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A multi-scale Euler–Lagrange method was developed and applied to numerically
assess cavitation-induced erosion based on the collapse dynamics of Lagrangian
bubbles. This approach linked macroscopic and microscopic scales and captured large
vapour volumes on an Eulerian frame, while small vapour volumes were treated as
spherical Lagrangian bubbles. Interactions between vapour bubbles and the liquid
phase were considered via a two-way coupling scheme. A verification and sensitivity
study of the developed procedure to transform vapour volumes between Eulerian
and Lagrangian frames was performed. First, the developed method was validated
for bubble dynamics, using analytical and experimental data. Second, the cavitating
flow through an axisymmetric nozzle was simulated using a measurement-based
distribution of cavitation nuclei. Details of single bubble collapses were used to
assess cavitation erosion. Based on well-recognised fundamental experiments and
theoretical considerations from the literature, model assumptions were derived to
account for the effects of a bubble’s stand-off distance on the bubble’s motion and
its radiated pressure during an asymmetric near-wall bubble collapse. Computed
maximum collapse radii of bubbles correlated well with diameters of measured
erosion pits. Considering a nonlinear dependence of erosion on impact pressure,
calculated erosion potentials compared well to measured erosion depths.
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1. Introduction
The various approaches for cavitation modelling differ mainly in the treatment

of the vapour phase. While Euler–Euler methods assume that liquid and vapour
phases are continua, Euler–Lagrange methods consider the vapour phase to be
an accumulation of discrete individual bubbles, where only the liquid phase is
a continuum. For the continuous phase approach (Euler–Euler), we distinguish
between density-based and projection methods. Capturing the phase transition in
Euler–Euler methods requires special techniques. Most researchers use a volume of
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fluid method, where a volume fraction describes the percentage of a phase volume
in one control volume. Projection methods solve an additional transport equation for
the volume fraction and model vaporisation and condensation using source terms.
Simplified cavitation models based on single-bubble dynamics (Rayleigh–Plesset
equation) compute these source terms, where vaporisation and condensation depend
on the ambient pressure in a control volume. The most common models follow
Merkle, Feng & Buelow (1998), Kunz et al. (2000), Sauer & Schnerr (2000), Singhal
et al. (2002) and Zwart, Gerber & Belamri (2004).

Euler–Lagrange methods employ a Lagrangian coordinate system to describe the
motion of individual cavitation bubbles, which are transported by a continuous liquid
background flow. Contrary to Euler–Euler methods, Euler–Lagrange methods consider
external forces on the bubble, e.g. forces owing to drag, pressure gradient, volume
variation, shear, lift and buoyancy. This leads to relative velocities between the
bubbles and the liquid phase and may, therein, cause bubble trajectories to deviate
from streamlines of the flow. Equations of bubble dynamics model growth and
collapse of every single bubble, see Rayleigh (1917), Plesset (1949), Tomita & Shima
(1977) and Hsiao, Chahine & Liu (2000). The multiple forces depend on pressure,
bubble wall acceleration, surface tension, viscosity and relative velocity between a
bubble and the carrier fluid.

Hsiao et al. (2000) and Hsiao, Chahine & Liu (2003) utilised Lagrangian methods
to treat the vapour phase of cavitating flows. Abdel-Maksoud, Hänel & Lantermann
(2010) developed a coupled Euler–Lagrange method to calculate cavitating flows.
For the flow around a hydrofoil, they compared bubble trajectories and carrier
flow streamlines. Their Lagrangian treatment allowed determining of the motion of
bubbles relative to the carrier fluid flow. At the outer edge of the foil they examined,
these motions deviated significantly from the carrier fluid flow. Yakubov et al. (2011)
compared numerical simulations of cavitating flows around a hydrofoil and a propeller
using Euler–Euler and Euler–Lagrange approaches. They found a strong dependence
of the Euler–Euler simulation on model constants. Using a measured distribution of
nuclei, their Euler–Lagrange simulation allowed accounting for water quality effects.
Yakubov et al. (2013) extended this approach for parallel computing. Ma, Hsiao &
Chahine (2015a) used an Euler–Lagrange approach to simulate the dynamics of a
cavitation cloud consisting of single spherical bubbles. They considered the influence
of the liquid phase on the bubbles using a two-way coupled approach. Ma, Hsiao &
Chahine (2015b) enhanced this approach for parallel simulations.

Pure Euler–Euler approaches to simulate cavitating flows have shown to be efficient
and accurate for a wide range of technical flow problems. Disadvantages lie in the
prediction of the microscopic cavitation processes of single bubbles. Specifically, to
obtain quantitative assessments of cavitation erosion (incubation period, erosion pitting
rates, mass loss rates) it is necessary to incorporate the behaviour of single bubbles
as they collapse. With Euler–Euler methods the growth and collapse of multiple
single bubbles and their motions can only be captured using an extremely fine spatial
discretisation. However, the required computational effort is high and, therefore, the
microscopic bubble behaviour is usually neglected.

Abdel-Maksoud et al. (2010) showed that, for technical applications, bubble traces
may differ significantly from streamlines of the carrier fluid. This is especially true
when high pressure and velocity gradients or vortex-induced flows are present. In
addition, the predicted cavitation with an Euler–Euler method may show a diffusive
behaviour. In the computational domain, this prevents the transport of small amounts
of vapour volume fractions and leads to unrealistic results. In this regard, the Euler–
Lagrange approach is more accurate because the single bubbles do not vanish owing
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to an initial non-condensable gas content. However, the computational effort needed
to conduct Euler–Lagrange simulations is substantially higher than for Euler–Euler
simulations.

