY 

The proper time delay T , actually measured by a long baseline inter­
ferometer differs from the first order quantity referred to earlier in 
this paper as the Newtonian static geometric delay T Q(t) as a consequence 
of a number of contributing effects. These effects include: 
(1) the kinematical consequences of the motion of the antennas relative 
to the source of radiation during the interval by which the signal 
propagates from one antenna to the other. The expression for the static 
geometric delay is valid in a Newtonian sense only if the interferometer 
geometry is static or the velocity of light is infinite. In reality the 
finite velocity of light implies that the motion of the antennas alters 
the effective interferometer baseline and, consequently, the observed 
time delay. 
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(2) the relativistic effects ot the curvature of space-time which 
alters the Newtonian coordinate time interval separating the space-time 
events of the arrival of the signal at each antenna site. 
(3) the relativistic effects on the rates of proper time of the synchron­
ized clocks. The relative rate of a clock's proper time and coordinate 
time is given by the expression for the line element which must be 
integrated along the clock's world line from the coordinate time of 
clock synchronization until the coordinate time of time delay measurement 
to correct for the differences between coordinate time and proper time. 

s s 
The relativistic coordinate time interval T(^>t2) separating the 
coordinate time of arrival t| of the signal at antenna # 2 and the 
coordinate time of arrival t| of the signal at antenna # 1 can be 
written in heliocentric space-time coordinates in the form (Brumberg, 
1972; Finkelstein, 1983) 

T ( t J , t ® ) = t j - t\ 

C O o 

(l+Y)GM c 

In 
R R V K I 

R -R *k n 

o o 1 

£n "̂2 * ̂ 2 

R -R 'k 0 

o o 2 

N (l+y)Gm. 

* \ 3 ^ 
j=l c 

£nl 
R -R. - (R -R.)*k, ' 

1 o j 1 o 2 1 

- £n 
R -R. - (R - R J * k 

O J 

In the above expression Rq(t 0) is the heliocentric position of the 
source of radiation and t^ is the coordinate time of the signal emission 
from the source. ^ ( t f ^ a n c * ^ l ^ f ) a r e t n e heliocentric positions of the 
antennas at the coordinate times t| and t| corresponding to the events 
of signal reception at antennas #2 and #1 respectively; while the unit 
vectors £2 and £^ are the apparent directions of the source of radiation 
as viewed from antenna sites #1 and 7/2 respectively. M is the mass of 
the sun and m^, j=l,2...N, are the masses of other gravitating bodies 
whose heliocentric positions at the time of observation are given by 
J j , j=l,2...N, respectively. For extra-galactic radio sources ^ q ^ ^ J 
i=l,2, and the parallax which distinguishes the unit vector k£ from the 
unit vector k^ vanishes. As a result, for extra-galactic sources, the 

https://doi.org/10.1017/S0074180900148272 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900148272


EARTH BASED AND COSMIC LONG BASELINE INTERFEROMETRY 265 

above expression for coordinate time delay reduces to 

T(.tS
vtS

2) = tj-t* 

( 1 +Y ) G M Q 

Jin 

N (l+y)GM. 

3=1 c 

R l + R l * k 

R 2 + R 2 - k !•> 

In 
| R r R , | + ( R - ^ - k 

l^-Rjl + ( R ^ R ^ ' k 

In each of these results the leading term in the expression for the 
coordinate time delay is the Newtonian static geometric delay modified 
by the kinematic effects of the antenna motions. The remaining terms 
represent the effects of space-time curvature on the coordinate time 
delay arising from the gravitational fields of the bodies of the solar 
system. 

s s 
The heliocentric coordinate time delay, t^-t2» is given implicitly by 

s s s s 
the above expressions in the form tj-t2 = TCt^jt^) and in this form does 
not refer to an explicit instant of coordinate time t. For purposes of 
comparing theoretical models with observations and for least squares 
parameter estimation it is convenient to have a theoretical model for 
coordinate time delay which appears as an explicit function with 
coordinate time t as an independent variable. This is achieved by 
reducing the expression for coordinate time delay to some standard epoch 
t where t| £ t £ t|. In Finkelstein (1983) the position of the standard 
epoch t within the interval t| £ t £ t| is selectable by a choice of his 
parameter y, (not to be confused with the post-Newtonian expansion 
parameter Y ) • The standard procedure used to achieve this result is to 
expand the heliocentric positions of the antenna sites in a Taylor 
series about the standard epoch t and solve the resulting equation T(t) 
by an iterative numerical method (Fanselow, 1983) or; to substitute the 
expression for the static geometric delay into the Taylor series 
expansion which is then truncated after one (Thomas, 1975) or more terms 
(Robertson, 1975; Finkelstein, 1983). 
For purposes of illustration we can consider the case of an extra-
galactic source of radiation where we chose to reduce the coordinate 
time delay to the standard epoch t|. Following Robertson (1975) we can 
set 

