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3.1 Introduction

The use of machine translation in cross-lingual health communication and
clinical settings is growing (Ragni and Viera, 2021; Manchanda and Grunin,
2020; Dew et al., 2018). Patients, medical professionals, and even common
people with different language and cultural backgrounds have found these low-
cost online translation systems very convenient. The technology can be espe-
cially useful for those with special needs, such as those with speech and hearing
impairments. Overall, the use of online machine translations is on the rise across
the world, but research shows that there are risks and uncertainties associated
with these emerging technologies (Santy et al., 2019; Almagro et al., 2019;
Mathur et al., 2013b; Kumar and Bansal, 2017). There is thus a pressing need
to learn about the types and levels of mistakes and errors that machine translation
systems make when deployed in health and medical domains. Policies and
regulations are needed to reduce the risks and safety issues associated with the
use of automated translation systems and mobile apps by clinicians and patients;
and systematic empirical analyses of human and machine translation discrepan-
cies of health and medical resources can inform their development.

Many online machine translation systems, such as Google Translate (GT),
are constantly improving the quality of automated translation outputs by
adapting technologies such as neural machine translation (NMT). Compared
to traditional rule-based or statistical machine translation, NMT offers greater
coherence, naturalness, and logical accuracy (Popel et al., 2020; Đerić, 2020;
Jia et al., 2019), and is therefore more likely to gain trust from users who lack
sufficient knowledge of the language pair being translated and consequently
cannot judge the relevance and safety of translation outputs related to medical
or health information. Research shows that several issues can in fact lead to
serious errors in machine-translated health and medical resources.
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To be specific, the following features of English source texts were linked to
clinically significant or life-threatening mistakes in machine translation out-
puts: (1) low readability of English long sentences (Flesch-Kincaid scores
greater than Grade 8); (2) the use of atypical words, medical terminology, or
abbreviations not explained in the source texts; (3) spelling and grammar
anomalies; and (4) colloquial English (Khoong et al., 2019).

Nevertheless, despite its importance for reducing inequalities in healthcare
services for vulnerable populations, improvement of translation technologies in
medical and healthcare settings remains an understudied field of research.

In medicine and healthcare research, machine learning is becoming increas-
ingly important. The detection and prediction of diseases, or of populations at
risk of developing diseases, is an important application of machine learning, as
early targeted interventions can improve the cost-effectiveness and efficiency
of existing medical treatments significantly. The use of complex machine
learning models can reduce investment in advanced medical experiments and
clinical equipment but can also improve diagnostic precision by exploiting
characteristics of the study subjects that are relatively easy to obtain. In general,
classifiers that use machine learning tend to outperform the standard param-
eters and measurements of medical research in predicting health risks and
diseases. It is true that the use of machine learning in health research has
sometimes been criticized as overfitting learning algorithms due to small
samples. However, some machine learning models, including sparse
Bayesian classifiers such as relevance vector machines (RVMs), have proven
to be highly effective in controlling algorithmic overfitting and thus improving
the generality and applicability of findings (Madhukar et al., 2019;
Langarizadeh and Moghbeli, 2016; Tipping 2001; Zhang and Ling, 2018;
Silva and Ribeiro, 2006; Tipping and Faul, 2002).

This study examined whether it would be possible to improve diagnostic
performance using Bayesian machine learning to combine easy-to-obtain
English source health material features (both structural and semantic). It is
anticipated that the results may lead to the automated combination and analysis
of natural language features of English medical and health resources to improve
detection of fundamental conceptual errors in translations into various lan-
guages. Success in detecting source text features associated with higher prob-
abilities of conceptual errors in machine translation will support the use of
machine learning techniques for the purpose of this study: the assessment and
prediction of risk profiles of specific machine translations (Daems et al., 2017;
Voita et al., 2019; Ashengo et al., 2021; Banerjee and Lavie, 2005).

For machine translations predicted to have high probabilities (>50 percent)
of containing conceptual errors, a human evaluation and expert scrutiny would
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be required to reduce potential risks and clinically significant errors for both
users and communities. Translation error detection and prediction based on
machine learning would improve awareness – among medical and health
professionals and throughout the public at large – about how to safely use
online translation software. In addition, this study examined the social impli-
cations of setting probability thresholds for Bayesian machine learning classi-
fiers of machine translation error detection. Probability thresholds associated
with higher classifier sensitivities and lower specificities imply higher pre-
dicted error rates in machine translation outputs; and these will result in
increased investments in human review and greater burden on the healthcare
systems of multicultural societies.