To benefit from the efficiency of the Eulerian treatment for the vapour phase and to
increase the accuracy of simulating the behaviour of individual single bubbles using
a Lagrangian approach, both methods have recently been combined using hybrid
multi-scale methods. Depending on the absolute size of a vapour volume and its size
relative to the numerical grid, these methods switch between Eulerian and Lagrangian
approaches. Accordingly, the dynamics and motions of spherical single bubbles are
simulated for small vapour structures, such as collapsing bubbles. Vallier (2013)
developed a multi-scale approach to transform vapour volumes between Eulerian
and Lagrangian frames. Using this approach, the author simulated the break up of a
cavitation sheet and the cavitation structures on a hydrofoil. Hsiao, Ma & Chahine
(2017) developed a similar approach to capture the formation of sheet cavitation and
shedding of cloud cavitation on a hydrofoil. They used a wall nucleation approach
to enable the unsteady shedding of cloud cavitation. Their results agreed favourably
with published experimental measurements of sheet cavitation lengths and shedding
frequencies. Hsiao, Ma & Chahine (2015) used a similar multi-phase approach to
simulate sheet and tip vortex cavitation on a three-bladed propeller for three different
advance coefficients. They showed that a reduction of the advance coefficient resulted
in the extension of sheet cavitation towards the leading edge and the development of
tip vortex cavitation caused by single cavitation bubbles merging into a macroscopic
cavity. Following their work, Ma, Hsiao & Chahine (2017) presented a multi-scale
approach to simulate cavitating flow in a waterjet propulsion nozzle, bubbly flow in
a line vortex, unsteady sheet cavitation on a hydrofoil and cavitation behind a blunt
body. Lidtke (2017) used a fully parallel, multi-scale approach to simulate the flow
around a hydrofoil to investigate cavitation noise. In contrast to a purely Eulerian
approach, the simulation of Lagrangian bubble dynamics enabled the calculation of
medium to high frequency pressure fluctuations induced by cavitation. Ghahramani,
Arabnejad & Bensow (2018) developed a multi-scale model similar to Vallier (2013),
wherein larger cavities are considered in the Eulerian framework while smaller cavities
are treated as Lagrangian bubbles. Although, in contrast to other approaches discussed
above (Vallier 2013; Lidtke 2017; Ma et al. 2017) their approach transforms small
vapour clouds into multiple Lagrangian bubbles and, based on the Eulerian vapour
volume fraction, a Lagrangian bubble is introduced into each control volume of a
small cavity.

Near-wall collapsing macroscopic cavitation structures, which are accumulations
of single cavitation bubbles, cause cavitation-induced erosion. Potentially, these
near-wall bubble collapses generate high wall pressures and may cause surface
damage, which has been extensively studied both experimentally and numerically.
Specifically, collapses of single laser-induced bubbles in undisturbed fields, acoustic
fields and near solid boundaries were experimentally studied by Lauterborn & Bolle
(1975), Vogel & Lauterborn (1988), Noack & Vogel (1998), Philipp & Lauterborn
(1998), Brujan et al. (2002), Lauterborn & Kurz (2010), Lauterborn & Vogel (2013),
Reuter & Mettin (2016), Reuter, Cairós & Mettin (2016), Supponen et al. (2016),
Dular et al. (2019), Sagar et al. (2018), Sagar (2018) and Sagar & el Moctar (2020).
Numerical simulations of near-wall single bubble collapses were conducted by Johnsen
& Colonius (2008, 2009), Osterman, Dular & Širok (2009), Hawker & Ventikos
(2012), Lauer et al. (2012), Chahine & Hsiao (2015), Pöhl et al. (2015), Koch et al.
(2016), Goncalves et al. (2017) and Hadlabdaoui et al. (2019).
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Over the past years, several researchers have developed numerical approaches
to assess cavitation erosion. These approaches rely on different assumptions of
the physical processes involved and use various numerical techniques to simulate
cavitation behaviour. Assuming that the collapse of cloud cavitation is the main
cause of cavitation erosion, Li (2012) developed a numerical model using the time
derivative of pressure on a surface to indicate erosion risk. When a threshold of the
time derivative of pressure is exceeded on a given surface, this region is identified with
a high risk of erosion. However, the threshold value must be calibrated for each flow
problem. Furthermore, the Euler–Euler method does not allow accurate predictions
of the bubble behaviour and collapse-induced pressures in a cloud of bubbles or
in regions close to a solid surface. Krumenacker, Fortes-Patella & Archer (2014)
developed a numerical method that determines the cavitation intensity as an indicator
for erosion risk when cloud-like cavitation areas collapse. In their method, the flow
is simulated using an Euler–Euler approach and a Reynolds-averaged Navier–Stokes
(RANS) method coupled with a solver to compute the acoustic energy of single
bubbles from a bubble dynamics equation. Accumulation of the acoustic energy of
all collapsing single bubbles then yields the cavitation intensity on a given surface.
Accounting for bubble dynamics in the erosion model improves the assessment
of erosion. Mottyll (2017) used a density-based solver to simulate cavitation and
evaluated erosion using a collapse detection approach. The author assumes that
aggressive types of cavitation are related to collapsing cavitation volumes in the
vicinity of solid walls. The model was applied to an axisymmetric nozzle and an
ultrasonic horn and obtained qualitatively favourable agreement. When a single
cavitation bubble collapses near a solid surface, the collapse is asymmetric causing a
high-speed waterjet to flow through the vapour-filled bubble. Dular, Stoffel & Širok
(2006) and Dular & Coutier-Delgosha (2009) developed a numerical erosion model
by assuming that this microjet is the main cause of erosion leading to circular pits.
For a foil in two-dimensional flow the quality of their erosion assessments compared
favourably to experiments. Peters, Lantermann & el Moctar (2015a), Peters et al.
(2015b) expanded the models of Dular et al. (2006) and Dular & Coutier-Delgosha
(2009) and validated their results against experiments for a three-dimensional flow
case. The qualitative assessment of erosion considered both number and intensity
of microjet impacts on an area. Peters, Lantermann & el Moctar (2018) used a
similar erosion model to estimate cavitation erosion for a model propeller. Although
their erosion assessments agreed with experimental erosion predictions for different
flow problems, we found that an Euler–Euler approach provides only a qualitative
estimation of erosion. For a more accurate assessment of erosion caused by collapsing
cavitation bubbles near a solid surface, detailed insight into the transport and the
dynamics of bubbles is needed.