* i ( t i } = + vt;)-T(tJ,tJ) + \ R ^ t ^ - T ^ t ^ t ! ; ) + ••• 
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and then substitute 

T ( t J , t ° ) = ^&2(tS
2) - R ^ t * ) ] 

into the Taylor series expansion. For post-Newtonian accuracy the errors 
should be confined to terms of order 1/c^ or higher and so it is 
necessary to carry the Taylor series expansion out to, at least, second 
order. The expansion of Thomas (1975) is therefore valid only to 
Newtonian accuracy. 

4.1 Conversion from Coordinate Time to Proper Time 

The above relativistic expression for the interferometer coordinate 
time delay T(t|,t|) must be converted from coordinate time to proper 
time by the use of the theoretical formulas developed in section 3. If 
the clocks are synchronized at some coordinate time t Q then the proper 
time intervals, s2^ tl)> s2^2^ indicated on each ot the two clocks at the 
coordinate times t*, t| of signal reception are 

/

ds.. r ds.. 

I T d t - < ' c c + J < d T - x> d t 

\ 
and t| t 2 

s 2ct s
2) - s <t c> -J* £ 2 dt - 1 ; - t c + / ( ^ - 1 ) d t . 

s s 
The interferometer proper time delay T is given by T = ^ ( t ^ ) " s 2 ^ t 2 ^ 

s s 
which can be written as T = t s ^ ( t ^ ) ~ s

1 ^ t
c ^ ] " t s

2 ( t 2 ^ ~ s 2 ^ t c ^ ^ s i n c e c l o c k 

synchronization gives sj^(t c) = ^ ^ c ^ * T n e s e relationships yield a 
formula for interferometer proper time delay given by 

t s
 t

s 

0 ^ d s i <= r l d s 9 
T • A +

 ( i r - ~ z i ~ (dt _ « d t c 

/
'L ds r ds 

< d r - « d t - J ( i r - 1 } d t 

r 1 ds, r ds, 

10 
To an accuracy of five parts in 10 this can be written 

x = T U S
r t s

2 ) + (tj - t c ) ( ^ i - 1) - (ts
2 - t c ) ( ^ - 1) 

In the above treatment of the problem it is assumed that the coordinate 
clocks are synchronized while at rest in a heliocentric frame. The 
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problem can equally well be solved using coordinate clocks which are 
synchronized while at rest in a non-rotating geocentric frame. 
Alternatively the solution presented here can be Lorentz transformed 
into a non-rotating geocentric frame by the formulas in Finkelstein 
C1983). Transforming from the heliocentric frame to the geocentric frame 
gives rise to an additional term of the form 1/c 2 V 6 * D " and where v e is 
the heliocentric velocity of the earth's center of mass (Thomas, 1975; 
Soffel, 1985). This term is a manifestation of the relativity of 
simultaneity between relatively moving reference frames. 

Differences between the formulas of all the authors cited, including 
those of Pavlov (1984) and Pavlov (1985) which are expressed in the 
non-inertial reference frame of the rotating earth, are a consequence 
of the choice of reference system. However while the different formulas 
reflect the different choices of coordinate systems the interferometer 
proper time delay is a coordinate independent quantity and in all cases 
the consistent use of the chosen coordinate system and the formulas 
which apply will yield coordinate independent results. 
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DISCUSSION 

Alley : what kind of clocks are used in soviet cosmical experiments ? 

Kreinovich : I do not know the exact technical details. Maser clocks are 
used in orbit, corrected by periodic signals of more precise Earth-
based masers. 

Pavlov : why do you use Newtonian expressions for fringe frequency in 
relativistic case ? 

Kreinovich : we use the formula F = A T / A because it is the way that one 
computes F in real VLBI. In the case another formulation would be used 
we would of course also apply it. 
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