3.2 Methods

3.2.1 Research Hypothesis

As with human translation errors, conceptual errors in machine translation
outputs can be predicted based on the likelihood of occurrence; and machine
learning models can facilitate the prediction. For the purpose of this study,
Bayesian machine learning classifiers were developed to predict the probability
of critical conceptual mistakes (clinically misleading instructions) in outputs of
state-of-the-art machine translation systems (Google). To develop the classi-
fiers, the structural and semantic features of the original English source texts
were used to estimate their risk profiles when submitted to machine translation
tools online. The probabilistic output of sparse Bayesian machine learning
classifiers is more intuitive for clinical use than machine learning output
converted to nonlinear scales by postprocessing, and for this reason is more
informative and preferable for the purpose of this study.

3.2.2 Screening Criteria for Text

MSD Manuals offer comprehensive medical resources developed by global
health experts. Most of the original English sources have been translated into
twelve world languages by professional translators and reviewed by domain
experts since 2014. In China, these manuals are an important source of health
education for the public andmedical students (Liao et al., 2017). On the website
of MSD Manuals’ Consumer Edition, translated health resources are categor-
ized by various common topics to facilitate search and retrieval of health
information. Taking advantage of this resource for this study, 200 original
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English texts were collected and, after removing texts not long enough for
structural analysis, kept 185 articles of comparable lengths.

3.2.3 Topics of Infectious Diseases

With the aim of developing machine learning algorithms that are generalizable
or topic-independent in predicting critical conceptual errors in Chinese
machine translation, a cross-section of health resources on infectious diseases
were selected. The collected texts related to the following diseases, among
others: dengue, Ebola, Marburg virus, Hantavirus, hemorrhagic fevers, Lassa
fever, lymphocytic choriomeningitis, Zika, bacteremia, botulism, clostri-
dioides difficile infection, gas gangrene, tetanus, gram-negative bacteria such
as brucellosis, campylobacter infections, cat-scratch disease, cholera,
Escherichia Coli infections, haemophilus influenzae infections, klebsiella,
Enterobacter, Serratia infections, legionella infections, pertussis, plague,
Yersinia infections, pseudomonas infections, salmonella infections, shigello-
sis, tularaemia, typhoid fever, gram-positive bacteria such as anthrax, diph-
theria, enterococcal infections, erysipelothricosis, listeriosis, nocardiosis,
pneumococcal infections, staphylococcus aureus infections, streptococcal
infections, toxic shock syndrome, and clostridioides difficile infection.
Professional translators matched the original English texts with their Chinese
translations, verified them in consultation with domain experts and published
them on the Chinese edition of the MSD Manuals website.

3.2.4 Labeling of Machine Translations

Machine translations were generated using GT, using the original English
source texts (May 2021). Chinese translations were labeled as human and
machine translations respectively before being thoroughly analyzed by two
native Chinese speakers trained as university researchers. They were asked to
assess the severity of any discrepancy between paired Chinese translations
(human versus machine). Language variability was allowed without causing
clinically significant misunderstanding of original English source texts. A third
trained observer adjudicated any discrepancies between the assessors. Machine
translations exhibited two types of errors: terminological inconsistencies and
conceptual errors. Conceptual errors were the focus of this study, in view of
their higher severity and of the potential harm if machine-translated medical
materials remained undetected by users lacking adequate medical training or
the ability to appraise the materials.
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3.2.5 Conceptual Mistakes in Machine Translations

In machine translation, conceptual mistakes are errors that can cause life-
threatening actions or misinterpretations of original English materials. In this
study on machine translation of public-oriented medical materials, these can
include erroneous interpretation of medical advice, or clinical instructions on
the detection, prevention, and treatment of infectious diseases and viruses. As
an example, in an English text on preventing Ebola and Marburg virus infec-
tions, the original instruction was, “Do not handle items that may have come in
contact with an infected person’s blood or body fluids.” Upon back-translation
into English, the human translation closely matched the original meaning of the
phrase, “Do not touch any objects that may have been contaminated with the
blood or body fluids of the infected.” However, the machine translation was
“Do not dispose of objects which may have been touched by the blood or body
fluids of the infected people.” This discrepancy between human and machine
translations was marked as a conceptual error since it was suspected that naive
users of the machine translation output, lacking enough medical knowledge of
the disease, might be unaware of the high risk of infection if they misunder-
stood the straightforward intent of the original medical instruction: not to clean
or reuse Ebola patients’ personal items.

In the same text, another critical, life-threatening conceptual mistake was
found in the translation of the original English text “Avoiding contact with bats
and primates (such as apes and monkeys) and not eating raw or inadequately
cooked meat prepared from these animals.” The human translation again
matched the original meaning well: “Avoid touching bats and primates (like
apes and monkeys) and not to eat the raw or not properly cooked meats of these
animals.”Machine translation by GTcontained critical conceptual mistakes, as
it read, “Avoid touching bats and primates (like apes and monkeys) and do not
eat the raw and cooked meats of these animals.” In another text on the preven-
tion of Zika virus infection, the original text was, “Currently, men who may
have been exposed to the Zika virus are not tested to determine whether they are
infected and thus at risk of transmitting the virus through sexual intercourse.
Instead measures to prevent transmission are recommended whenever people
who may have been exposed to the Zika virus have sexual intercourse.”