The existing approaches and models to simulate cavitating flows and to assess
erosion led us to develop a method that couples an Euler–Euler method with
an Euler–Lagrange method. Based on existing libraries, we implemented the new
method into the open source computational fluid dynamics (CFD) software package
OpenFOAM (OpenFOAM Foundation 2018) that combines the Lagrangian tracking
of bubbles with a finite volume method flow solver. Our approach enabled a
more accurate assessment of erosion and the potential to assess damage rates.
The computation of transport and dynamics of spherical single bubbles provided
greater insight into bubble behaviour. Depending on their absolute size and spatial
resolution relative to the numerical grid, our multi-scale approach switched between
an Eulerian and a Lagrangian treatment of vapour structures. Accordingly, Eulerian
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vapour volumes were transformed into Lagrangian bubbles when the vapour volumes
were isolated and sufficiently small. Motions and dynamics of spherical Lagrangian
bubbles were solved individually. Lagrangian bubbles that increased above a certain
size or that were sufficiently resolved by the numerical grid were transformed into
Eulerian vapour volumes. The assessment of cavitation erosion was based on the
information about collapses of Lagrangian bubbles near a solid surface. A comparison
of spherical bubble collapses and pit erosion presented here provided insights for
a quantitative estimate of erosion by correlating spherical bubble collapses with
experimentally measured erosion pits.

Our numerical methods for continuous flows and for Lagrangian bubbles include
a procedure to transform vapour volumes between the Eulerian and the Lagrangian
frames. Based on nuclei measurements, a distribution of the initial gas content in
Lagrangian bubbles is derived. An erosion model based on an Eulerian treatment of
the vapour phase is described, and a new erosion model based on Lagrangian bubble
collapses is developed. Our multi-scale approach links the macroscopic Eulerian
treatment of large vapour structures to the microscopic Lagrangian treatment of
single cavitation bubbles and uses the bubble collapses to assess cavitation-induced
erosion. After verifying and validating our bubble dynamics model for different
cases, we performed verification and sensitivity studies related to the procedures
to transform vapour volumes between these frames. The cavitating flow through an
axisymmetric nozzle was simulated, and numerically evaluated cavitation-induced
erosion was compared to measured erosion depths.

2. Multi-scale approach to assess cavitation erosion
This section summarises our approach based on a multi-scale treatment of cavitation

structures and a model to assess erosion from Lagrangian bubble collapses. Figure 1
schematically depicts the multi-scale method to simulate cavitation and its coupling
with the Lagrangian erosion model. The multi-scale method treats the liquid phase
as a continuum in the Eulerian frame, but uses different approaches for vapour
volumes. Large vapour structures are treated also in the Eulerian frame, while small
vapour volumes are considered as spherical Lagrangian bubbles, whose motions
and associated bubble dynamics are calculated on a local coordinate system. While
fully conserving the volume of vapour, vapour structures are transformed between
the Eulerian and the Lagrangian frame and vice versa when they fall below or
exceed a defined absolute size or the size relative to the numerical grid. Lagrangian
bubbles interact with the continuous liquid phase via a two-way coupling scheme
that accounts for influences of the liquid phase on the Lagrangian bubbles and
contrariwise. Information from Lagrangian bubble collapses near solid surfaces
(e.g. pressures, positions, radii) serve to estimate erosion. Resolving shock wave
radiation for asymmetric bubble collapses in a macroscopic flow simulation was
almost impossible because, at this moment, the computational effort would have
been too high. Therefore, we chose to model the physics involved in an asymmetric
near-wall bubble collapse based on well-recognised fundamental experiments and
theoretical considerations. The erosion model accounts for various phenomena during
an asymmetric bubble collapse, such as (i) the motion of the bubble’s centre towards
the solid surface, (ii) the reduced collapse pressure attributed to the non-spherical
collapse and (iii) the pressure decay of the shock wave that travels towards the solid
surface.

