
14

Best Practices in Data Management

At the end of our journey through different tools and techniques for data
management, what have we learned? How can we use these skills to make
our research better? As I emphasized throughout the book, good data
management means thinking about two different aspects: the structure of
your data, and the manipulation of the data content.

14.1 two general recommendations

Thinking about data structure is usually straightforward in the social
sciences, since the vast majority of our data is stored in tables or can be fit
into a tabular format. A tabular data format is one where we have infor-
mation on separate cases (rows), each of which consists of the same set of
variables (columns). Since this tabular data structure is so common in the
social sciences, we hardly reflect on it. Still, there is considerable variation
in how different tools deal with tables. In spreadsheets, for example, a
table is simply a two-dimensional container of information, without nec-
essarily imposing a standardized structure of variables and cases. Rows
can have different lengths, cells can be merged, and the type of data stored
in a column can vary between cases. This means that spreadsheet software
offers little support to ensure the correct format of our data and to reduce
errors, which (among many other problems) can lead to trouble when
processing spreadsheet data further in statistical software. Hence, it is up
to the user to check for errors and inconsistencies in the data.

209

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020


210 14 Best Practices in Data Management

Other tools take data structure much more seriously. R, for example,
explicitly uses a rectangular tables as its standard data structures, such
as data frames or tibbles. While the columns in a data frame always
have types, these types can change silently when you re-assign values to
them. This is called “dynamic typing,” and it is a standard feature of the
R programming language. Therefore, while R at least maintains typed
columns, it also does not prevent you from certain errors, such as setting
a string value in what is supposed to be a numeric variable. Relational
databases follow a stricter approach here. As you recall, in a relational
database, data definition is a separate step in your workflow, where you
set up the structure of tables before adding content. This involves spec-
ifying the columns and their types, and the database system later makes
sure that only valid data is entered into the respective columns. Changing
column types is an explicit step and needs to be done using the appropriate
commands in SQL.
Data structure, however, also relates to the question of long vs. wide

tables, or the splitting of data across several tables. Recall that “wide”
tables are those where we have a dataset with two dimensions (e.g., coun-
tries and years), and where the columns are used to represent one of these
dimensions. In a “long” table, the two dimensions are simply stored in
different columns. We discussed that wide tables are usually not a good
choice, as the addition of more data requires changes to the table structure
(the addition of more columns). Also, as a general rule of thumb, tables
should contain data on exactly one type of entity only. In order to avoid
redundant data, we distributed our data across several tables, and linked
them to each other by means of unique identifiers.
In sum, when working on an empirical research project, it is a good

idea to reflect on the structure of your data. In some cases, this will be
easy, in particular if your research project involves a single table only. For
other projects, it may be worth spending some time to figure out a suitable
structure underlying the data, as this will make your work easier. In the
following, I list a number of questions that can help you do this.

recommendation 1: think about the structure of your
data.

• What variables does your dataset contain, and what are their types?

• Can you avoid redundant data? For example, can one variable simply
be generated by transforming one or more other variable(s)? If so, there
is no need to keep the former in the main dataset.

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020


14.1 Two General Recommendations 211

• Does your table grow down when adding data? Do you keep your
data in a “long” format, such that the addition of new data and new
variables remains easy?

• Do you only have data on one type of entity in the dataset? If not, you
may consider dividing your data into several tables, making sure that
unique identifiers exist to link the records.

The second main aspect to consider for an empirical research project is
the workflow in which you process your data. As discussed in Chapter 1,
data management involves the creation of datasets for analysis, start-
ing from one or more raw input datasets. One of the most important
requirements for us is the transparency and replicability of the data pro-
cessing workflow. In other words, we need to make sure to document
every step we take in getting from the raw input datasets to the anal-
ysis dataset. The way to do this is to save this workflow as a script,
for example, using the R programming language. Manual “point-and-
click” operations such as editing and reformatting data in a spreadsheet
should be avoided if at all possible (but can of course be useful when
creating a new, manually coded dataset from scratch). If you follow the
approach taken throughout the book, all your data management work
will be done in R and possibly SQL,which is why it is transparent and can
be replicated.
Another important question is whether you need a file-based workflow,

or whether you can benefit from using a dedicated database for your
data. A purely file-based approach is technically easier to implement,
since you do not need an additional database server and the separate
steps to import/export the data. However, databases can be useful if
your datasets are large and/or involve many interlinked tables. In theses
cases, specialized functionality in a relational DBMS can help you keep
these tables consistent, while being able to speed up operations involving
large numbers of records. Also, databases are designed for a multi-user
environment with different levels of access. For example, this makes it
possible to keep a database available such that some users can update it,
while others have read-only access.
Of course, your workflow and the tools you choose for it are also

strongly determined by the type of data you deal with. Simple tables
with text and numbers can be processed in almost any type of statistical
toolkit or database system. If you need to process more specialized types
such as spatially referenced or textual data, this will affect your choice

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020


212 14 Best Practices in Data Management

of software. I presented various extension libraries for R, but we also
discussed how PostgreSQL can be extended to manage data beyond the
traditional tabular model.
Overall, the choice of a particular processing pipeline is closely related

to the above questions around data structure. Once you know what type
of data you deal with and what its structure should be, you can select the
suitable software tools for processing it. Again, here is a list of possible
questions you should consider when doing so.

recommendation 2: think about the workflow
to process your data.