The human translation was close to the original meaning:

Currently, men who may have been exposed to the Zika virus are not tested to
confirm whether they are infected, as a result, the risk of getting infected through
sextual intercourse exists. It is recommended that when having sex with men who
may have been exposed to the virus, protective measures are taken to prevent
infection.

82 Translation Technology in Health Communication

https://doi.org/10.1017/9781108938976.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938976.004


When back-translated into English, Google’s translation into Chinese meant,
“Currently, men who may have been exposed to Zika virus are not tested to
confirm whether they are infected, therefore there are risks of getting infected
via sextual intercourse. By contrast, when having sex with men who probably
have already been infected with the virus, protective measures are recom-
mended to stop infection.” The discrepancy in the Chinese translation of
“whenever people who may have been exposed to the Zika virus” was marked
as a critical conceptual mistake by machine translation, as the risk of virus
infection via sexual transmission was clearly misinterpreted and downplayed.
An ordinary Chinese user of machine translation might well be misled into
believing that, as long as the individual has not been clinically diagnosed with
Zika virus, it is safe to have sexual relations with that individual.

3.2.6 Prevalence of Conceptual Mistakes in Machine
Translations

An extensive comparison of human and machine translations of the same
English source text revealed similar conceptual mistakes in 89 texts (48 per-
cent) of the total 185 texts collected for this study. In some cases, a machine-
translated text contained as many as four or five conceptual errors. While the
translation pair studied (English to Chinese) has been relatively well studied by
machine translation researchers (including Google’s), the high rate of persist-
ing conceptual mistakes in machine translation of medical materials was
alarming. Machine translation into and from less-researched languages is likely
to generate higher rates of conceptual errors, especially for high-risk commu-
nities and populations speaking those languages.

3.2.7 Annotation of Features of English Source Texts

The English source texts were annotated with structural features using
Readability Studio (Oleander Software). These features serve to quantify the
morphological, syntactic, and logical complexity of original health materials in
English. The following features are annotated: average paragraph length in
sentences, number of difficult sentences (of more than twenty-two words),
number of longest sentences, average sentence length in words, number of
unique words, number of syllables, average number of characters per word,
average number of syllables per word, number of proper nouns, number of
monosyllabic words, number of unique monosyllabic words, number of com-
plex (more than three syllable) words, number of unique multi-syllable (more
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than three) words, number of long (more than six characters) words, number of
unique long words, misspellings, overused words, wordy expressions, passive
voice, and sentences beginning with conjunctions. In addition, to determine
which words in English source texts are likely to cause conceptual errors when
machine-translated into Chinese, the words of the original texts were annotated
with their semantic categories, using the comprehensive automatic semantic
tagging system developed by the University of Lancaster, USAS.

USAS contains twenty-one large semantic categories which are further
divided into more than 100 sub-categories covering general and abstract
words (A1–A15), the body and the individual (B1–B5), arts and crafts (C1),
emotions (E1–E6), food and farming (F1–F4), government and the public (G1-
G3), architecture, housing and home (H1–H5), money, commerce and industry
(I1–I4), entertainment, sports and games (K1–K6), life and living things (L1–
L3), movement, location, travel and transport (M1–M8), numbers and measure-
ment (N1–N6), substances, materials, objects and equipment (O1–O4), educa-
tion (P1), language and communication (Q1–Q4), social actions, states and
processes (S1–S9), time (T1–T4), world and environment (W1–W5), psycho-
logical actions, states, process (X1–X9), science and technology (Y1–Y2),
names, and grammars (Z1–Z99). These two sets of features are widely used
in the development of machine learning models based on natural language
processing techniques because they can be automatically annotated and inter-
preted relatively easily from the perspective of applied linguistics. In sum, in the
final feature set, there were 20 structural features and 115 semantic features –
composing a feature set sufficiently rich to enable exhaustive analysis and
modeling of English source text features that may help to predict the occurrence
of conceptual mistakes in the English-to-Chinese machine translation output.

3.2.8 Bayesian Machine Learning Classifier Relevance Vector
Machine

The RVM is a variation of Support Vector Machines (SVM) (Cortes and
Vapnik, 2005) which uses Bayesian inference and has the same functional
form as SVMs (Tipping, 2001, 2004). As a Bayesian-based method, it offers
probabilistic predictions and enables intuitive interpretations of uncertainty
(Bishop and Tipping, 2003). The RVM model is also quite practical, in that it
does not require large amounts of training data and generalizes well (Tipping,
2001; Bowd et al, 2008; Caesarendra et al., 2010). With these characteristics
and advantages, it provides an ideal method for medical research and disease
prediction. In these use cases, it is often necessary to determine the probability
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of a disease based on observed symptoms, even though the relevant data is
usually sparse and hard to collect (Bowd et al, 2008; Langarizadeh and
Moghbeli, 2016). In this paper, an RVM model, enhanced by structural and
semantic features, is applied to estimate the probability that machine transla-
tion of specific health education material s concerning infectious diseases will
contain critical conceptual errors.