Figure 2 sketches the approaches used for the different physical phenomena involved
in the process of cavitation erosion. The multi-scale method creates a link between
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Multi-scale
approach

Lagrangian
erosion model

Eulerian approach
(macroscopic)

Lagrangian approach
(microscopic)

Bubble collapse
information

Vapour transformation:
Euler to Lagrange

Vapour transformation:
Lagrange to Euler  

Two-way
coupling

Bubble moves
towards solid surface

Asymmetric collapse
reduces collapse pressure

Collapse pressure
decay to solid surface

Erosion prediction
for solid surface

FIGURE 1. Schematic of the coupling of the multi-scale method with the Lagrangian
erosion model.

large vapour structures that are treated in the Eulerian frame and small Lagrangian
vapour bubbles. The erosion model links the dynamics of single Lagrangian bubbles
near a solid surface to the assessment of erosion and accounts for various phenomena
involved in an asymmetric near-wall bubble collapse.

3. Numerical method

Cavitation of macroscopic vapour structures is simulated using an Euler–Euler
approach that considers the liquid and vapour phases as continua. Microscopic vapour
structures are treated as single Lagrangian bubbles transported by the continuous
carrier fluid flow. Numerical approaches for Eulerian and Lagrangian approaches are
given in the following.
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Multi-scale approach

Erosion model

Erosion prediction based on
Lagrangian bubble collapses

Solid surface

Large vapour structures:
Eulerian approach (macroscopic)

Small vapour bubbles:
Lagrangian approach (microscopic)

FIGURE 2. Sketch of approaches used for various cavitation regimes and for erosion
evaluation.

3.1. Continuous Eulerian phases
A homogeneous mixture approach simulates the macroscopic cavitating flow on an
Eulerian grid. Substance properties of liquid and vapour phases vary according to the
volume fraction of each phase in the mixture. The vapour volume fraction is defined
as αv = Vv/V with the volume of vapour, Vv, in a certain control volume, V . For a
two phase flow, the liquid volume fraction is defined as αl= 1−αv. Using the volume
fraction variables, the density, ρ, and viscosity, µ, of the mixture can be calculated

ρ = αvρv + (1− αv)ρl, µ= αvµv + (1− αv)µl. (3.1a,b)

Indices ‘v’ denote properties of the vapour phase; indices ‘l’, properties of the liquid
phase. Properties of the mixture are then used to calculate the flow properties for the
mixture fluid.

The continuous flow of the homogeneous mixture is calculated based on the
mass conservation equation and the Navier–Stokes equations for an isothermal fluid
consisting of the equations of conservation of momentum. The equations for the
present finite volume method are written in integral form. The mass conservation
equation yields

∂

∂t

∫
V
ρ dV +

∫
S
ρu · dS= 0, (3.2)

where t is time, V is the volume of a control volume, S is the surface area vector of
a control volume’s surface and u is the flow velocity of the mixture. The velocity is
calculated from the momentum equation

∂

∂t

∫
V
ρu dV +

∫
S
ρuu · dS =

∫
S
µ(∇u+ (∇u)T) · dS−

∫
S

(
p−

2
3
∇ ·µ

)
I · dS

+

∫
V
ρb dV +

∫
V
σκ∇α dV +

∫
V

sb dV, (3.3)

where µ is viscosity of the mixture, p is pressure and I is the identity matrix.
The left-hand side comprises the time derivative of momentum and the convection
term. The first two terms on the right-hand side represent diffusion and pressure,
respectively. Symbol b stands for sources of volume forces caused by gravity or
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894 A19-8 A. Peters and O. el Moctar

Coriolis effects. The last term on the right-hand side contains the source term
originating from Lagrangian bubbles entering a control volume, sb. The second to
last term on the right-hand side accounts for forces owing to surface tension, σ ,
between liquid and vapour phases treated in the Eulerian framework, where κ is the
curvature of the interface. As surface tension acts directly at the interface between the
two phases, it cannot explicitly be applied in interface capturing methods, where the
interface is smeared over multiple control volumes. We used the continuum surface
model, introduced by Brackbill, Kothe & Zemach (1992), to calculate the surface
tension force as a volume force acting on the control volume. The curvature of the
interface is defined as follows:

κ =−∇ ·
∇α

|∇α|
, (3.4)

where the gradient of the volume fraction, ∇α, points into the normal direction of
the interface. Surface tension vanishes in control volumes occupying only one phase
(∇α = 0).

The system of equations contains the momentum equation to calculate velocities.
The continuity equation does not serve for the calculation of pressure because it does
not contain the pressure. To close this system of equations, an additional equation
for the pressure is derived. First, the mass conservation equation is rearranged. Using
Gauss’ theorem to convert a surface integral into a volume integral and letting the
arbitrary volume become zero, equation (3.2) is written in differential form. Following
Shams, Finn & Apte (2010) and rearranging terms leads to the following expression:

∇ · u=−
1
ρ

dρ
dt
. (3.5)

For an incompressible isothermal single phase flow, the density along the path of a
fluid particle does not change. This leads to a divergence free velocity field, causing
the term on the right-hand side of (3.5) to vanish. However, for cavitating flows, the
changing density of the moving free surface and the vaporisation and condensation
processes must be considered. The density varies and, therefore, the velocity field
diverges. Integrating over a control volume and applying Gauss’ theorem yields the
following integral equation: ∫

S
u · dS=−

∫
V

1
ρ

dρ
dt

dV. (3.6)

The partially discretised form of the momentum equation according to Jasak (1996)
is used to obtain the equation containing the pressure

aPuP =−
∑

N

aNuN + Su(x, t)+∇p=H(u)−∇p, (3.7)

where a are matrix coefficients for the linear system of equations. Indices P and N
identify the considered control volume (cell) and the neighbouring control volumes,
respectively, and Su is a known source vector for all cells. Accordingly, H(u) contains
the velocity terms from neighbouring cells, (−