• What is the amount of data you have? R can deal with small to
medium-sized datasets well, but it may find large ones difficult to
process. In these cases, databases provide the necessary features such
as indexing, which allow you to deal with large amounts of data
efficiently.

• Do you require the software to ensure the correctness and consistency
of your data? If so, it may be useful to opt for a relational database with
explicitly defined table structures and support for interlinked tables.

• Do you need to deal with specialized types of data? R has many exten-
sion libraries that can handle spatial data, text data, or networks. Some
of this functionality is also available through PostgreSQL’s extensions,
but this is much more limited.

• Does the complexity of the technical setup matter? Purely file-based
data storage with data processing in R is easier to set up, and requires
less technical overhead for others replicating this work.

• Do several collaborators work on the data at the same time? If there
is concurrent access to data by several users, file-based data storage is
often not ideal. For these cases, a distributed setup with data stored on
a separate database server should be preferred.

To conclude the book, I give some recommendations on how to han-
dle two challenges that often arise in data management and coding: the
collaborative work on research projects, and the public dissemination of
research data.

14.2 collaborative data management

More and more work in the social sciences is conducted collaboratively,
which means that several scholars work together to produce an article or
a book. Oftentimes, this also means that empirical work on a project is

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020


14.2 Collaborative Data Management 213

carried out by different researchers, and data and code must be shared
between them. What is the best way to organize this process?
A simple and very common solution is to use a shared drive (such as

Dropbox) for the exchange of data and code. In practice, however, this
can lead to several problems. First, with multiple users accessing the same
shared files, there is a huge risk of someone overwriting somebody else’s
changes. Imagine User A and User B editing an R script on the shared
folder at the same time. If User A saves their changes first, User B will
overwrite these changes when saving their edits. The same can happen
to data stored on a shared drive. The second (and related) problem is
that most cloud storage services do not keep histories of files, unless you
explicitly enable (and pay for) this functionality. That is, once you save
a file, only the latest version remains available, and you no longer have
access to earlier ones. For these reasons, I recommend not to use simple
shared drives for collaboration; they only work if there is a clear division
of labor such that at any given point in time, there is only one user writing
to the shared drive. This may be difficult to implement in practice and
can still result in data loss, which is why it is preferable to use a version
control system (VCS).
VCS have been developed for computer programming, so they can also

be used for data management as long as all your operations are docu-
mented in code (which after reading this book, they should be). A VCS
can be helpful for your work in two ways. First, you can save different
versions of your source code as you continue to work on it. These versions
represent different stages of your project, and you typically add a short
summary to each version to describe what it does. Overall, this transpar-
ent approach to code development is also very useful when working on
a project alone (without collaborators), since it allows you to go back
to particular versions and track the changes you made since then – for
example, to check for errors in your code. Second, for collaborative work,
the VCS allows you to combine and merge changes made by different
users into a single code base. Figure 14.1 illustrates this.

figure 14.1. A version control system for collaborative coding.

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020


214 14 Best Practices in Data Management

If two researchers (User A and User B) each work on the same script,
each of them can push their changes into a main repository maintained
by the VCS. This repository serves as the storage facility for the different
revisions that the users make to the code. It allows each user to pull
changes made by the others and merge them into their local copy of the
script, without overwriting their own edits. There exist different types
of VCS. By now, distributed VCS such as Git are the most popular, and
there exist numerous introductions and quick-start guides online (see, e.g.,
Blischak et al., 2016).
What type of content should be managed by a VCS? Systems of this

kind are tailored to the management of source code. That is, they are
designed to track changes in text files, but not in binary files (such as
Stata’s .dta files). For the purpose of data management, this usually means
that only your data management scripts should be placed under version
control, but not the data files themselves, if you can avoid it. For collabo-
rative projects, I recommend that your code include download commands
to fetch the input datasets from their original location, rather than storing
these datasets in your repository. This way, each collaborator can generate
the output datasets simply by running the project code, without the need
to manually obtain copies of the input datasets. This, however, is only
possible if the original input datasets do not change and can always be
obtained from a given location. If this is not the case, adding a copy
to your repository is usually the best option. Of course, if your data
resides in a relational database and needs to be accessed by the different
collaborators in the project, this is even easier, since you simply connect
to the same database and perform much of your data processing there.
The code to do this should of course be located in a file under version
control.
A detailed introduction to version control is beyond the scope of this

book. My goal in this section was to make you aware of these systems
and provide some intuition on what they do. If you frequently work on
projects with several collaborators, it is definitely worth learning more
about these systems, even if the initial learning curve may be steep. How-
ever, as mentioned above, VCS are designed to manage code, not data. If
you need to distribute data files,we take a brief look at data dissemination
in the following section.