3.2.9 Training and Testing of Relevance Vector Machines
with Three Different Full Feature Sets

In order to train and test machine learning classifiers, 70 percent of the data was
used for training an RVMwith three full feature sets, while 30 percent of the data
was withheld for testing the three RVM models. The training data (129 texts in
total) included 63 English source texts accompanied by machine translations
containing conceptual errors, and 66 English source texts accompanied by
machine translations without conceptual errors. There were 26 English source
texts whose Chinese translations by GT contained conceptual mistakes, and 30
English source texts whose machine translations were correct. RVMs were
trained using three feature sets to enable comparison of feature types: the full
structural feature set (20); the full semantic feature set (115); and the combined
feature set (135). To minimize bias in the classifier training process, five-fold
cross-validation was applied to the training data (129). In particular, English
source texts (the training data, 70 percent of the total data) linked or not with
detected machine translation errors, were randomly divided into five approxi-
mately equal, exhaustive, and mutually exclusive subsets. Afterward, RVM
classifiers were trained on four subsets combined and then tested on the fifth
subset. The process was repeated five times, with each subset serving as the test
data once. In this way, each tested English source text was never part of the
training data and was only tested once. During cross-validation, a mean AUC
(area under the curve receiver operating characteristic) and its standard deviation
were calculated for the RVM trained on each full feature set. The remaining
30 percent of the testing data was used to evaluate the performance of the trained
classifiers and to generate their sensitivity, specificity, accuracy, AUC, and F1.

3.2.10 Classifier Optimization

It was found that, in the current study, the large dimensionality (number of
features: 135) and small sample size (185) of the data sets adversely affected
the performance of the Bayesian RVM classifier in locating the separating
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surface for classification. This classification uncertainty was reduced by using
automated feature optimization to identify the best sets of structural and
semantic features of the original English health texts, using backward feature
elimination and 5-fold cross-validation to reduce bias in the optimized RVM
classifier.

3.2.11 Backward Feature Elimination: RFE-SVM Method

Due to RVM’s lack of “nuisance” parameters and its ability to automatically
set regularization parameters to avoid overfitting, no hyper-parameter tuning
was necessary to optimize the model (Tipping, 2001). To improve the per-
formance of RVM, Recursive Feature Elimination (RFE) with SVM was
applied as the base estimator (denoted as RFE-SVM) (Guyon et al., 2002)
to reduce the feature dimension and automatically select the most important
features that could improve RVM. For the RFE-SVM model, the parameter
“min_features_to_select” (the minimum number of features to be selected)
was set as “1” and set the “step” parameter (the number of features to be
removed at each iteration) as “1.” Z-score normalization was performed of the
optimized features to improve the performance of the RVM classifier. As
a result, the normalized data had zero mean and one unit deviation. The total
set of health materials on infectious diseases was randomly split into training
data (129) and test data (56) at a split rate of 0.7. The training data were used
for feature optimization by 5-fold cross-validation and the performance of
RVMwith four different feature sets were evaluated on the remaining 30 per-
cent test data. The cross-validation process of RVM classifier optimization
was similar to the process used to train and test the full-dimension RVM
classifier on the three feature sets (structural, semantic, and combined). First,
the training data were divided into five subsets of approximately equal size.
Four of the five subsets were used to determine the optimized feature set
based on the maximum cross-validation score, using 5-fold cross- validation.
The optimized feature set trained on the initial four subsets was then tested on
the 5th subset to allow evaluation of the trained classifier with optimized
features.

3.2.12 Separate and Joint Feature Optimization

The first step was to repeat the same process for the structural and semantic
features separately, resulting in two separate optimized feature sets: the
optimized structural feature set (OFT) and the optimized semantic feature
(OSF) set. Features retained in the OFT set were as follows: average number
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of sentences per paragraph, average number of characters per word, average
number of syllables per word, passive voice, and sentences that begin with
conjunctions. Features retained in the OSF set were these: expressions indi-
cating probability (A7), possession (A9), food (F1), general substances and
materials (O1), physical attributes (O4), speech acts (Q2), obligation and
necessity (S6), power relationships (S7), time (general) (T1), time (begin-
ning/ending) (T2), time (early/late) (T4), mental actions and processes (X2),
sensory (X3), intention (X7), science and technology in general (Y1), and
geographical names (Z2). Next, the two sets of separately optimized struc-
tural and semantic features were combined and labeled as “Combined
Features via Separate Optimization” (CFSO) comprised of 21 features (5
optimized structural features and 16 optimized semantic features).