∑
N aNuN), including all source terms

which do not depend on pressure, Su. Dividing (3.7) by aP yields the following
relationship:

uP =
H(u)

aP
−
∇p
aP
. (3.8)
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Assessment of cavitation erosion using a multi-scale method 894 A19-9

Substituting (3.8) into (3.5) for cell index P we obtain the Poisson equation

∇ ·

(
H(u)

aP

)
−∇ ·

(
∇p
aP

)
=−

1
ρ

dρ
dt
. (3.9)

The term on the right-hand side vanishes only in regions where no vaporisation and
condensation or transport of a free surface take place. According to Sauer (2000), the
right-hand side can be expressed using source terms from the cavitation model for
vaporisation, Spv, and condensation, Spc, multiplied by the pressure difference between
local fluid pressure, p, and vapour pressure, pv, as follows:

∇ ·

(
H(u)

aP

)
−∇ ·

(
∇p
aP

)
= (Sp,c − Sp,v)(p− pv). (3.10)

We separate the hydrostatic part from the absolute pressure, where prgh = p − ρgzh.
gz is the vertical component of the vector of gravitational acceleration, and h is the
height of the water column. Separating the hydrostatic part from the absolute pressure
enables us to treat implicitly all terms proportional to prgh. After rearranging terms in
(3.10) and separating the pressures, the pressure equation is written as follows:

∇ ·

(
∇prgh

aP

)
+ (Sp,c − Sp,v)prgh =∇ ·

(
H(u)

aP

)
+ (Sp,c − Sp,v)(pv − ρgzh). (3.11)

Terms on the left-hand side are treated implicitly; terms on the right-hand side,
explicitly. Substituting the temporal derivative of density in (3.9) by terms proportional
to prgh increases the stability of the equation. The source terms on the right-hand
side are treated explicitly and have to be calculated in advance. These source terms
depend on space and time and are obtained from a cavitation model representing the
processes of vaporisation (‘v’) and condensation (‘c’). Applying the cavitation model
of Sauer & Schnerr (2000) that assumes both continuous phases to be incompressible
we obtain the volume of vapour in a considered control volume via the solution of a
scalar transport equation

∂

∂t

∫
V
αv dV +

∫
S
αvu · dS=

∫
V
(Sv − Sc) dV. (3.12)

Derivation of the cavitation source terms, Sv and Sc, on the right-hand side is based
on a simplified Rayleigh–Plesset equation, which defines the velocity of the bubble
wall, dR/dt, for a bubble of radius R. For a positive velocity of the bubble wall, we
speak of the bubble growth rate that is calculated from a simplified Rayleigh–Plesset
equation as follows:

dR
dt
=

√
2(pv − p)

3ρl
, if p< pv. (3.13)

On the other hand, the negative velocity of the bubble wall, referred to as bubble
collapse rate, is calculated as follows:

dR
dt
=

√
2(p− pv)

3ρl
, if p > pv. (3.14)
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This assumption is rough because it neglects influences attributable to bubble
radius acceleration, non-condensable gas, viscosity and surface tension in the
Rayleigh–Plesset equation (3.36). Moreover, the change of sign under the root from
(3.13) to (3.14) cannot be accounted for by the pressure term in the Rayleigh–Plesset
equation. In the cavitation model of Sauer & Schnerr (2000), the source terms are
derived from the continuity equation using the homogeneous mixture expressions of
density and assuming a homogeneous distribution of cavitation nuclei per volume of
liquid. The source terms depend on the aforementioned simplified calculations of the
bubble growth rate as follows:

Sv =

(−Cv)
1

R(αl)

[
1
ρl
− αl

(
1
ρl
−

1
ρv

)]
3ρvρl

ρ
(1+ αnuc − αl)

√
2
3

pv − p
ρl

, if p< pv

0 else,

Sc =

Cc
1

R(αl)

[
1
ρl
− αl

(
1
ρl
−

1
ρv

)]
3ρvρl

ρ
αl

√
2
3

p− pv
ρl

, if p > pv

0 else,


(3.15)

where αl is the liquid volume fraction, αnuc is the volume fraction owing to the
presence of initial gas nuclei and R(αl) is the bubble radius as a function of αl. The
constants of vaporisation, Cv, and of condensation, Cc, are set to unity. The bubble
radius is calculated as follows:

R(αl)=
3

√
3(1− αl + αnuc)

αl4πnb
, (3.16)

where nb is the nucleus density which defines the number of bubbles per volume of
liquid. The reciprocal bubble radius can be written as follows:

1
R(αl)

=

(
4πnb

3
αl

1+ αnuc − αl

)1/3

. (3.17)

To avoid singularities in (3.15), the volume fraction owing to the presence of initial
gas nuclei, αnuc, is related to the minimum bubble radius.

Following this approach, the source terms for the pressure equation (3.11) are
defined as follows:

Sp,v =

(−Cv)
1

R(αl)

(
1
ρl
−

1
ρv

)
(1− αl)αl

3ρlρv

ρ

√
2

3ρl|p− pv|
if p< pv

0 else,

Sp,c =

Cc
1

R(αl)

(
1
ρl
−

1
ρv

)
(1− αl)αl

3ρlρv

ρ

√
2

3ρl|p− pv|
if p > pv

0 else.