14.3 disseminating research data and code

The data management and processing that we described in this book is
done by you as a researcher, and by the other members of your team.

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020


14.3 Disseminating Research Data and Code 215

However, at some point during the project, you usually need to make your
procedures public, to ensure transparency of your scientific approach and
to give others the possibility to replicate your work. At the latest, this
should happen when a research article is published, and many journals
by now require the publication of replication data and code along with
the article. Typically, this includes material for the analysis only; in the
terminology introduced in Chapter 1, this is the analysis dataset(s) and
the analysis code.
However, at a time when empirical datasets in the social sciences are

becoming increasingly complex and large, there are good reasons to also
share data and code that were used to generate the analysis data in the
first place. In particular, if several input datasets are involved, mistakes
can happen when merging them. While sharing code is straightforward
since the files are small and there is usually no sensitive content involved,
this may be different for research data. Datasets can contain sensitive
information and attributes that identify individuals, which is why they
often cannot be shared in public. Other data are prevented from public
dissemination by legal constraints, for example, if they were purchased
from a commercial provider.While sharing data is preferred from a scien-
tific point of view, it is essential that this happens within the given ethical
and legal limits. To learn about new approaches for preserving privacy
in research data while still making analysis possible, see, for example,
Evans and King (2022). Also, all your data and code should be properly
documented.
When all legal and ethical requirements for data sharing are met, you

can use one of several ways to disseminate your research data and code.
The easiest one is again to post these materials on a publicly available
website, as many researchers and journals do for their replication mate-
rials. However, I recommend using one of the freely available, special-
ized portals for this purpose. Many institutions use the Dataverse soft-
ware to create their own research dissemination infrastructure, but you
can use Harvard’s Dataverse at https://dataverse.harvard.edu to set up a
free account and post your code and data. An even more comprehensive
research infrastructure is provided by the Open Science Foundation at
https://osf.io. While it contains numerous other useful tools to facilitate
collaboration among researchers, it also allows you to share your data
and code publicly.
These two portals have several features that make them particularly

suitable for data dissemination. First, they maintain different versions of
files. We already saw that this is useful for code files, but is also necessary
when distributing research data publicly. Using the file history offered

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://dataverse.harvard.edu
https://osf.io
https://doi.org/10.1017/9781108990424.020


216 14 Best Practices in Data Management

by Dataverse or OSF, you can release new versions of your data that fix
mistakes or extend coverage of your data. Since these versions can be
tagged with a short description, you can document the evolution of a file
or a dataset for users outside your project. Second, the data portals allow
you to make your data files accessible under a fixed link, regardless of
the current version of the file. That is, when you distribute a link to your
file, this link remains the same even if you update the file. Older versions
remain accessible in the data repository, but you need to explicitly request
the respective version. This makes the development of datasets, but also
the access to them, flexible and transparent, without the need to use your
own website or a simple cloud storage facility.

14.4 summary and outlook

At the beginning of this book, I asked whether it is useful to spend an
entire book on data management. I gave a number of reasons for why this
would be helpful to quantitative researchers working with increasingly
complex and large amounts of data. A key learning I emphasized in the
book is the need to document every data processing step in getting from
the raw input data to the dataset(s) used for analysis. This makes data
management as convenient as possible for you as a researcher, but also
ensures that your research is replicable and transparent for others. All
this is possible when you perform data management in code, such that
each operation is included in your script. It becomes much more difficult
when using manual operations, for example, in a spreadsheet software.
The tools and techniques we covered in this book also allow you to make
your data management process scalable and versatile, such that the same
approaches can be used regardless of the size of your dataset or the types
of data that you intend to use for your research project.Here, in particular,
I introduced relational databases as a dedicated data management tool,
which can handle large amounts of data, but can also be extended to cover
more specialized types such as spatial or textual data.
The tabular data model has been of central importance throughout this

book. Tables come naturally to social scientists – all the applied exam-
ples we teach in introductory methods classes involve data formatted as
tables. In the book, I showed how tables are useful for many applica-
tions, including those that go beyond the conventional format of a single,
rectangular table. Data can be distributed across several tables, but the
traditional structure can also be extended to include more specialized
columns such as those with spatial coordinates. Despite the continued

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020


14.4 Summary and Outlook 217

importance of structured, tabular data, unstructured data will become
increasingly relevant also in the social sciences. In this book, we only
scratched the surface of this topic when dealing with text data. Therefore,
if you want to continue to expand your data analysis skills beyond the
topics covered in this book, learning more about text analysis and related
topics would be a promising way to go. I hope that this book can serve
as a useful and comprehensive preparation as you continue this journey.

https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020


https://doi.org/10.1017/9781108990424.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.020