Lastly, the same feature optimization was repeated on the combined full
feature set (135), using 5-fold cross- validation, yielding the “Combined
Features through Joint Optimization” (CFJO: 48), a distinct optimized feature
set with 11 structural and 37 semantic features. Structure and semantic
features selected in separate optimization processes were quite different
from those selected in the machine learning process, suggesting that the
importance of individual features in machine learning depends largely on
other optimized features. (Compare the situation in standard statistical ana-
lysis, where p values indicate whether variables are statistically significant.)
The 11 structural features in CFJO were as follows: average number of
sentences per paragraph, longest sentence, average number of characters,
number of monosyllabic words, number of complex words of more than
three syllables, number of unique multi-syllable words (more than three
syllables), number of unique long words, misspellings, overused words,
wordy items, and passive voice. The 37 semantic features in the CFJO set
were: verbs/nouns indicating modify/change (A2), classification (A4), evalu-
ation (A5), comparison (A6), probabilities (A7), possession (A9), degrees
(A13), Anatomy and physiology (B1), health and diseases (B2), bravery and
fear (E5), food (F1), furniture and household fittings (H5), life and living
things (L1), numbers (N1), measurements (N3), quantities (N5), general
substances/materials (O1), general objects (O2), linguistic actions, states,
processes (Q1), speech acts (Q2), social actions, states, processes (S1);
people (S2); obligation and necessity (S6); power relationship (S7); help-
ing/hindering (S8); time: general (T1); time: beginning /ending (T2); time:
old/new (T3); time: early/late (T4); sensory (X3); intention (X7); ability
(X9); science/technology in general (Y1); geographical names (Z2); dis-
course connectors (Z4); grammatical expressions (Z5); and conditional
expressions (Z7).
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3.3 Results

The performance of RVM classifiers were compared using different optimized
feature sets on the test data (Table 3.1, Figure 3.1): optimized structural features
(OTF) (5), OSF (16), jointly optimized structural and semantic features (CFJO)
(48), and separately optimized structural and semantic features (CFSO) (21).
Table 3.1 shows that while the performance of optimized RVMs did not always
improve over non-optimized RVMs on the training data (5-fold cross-
validation), optimized RVMs were consistently much better than non-
optimized RVMs on the test data. For example, AUCs of RVMs increased
from 0.451 using original structural features to 0.587 using optimized structural
features (OTF); AUCs of RVMs increased from 0.628 using original semantic
features to 0.679 using OSF; AUCs of RVMs increased from 0.679 using
original combined features to 0.689 using combined structural and semantic

Table 3.1 Performance of RVMs with different feature sets on test dataset

Feature Sets

Training
Data
(5-fold CV) Test data

AUC
Mean (SD) AUC Accuracy Macro F1 Sensitivity Specificity

Original Combined
Features (135)

0.6166
(0.179)

0.679 0.625 0.60 0.42 0.80

Original Structural
Feature (20)

0.6319
(0.144)

0.451 0.4821 0.48 0.54 0.53

Original Semantic
Features (115)

0.6299
(0.166)

0.628 0.6607 0.66 0.62 0.70

Optimized
structural features:
OTF (5)

0.6245
(0.078)

0.587 0.5536 0.55 0.58 0.53

Optimized
semantic features:
OSF (16)

0.6837
(0.120)

0.679 0.625 0.62 0.58 0.67

Combined features
through joint
optimization:
CFJO (48)

0.6159
(0.105)

0.689 0.6429 0.64 0.54 0.73

Combined
features through
separate
optimization:
CFSO (21)

0.6840
(0.111)

0.684 0.6786 0.68 0.73 0.63
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optimized features (CFJO). AUCs of RVMs did not improve using CFSO
(0.684) over CFJO (0.689), but the total number of features was reduced by
more than half from 48 (CFJO) to 21 (CFSO), and sensitivity of the RVM
increased significantly from 0.54 using the CFJO features to 0.73 using the
CFSO features. Specificity of RMV classifiers decreased from 0.73 using the
CFJO features to 0.63 using the CFSO features. Since the goal of this study was
to develop Bayesian machine learning classifiers that would detect and predict
critical conceptual errors in machine translation outputs based on the observed
features of the English source materials, higher sensitivity classifiers were
deemed more useful for detecting mistakes in machine-translated Chinese
health resources.