(3.18)

Despite this simplified approach to modelling the processes of vaporisation and
condensation, in most technical flows this approach enables us to sufficiently predict
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the behaviour of macroscopic cavitation structures. To simulate the growth and
collapse behaviour of single cavitation bubbles, this approach cannot be used, because
it does not consider any dynamics during these processes.

Turbulence in a flow may crucially influence cavitation inception and cavitation
behaviour. To simulate cavitation behaviour correctly, a suitable approach to model
turbulence needs to be selected. Based on a RANS approach, we modelled turbulence
using the k–ω-SST (shear stress transport) two-equation turbulence model that
switches between a standard k–ω approach in near-wall regions and a behaviour
similar to the k–ε turbulence model in the far field. Reboud, Stutz & Coutier-Delgosha
(1998) found that the commonly used two-equation turbulence models are not suited
to model turbulence for cavitating flows, because they assume a linear dependence
of the turbulent viscosity, µt, in the mixture region of the two phases resulting in
an overprediction of µt. The overpredicted turbulent viscosity in the mixture region
prevents the occurrence of unsteady or periodic cavitation. This happens, for example,
when the re-entrant jet mechanism causes the shedding of cloud cavitation. Reboud
et al. (1998) proposed an approach to reduce µt in the mixture region, where the
turbulent viscosity is calculated as follows:

µt = f (ρ)Cµk/ω, (3.19)

where k is the turbulent kinetic energy, ω is the specific turbulence dissipation and
Cµ = 0.09. The function f (ρ) replaces the linear response in the mixture region as
follows:

f (ρ)= ρv +
(ρ − ρv)

n

(ρl − ρv)n−1
, with n= 10. (3.20)

Using this correction of the turbulent viscosity enabled us to simulate periodic
shedding of cloud cavitation. Moreover, we took into account that turbulence increases
the possibility of cavitation inception. In experimental tests, Singhal et al. (2002)
showed that turbulent pressure variations affect the local vapour pressure. They found
that more turbulence in a flow promotes cavitation inception, which can be accounted
for by calculating the turbulent pressure fluctuation as follows:

p′turb = 0.39ρk. (3.21)

The turbulent pressure fluctuation is then added to the theoretical saturation pressure,
psat, to obtain a new local vapour pressure as follows:

pv = psat +
p′turb

2
, (3.22)

which is higher than the theoretical value of the saturation pressure and induces earlier
cavitation inception.

3.2. Single bubble transport
Motions of a fluid particle can be considered from two different perspectives. The
Eulerian perspective describes the motion of fluid particles from a fixed location,
whereas the Lagrangian perspective follows a fluid particle and hence the flow, using
a local coordinate system to calculate the particle’s momentum. We selected the
Lagrangian approach to calculate motion and dynamics of discrete spherical cavitation
bubbles. This allowed us to determine bubble traces that deviate from streamlines of
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the flow. Based on the general theory of Hsiao et al. (2000), Oweis et al. (2005)
and Abdel-Maksoud et al. (2010) and the application of Newton’s second law, the
Lagrangian equation of motion for a single bubble reads as follows:

mb
dub

dt
=

∑
i

Fi, (3.23)

where mb is the bubble’s mass and ub is the bubble’s velocity. The volume of a
spherical bubble is Vb =

4
3πR3, with R being the bubble radius. Vector Fi comprises

forces acting on the bubble. The relative velocity of the bubble, being the difference
between carrier fluid velocity (index ‘c’) and bubble velocity (index ‘b’) is: uc − ub.
Properties of the carrier fluid are the same as properties of the homogeneous mixture
of liquid and vapour inside the considered control volumes.

The primary Bjerknes force, also known as the pressure gradient force, is written
as follows:

Fpg =−Vb∇p= Vbρc
duc

dt
=

mbρc

ρb

duc

dt
, (3.24)

where the substitution of the pressure gradient follows from the momentum equation.
Test simulations confirmed that the effect of diffusion on the pressure gradient
surrounding the bubble is negligibly small and the diffusion term can, therefore, be
neglected to calculate the pressure gradient as ρcduc/dt=−∇p. We did not consider
secondary Bjerknes forces, because substantial computational effort would have been
necessary to evaluate bubble–bubble interaction. Moreover, Lagrangian bubbles were
mostly isolated, whereas coherent bubble structures were treated in the Eulerian
frame.

Part of the liquid surrounding the bubble is accelerated with the bubble, resulting
in a virtual mass force defined as follows:

Fvm = 0.5ρcVb

(
duc

dt
−

dub

dt

)
. (3.25)

The virtual mass of a sphere is 0.5ρcVb and can be described as the difference
between accelerations of carrier fluid and bubble. Below, we will use this formulation
to move the term proportional to dub/dt to the left-hand side of (3.23) and combine
the pressure gradient force and the virtual mass force. Figure 3 sketches the pressure
gradient force and the virtual mass force acting on a bubble. The pressure gradient
force, Fpg, acts in the positive x-direction, i.e. in the direction of the negative pressure
gradient, and this force causes the bubble to be attracted towards low pressure regions.
The virtual mass force, Fvm, is proportional to the relative acceleration between carrier
fluid and bubble, (duc/dt− dub/dt), and it points also in positive x-direction.