3.4 Comparison of Optimized RVMs with Binary Classifiers
Using Readability Formula

This best-performing Bayesian RVM identified twenty-one features by separ-
ately optimizing structural and semantic features. The five optimized structural
features were: average number of sentences per paragraph, average number of
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Figure 3.1 ROC curves of RVMs with different optimized feature sets
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characters per word, average number of syllables per word, passive voice, and
sentences that begin with conjunctions. The sixteen optimized semantic feature
were: expressions indicating probability (A7), possession (A9), food (F1),
general substances and materials (O1), physical attributes (O4), speech acts
(Q2), obligation and necessity (S6), power relationships (S7), time (general)
(T1), time (beginning/ending) (T2), time (early/late) (T4), mental actions and
processes (X2), sensory (X3), intention (X7), science and technology in gen-
eral (Y1), and geographical names (Z2). The structural features included in the
best-performing RMVresembled those incorporated in widely used readability
formulas (Table 3.2). For example, the Flesch Reading Ease Score was based
on average sentence length and average number of syllables per word; the
Gunning Fog Index used average sentence length and percentage of hard
words; and the SMOG Index used polysyllabic words (more than three syl-
lables per word).

It was found the structural complexity of original English materials to
have a significant impact on the quality of machine translation. In studying
this relationship, the performance of the optimized RVM and binary classi-
fiers was evaluated using some popular readability formulas (Flesch
Reading Ease, Gunning Fog Index, SMOG Index) in terms of AUC, sensi-
tivity, specificity, and whether the predictions of the optimized RMV and
readability-formula-derived binary classifiers achieved statistically signifi-
cant improvements over the reference line (AUC=0.5) (Table 3.3,
Figure 3.2). The threshold of Flesch Reading Ease was 60, as texts with
scores below 60 are considered fairly difficult to read, and texts with scores
over 60 are easily understood by students ages 13 to 15. The threshold of
SMOG Index and Gunning Fog Index was set at 12 to indicate a relatively
easy reading level of medical texts in English, since scores above 12 tend to
create reading difficulties and may increase the likelihood of conceptual
errors in the machine translation output.

Table 3.2 Readability formulas

Readability tools Formulas

Flesch Reading Ease Score Score=206.835-(1.015*ASLa) – (84.6*ASWb)
Gunning Fog Index Score =0.4*(ASLa+PHWc)
SMOG Index Score = 3 + Square Root of Polysyllable Count

a ASL: average sentence length.
b ASW: average number of syllables per word.
c PHW: percentage of hard words.
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Table 3.3 shows that AUC of the optimized RVM (using CFSO fea-
tures) achieved statistically significant improvement of the reference
(AUC= 0. 685, p=0.012, 95 percent confidence interval: 0.540, 0.829).

Table 3.3 Performance of the best-performing RVM with binary classifiers
using readability formula

Test Result
Variable and
Thresholds

Area
under the
Curve

Std.
Errora

Asymptotic
Sig.b

Asymptotic 95% Confidence
Interval

Lower Bound Upper Bound

RVM (CFSO) 0.685 0.074 0.012 ** 0.540 0.829
SMOG (12) 0.538 0.083 0.642 0.376 0.701
Gunning Fog (12) 0.533 0.080 0.677 0.376 0.690
Flesch Reading
Ease (60)

0.492 0.082 0.925 0.333 0.652

a. Under the nonparametric assumption b. Null hypothesis: true area = 0.5
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The three readability- formula derived binary classifiers did not improve
over the reference (AUC=0.5): the AUCs of the SMOG Index and the
Gunning Fox Index based classifiers were only slightly better than the
threshold – respectively, 0.538 (p=0.642, 95 percent CI: 0.376, 0.701) and
0.533 (p=0.677, 95 percent CI: 0.376, 0.690); and the binary classifier
using Flesch Reading Ease Scores was even less than effective than
a random guess (AUC=0.492, p=0.925, 95 percent CI: 0.333, 0.652).
Notably, according to this finding, the complexity of original English
health materials, as measured by standard (currently available) readability
parameters, cannot predict the presence of conceptual errors in machine-
translated health and medical resources on infectious diseases. By con-
trast, however, a Bayesian machine learning classifier optimized based on
the structural and semantic features of English input texts to the machine
translation system did achieve statistically significant improvements in the
prediction of conceptual mistakes in machine translation.

Table 3.4 shows the result of a pairwise resampled t test of the four classi-
fiers: the optimized RVM and the three readability-formula based binary
classifiers. It shows that although RVM achieved statistically significant
improvement over the reference AUC (p=0.012), the improvement in AUC

Table 3.4 Paired-sample area difference under the ROC curves

Test Result
Pair(s)

Asymptotic

AUC
Difference

Std. Error
Differenceb

Asymptotic 95%
Confidence
Interval

z Sig. (2-tail)a
Lower
Bound

Upper
Bound

RVM vs. Flesch
Reading Ease

1.634 0.102 0.192 0.396 −0.038 0.423

RVM vs.
Gunning Fog

1.512 0.131 0.151 0.390 −0.045 0.347

RVM vs. SMOG 1.466 0.143 0.146 0.393 −0.049 0.342
Flesch Reading
Ease vs.
Gunning Fog

−0.268 0.789 −0.041 0.415 −0.341 0.259

Flesch Reading
Ease vs. SMOG

−0.302 0.763 −0.046 0.417 −0.346 0.254

Gunning Fog
vs. SMOG

−0.131 0.895 −0.005 0.389 −0.082 0.071

a. Null hypothesis: true area difference = 0 b. Under the nonparametric assumption
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was not statistically significant when compared with the three binary classi-
fiers: the largest increase in AUC was between RVM and Flesch Reading Ease
(0.192, p=0.102), followed by the AUC difference between RVM and Gunning
Fog Index (0.151, p=0.131) and the AUC difference between RVM and SMOG
Index (0.146, p=0.143). The AUC of the SMOG Index based classifier
improved by 0.046 over the AUC of Flesch Reading Ease based classifier
(p=0.763) and improved by

0.005 over the AUC of Gunning Fog Index based classifier (p=0.895).

3.4.1 Discussion

RVMproduces probabilistic outputs through Bayesian inference, as opposed to
SVMs. Bayesian probabilistic prediction enables relatively intuitive interpret-
ation of classification results, and accordingly is relatively informative and
helpful for clinical use and decision-making. According to this study, the best
RVM classifier (AUC=0.685), based on two sets of separately optimized
structural and semantic features, was able to usefully predict the probability
that each specific original English text would belong to the group of texts
associated with critical conceptual errors in machine-translated outputs. The
RVM classified the original English text as a ‘safe’ text if its predicted
probability was less than 50 percent, and as a ‘dirty’ text if its predicted
probability was more than 50 percent. The RVM’s probabilistic output gave
an average mean probability of 0.388 (SD: 0.326, 95 percent CI: 0.266, 0.509)
for ‘safe’ or error-proof English source texts and 0.606 (SD: 0.336, 95 percent
CI: 0.472, 0.740) for ‘risky’ or error-prone English source texts.

Figure 3.3 is a histogram showing the percentage of English source texts in
each 10 percent probability bin of the RVM probabilistic output for which
conceptual errors in machine translations were detected (based on
a comparison with human translations). 73 percent of the English source
texts whose translations by Google contained critical conceptual errors were
assigned a probability of “error-prone English text (EPET)” >= 50 percent
(sensitivity: 0.73 percent); and 63 percent of English texts not linked with
conceptual errors were assigned a probability of “non-error-prone English text
(non- EPET)” > 50 percent (specificity: 63 percent).

The RVM results showed that most of the test English source texts associated
with conceptual errors in machine translation belonged to the EPET group.
(The distribution was negatively skewed, Figure 3.3.) For English source texts
without conceptual mistakes in machine translation, the distribution of prob-
abilities was less skewed. This result may be explained by the wide range of
structural and semantic features of English source texts that are not related to
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conceptual errors in machine translation. 18 percent of the English source texts
linked with machine translation errors were assigned to the 0–10 percent
probability bin. This assignment indicated that there was still some uncertainty
in the RVM probabilistic prediction, as some error-prone source texts were
misclassified as “safe” source texts for machine translation systems.

Table 3.5 presents the various probability thresholds and associated
sensitivity-specificity pairs of the best- performing RVM classifier, using
a combination of structural and semantic features undergoing separate
optimization. In real life, a meaningful probability threshold depends on
the desired sensitivity-specificity pair. Classifiers of higher sensitivities are
more suitable for screening purposes. Using the RVM, increasing numbers
of English source texts were identified that would cause critical conceptual
errors if translated using current machine translation tools, such as GT.
However, increasing sensitivity can reduce specificity. And when specifi-
cities are lower, false-positive rates are higher (1-specificity), which means
that more “safe” English source texts will be classified as error-prone or
risky, even when the current translation technology can actually avoid life-
threatening conceptual mistakes. And so, for health educational resource
development and translation, lower screening classifier sensitivities imply
heavier budgetary investments in human expert evaluation and assessment;
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and this issue in turn can result in further gaps in the provision of quality
healthcare services and in support to populations and communities that rely
on translated health resources and information for self-health management
and disease prevention.