Rapid growth and collapse processes of a bubble introduce a force that depends on
the rate of change of the bubble’s volume. According to Johnson & Hsieh (1966) this
force is written as follows:

Fvolume =
ρc

2
dVb

dt
(uc − ub)=

3
2
ρcVb

Ṙ
R
(uc − ub), (3.26)

where Ṙ is the radius growth rate or velocity of the bubble wall. The radius growth
rate as well as the relative velocity between carrier fluid and bubble determine the
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x
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Liquid

Gas

y Fpg

F√m

(duc/dt-dub/dt)

FIGURE 3. Forces acting on a bubble owing to pressure gradient and virtual mass.

direction of this force. The relative velocity causes also a drag force exerted on the
bubble, which is written as follows:

Fdrag =
3
4

cDmeffµc
1

ρb(2.0R)2
|uc − ub|(uc − ub). (3.27)

The effective mass of the bubble, meff =mb +ma, consists of the bubble mass, mb =

ρbVb, and the added mass, ma =
1
2ρcVb. The drag coefficient according to Haberman

& Morton (1953) reads as follows:

cD = 24.0(1.0+ 0.197Re0.63
b + 2.6 · 10−4Re1.38

b ), (3.28)

where Reb = (ρc|uc − ub|2R)/µc is the bubble Reynolds number. In fluids where the
effects of gravity exceed the effects from the flow, the drag force is alternatively
defined as follows (Darmana, Deen & Kuipers 2006):

Fdrag,grav =
1
2 cD,EöρcπR2

|uc − ub|(uc − ub). (3.29)

In this case, the drag coefficient is cD,Eö =
8
3 Eö/(Eö+ 4) with the Eötvös number

Eö = (ρc − ρb)g(2R)2/σ , and g = (0, 0, −9.81) m s−2 is the vector of gravitational
acceleration.

According to Saffman (1965) bubbles are subject to lift forces caused by the
surrounding shear flows. This lift force is defined as follows:

Flift =
3
8 cLρcVb

(uc − ub)

αS
×ω, (3.30)

with the lift coefficient, cL, and the dimensionless shear rate

αS =
|ω|R
|uc − ub|

, (3.31)

where ω=∇× uc is the vorticity of the flow. The lift coefficient, cL, depends on the
bubble’s Reynolds number and the dimensionless shear rate.

Owing to the density difference between carrier fluid and the vapour-filled bubble,
a buoyancy force

Fgravity = (ρb − ρc)gVb (3.32)
acts on the bubble, which lets bubbles rise in liquids of higher density.

Figure 4 depicts the forces owing to Saffman lift, gravity, drag and volume variation,
which influence the bubble’s momentum. With uc,x as the x-component of velocity, u,
the lift force results from the positive velocity gradient in the y-direction, ∂uc,x/∂y.
The high flow velocity along the bubble’s top wall generates a low pressure region,
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x uc

.

ub
y

Liquid

Gas

Flift Fgra√ity

Fdrag (ub < uc)

F√olume (R > 0)

g

FIGURE 4. Forces acting on a bubble owing to Saffman lift, gravity, drag and volume
variation.

and the lower flow velocity along the bubble’s bottom wall generates a high pressure
region. This pressure difference causes a lift force, Flift, pointing in the positive y-
direction. The gravitational acceleration acts in the negative y-direction, generating a
rising force, Fgravity, on the bubble that is attributed to the lower gas density inside the
bubble compared to the density of the surrounding liquid. The drag force, Fdrag, acts in
the positive x-direction because the bubble’s velocity, ub, and the carrier fluid velocity,
uc, act in this direction (and ub < uc). The relative velocity between carrier fluid and
bubble, (uc− ub), and the bubble growth rate, Ṙ, point in the positive x-direction and,
therefore, cause a volume variation force, Fvolume, that is also positive.

The virtual mass force (3.25) comprises two parts. One part is proportional to the
bubble’s acceleration, dub/dt; the other part, to the acceleration of the surrounding
liquid, duc/dt. Moving the part proportional to bubble acceleration to the left-hand
side and the term proportional to the fluid acceleration to the right-hand side of (3.23)
yields the following expression:

meff
dub

dt
=

∑
i

Fi. (3.33)

Thus, the part of the virtual mass force proportional to duc/dt and the pressure force
are considered together, and time integration via a semi-implicit approach then gives
velocities

un+1
b +

1t
meff

Fn+1
= un

b +
1t
meff

Fn, (3.34)

where un+1
b is the bubble velocity of the next time step, un

b the bubble velocity of the
last time step and 1t the time step. The implicitly treated forces, denoted as Fn+1,
represent parts of the drag and volume variation forces proportional to the bubble
velocity. Parts of the drag and volume variation forces proportional to the carrier fluid
velocity are naturally included in the explicit forces, denoted as Fn. All other forces
are treated explicitly. Integrating the bubble velocity over time then yields the bubble
position, xb:

dxb

dt
= ub. (3.35)
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3.3. Single bubble dynamics
Computations based on different forms of the Rayleigh–Plesset equation (Rayleigh
1917; Plesset 1949) give the dynamics of spherical bubbles. Following the formulation
of Brennen (2005) and including the effect of relative velocity (Hsiao et al. 2000) the
Rayleigh–Plesset equation is written as follows:

pb − p
ρl
= RR̈+

3
2

Ṙ2
+

4νlṘ
R
+

2σ
ρlR
−
(u− ub)