Another important indicator of the diagnostic utility of machine learning
classifiers is the positive likelihood ratio (LR+), which is the ratio between
sensitivity and false-positive (1-specificity) rates. Diagnostic utility increases
with the positive likelihood ratio. In Table 3.5, sensitivity-specificity pairs (2, 3,
and 4) showed high sensitivities (0.769–0.808) and moderate specificities (0.6–
0.633), while positive likelihood ratios (2.019–2.098) showed small effects on
post-test probabilities of English source texts causing critical conceptual errors in
machine translations. The probability thresholds for these desirable sensitivity-
specificity pairs (2, 3, and 4) were between 40 percent and 50 percent. As
probability cut-offs increased over 50 percent, sensitivity decreased sharply,
and specificity increased steadily. SE-SP pairs (5 and 6) produced the lowest
positive likelihood ratios (1.573–1.731) and their probability thresholds were in
the 50 percent-60 percent range. Finally, the pairs (7, 8, 9, and 10) were all
impractical, as their sensitivities and specificities were very low, despite
a positive likelihood ratio of 1.923–2.692. Since these models’ sensitivities
were low, they couldn’t identify most English source texts that would likely
result in critical conceptual errors if machine-translated using current systems.
True, these high specificities did indicate that they were unlikely to over-predict
the risk level of English source materials, thus requiring less expert evaluation
and intervention, reducing healthcare budgets; however, in consequence, more

Table 3.5 Under different probability thresholds, Sensitivity, Specificity and
Positive Likelihood Ratios of the best-performing RVM with CFSO optimized
features

SE-SP
Pairs

Probability
Cut-Offs

Sensitivity
(SE)

Specificity
(SP)

Positive Likelihood Ratio
(LR+)

1 0.075 0.846 0.300 1.209
2 0.415 0.808 0.600 2.019
3 0.494 0.769 0.633 2.098
4 0.496 0.769 0.633 2.098
5 0.586 0.577 0.633 1.573
6 0.625 0.577 0.667 1.731
7 0.703 0.5 0.767 2.143
8 0.757 0.385 0.800 1.923
9 0.799 0.346 0.833 2.077
10 0.876 0.269 0.900 2.692
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clinically significant errors would be likely, because the screening classifiers
would make professionals less aware of the high risks of using machine transla-
tion technologies clinically.

3.5 Conclusion

In cross-lingual health communication and clinical settings, machine transla-
tion is becoming increasingly common. It is true that these developing lan-
guage technologies are associated with numerous risks and uncertainties, as
research has shown. Still, in order to help reduce the risks of using such systems
in clinical or patient settings, perhaps policies and regulations can be formu-
lated based on evidence derived from systematic empirical analyses of discrep-
ancies between human and machine translations of health and medical
resources. With this goal in mind, the present study has sought to determine
the probabilistic distribution of mistakes in neural machine translations of
public-oriented online health resources on infectious diseases and viruses,
using as predictors various linguistic and textual features that characterize
English health-oriented educational materials. Two-hundred English-
language source texts on infectious diseases and their human translations into
Chinese were obtained from HON.Net-certified websites on health education.
Native Chinese speakers compared human translations with machine transla-
tions (GT) to identify critical conceptual errors.

To overcome overfitting problems in machine learning for small, high-
dimensional data sets while aiming to identify possible source text features
associated with clinically significant translation errors, Bayesian classifiers
(RVM) were trained on language-specific source texts classified as yielding,
or not yielding, machine translation outputs containing critical conceptual
grammatical errors. Among the best-performing models, the RVM trained on
the CFSO (16 percent of the original combined features) performed best. RVM
(CFSO) outperformed binary classifiers (BCs) using standard English readabil-
ity tests. The accuracy, sensitivity, specificity of the three BCs were as follows:
FRE (accuracy 0.457; sensitivity 0.903, specificity 0.011); GFI (accuracy
0.5735; sensitivity 0.685, specificity 0.462); and SMOG (accuracy 0.568;
sensitivity 0.674, specificity 0.462).

In this study, Bayesian machine learning classifiers with combined opti-
mized features did in fact identify certain features of English health materials
features as associated with (and possibly causing) critical conceptual errors in
state-of-the-art machine translation systems. It was found that machine-
generated Chinese medical translation errors were most associated with certain
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English structures (e.g., passive voice or sentences beginning with conjunc-
tions) and semantic polysemy (different meanings of the same word when used
in different contexts), since these features tend to lead to critical conceptual
errors in NMTsystems (English to Chinese) of health education information on
infectious diseases. This finding challenges the hypothesis that complex med-
ical terminology and low linguistic readability are the main causes of critical
translation errors, since none of the predictor features appeared to be related to
these factors.

Overall, this study underlines the need for clinical and health education
settings to be cautious and informed when using the latest translational tech-
nology. It also points toward provision of helpful aids in exercising that
caution. Classifiers can be trained using machine learning models like ours to
identify texts containing features likely to yield clinically significant translation
errors. Tools found to cause more such errors for the same texts could be
avoided. At the same time, recommendations could be made for pre-
emptively revising the original source texts to minimize likely errors.
Additionally, machine learning might be applied to automatically revise source
texts. Finally, the findings and procedures might be used to augment existing
confidence scores for real-time translations, so that users could be warned that
a current translation was suspect, and that paraphrase might be advisable.
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