2

4
, (3.36)

where R, Ṙ, R̈ are the bubble radius, bubble wall velocity and bubble wall acceleration,
respectively; p is the pressure in the carrier fluid at the bubble position, σ is the
surface tension of water and νc is the kinematic viscosity of the carrier fluid;
pb = pv + pg is the pressure in the bubble with the pressure of non-condensable
gas in the bubble, pg. The gas changes its state isentropically according to the
relation pg= pg0(R0/R)3γ , where pg0 and R0 are the initial gas pressure and the initial
nuclei radius, respectively. The isentropic exponent of γ = 4

3 represents an adiabatic
process. Depending on the flow problem considered, for bubbles with volumes greater
than the volumes of the cells they are located in, the pressure in the carrier fluid, p,
and the velocity in the carrier fluid u, are averaged based on the values of control
volumes at multiple coordinates at the outer bubble wall (Hsiao et al. 2000). This
approach prevents a bubble growing unrealistically large when its centre is located
inside a low pressure region although its surface is already located in a higher
pressure region. This enables a more realistic description of bubble behaviour (Hsiao
et al. 2003). For bubbles, with volumes smaller than the volume of the cell they are
located in, the last term on the right-hand side of (3.36), proportional to the relative
velocity between bubble and carrier fluid, is neglected because it is multiple orders
of magnitude smaller than the other terms (e.g. terms proportional to surface tension
or (pb − p)).

According to Tomita & Shima (1977), during bubble collapse, the bubble wall
attains velocities in the range of the speed of sound of the liquid. The effect of
liquid compressibility must be considered because shock waves form after the collapse
affecting the behaviour of subsequent bubble rebounds. Based on this equation for a
spherical bubble in a viscous compressible liquid, Mathew, Keith & Nikolaidis (2006)
formulated the following expression for bubble dynamics:

pr=R − p
ερc

+
Rṗr=R

ερcc∞
= RR̈

[
1− (1+ ε)

Ṙ
c∞

]
+

3
2

Ṙ2

(
4− ε

3
−

4
3

Ṙ
c∞

)
, (3.37)

with
ε = 1−

ρb

ρc
= 0.99881. (3.38)

Applying the first-order correction to the pressure pr=R at the bubble wall leads to the
following relation (Tomita & Shima 1977):

pr=R = pg,0

(
R0

R

)3γ

−
2σ
R
− ε4µc

Ṙ
R
, (3.39)

and its derivative

ṗr=R =−3γ pg,0
Ṙ
R

(
R0

R

)3γ

+
2σ
R2

Ṙ− ε4µc
R̈R− Ṙ2

R2
. (3.40)
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Depending on the sign of the bubble wall velocity from the previous time step,
equation (3.36) (growth) or equation (3.37) (collapse) is solved to obtain R̈ for
each bubble individually. Although the difference in computational cost is negligible
for most hybrid simulations, whether equation (3.36) or equation (3.37) is solved,
it becomes more remarkable for larger numbers of bubbles. Then, Ṙ and R are
calculated using the trapezoidal rule for the implicit second-order time integration.
Adaptive time stepping enables the efficient calculation of R̈ over the relatively long
growth phase and the shorter collapse phase. The bubble dynamics equation is time
integrated over the entire time step of the Eulerian flow solution.

3.4. Interaction between Eulerian and Lagrangian frame
The continuous liquid phase and the cavitation bubbles interact with each other in
different ways. Effects of the continuous phase on the vapour phase are already
considered in forces influencing transport and dynamics of a bubble. For a one-way
coupled simulation, only influences of the liquid phase on the vapour bubbles are
considered but not vice versa. As soon as the bubbles affect also the carrier phase, we
speak of a two-way coupling. As mostly isolated Lagrangian bubbles are introduced
during vapour transformations from the Eulerian into the Lagrangian frame, collision
and coalescence of Lagrangian bubbles with each other were neglected. Break-up
processes of Lagrangian bubbles into multiple smaller bubbles, which would mostly
occur after the first collapse phase, were neglected because their contribution to
damage is supposedly negligible. Analogously to the Euler–Euler cavitation models,
the properties of the homogeneous mixture are calculated using volume fractions
for the liquid and vapour phases. The volume fraction for vapour structures in the
Eulerian frame, αv,E, is calculated from the vapour volume fraction equation (3.12).
In contrast to an Eulerian treatment of the vapour phase, a Lagrangian treatment does
not require the solution of a transport equation for the volume fraction. Transport
and dynamics of the vapour phase are obtained from the behaviour of the single
bubbles. Thus, to obtain a volume fraction of vapour, the vapour volume fraction in
control volumes occupied by Lagrangian bubbles, αv,L, is calculated by distributing
the entire vapour volume of the Lagrangian bubbles to the surrounding control
volumes of the Eulerian grid. Using a one-way coupling technique would violate
mass conservation because the vapour volume would be excluded from the Eulerian
frame when substituting a Lagrangian bubble. Moreover, for a one-way coupling,
pressure and velocity distributions in the carrier fluid surrounding the bubbles would
be incorrect. Using a two-way coupling approach, made it possible to always fully
transform vapour volumes between frames. Thus, mass and momentum were fully
conserved. As the trajectories of Lagrangian particles may deviate from the streamlines
of the carrier fluid flow, an additional source term was added to account for the
influence of Lagrangian bubbles on the momentum of the carrier fluid. For two-way
coupled Euler–Lagrange methods, a distribution becomes problematic when a high
density of bubbles per liquid causes bubbles to overlap. A four-way coupling that
accounts for bubble–bubble interactions (collisions and coalescence) can then be used.
However, in our hybrid approach, overlapping of bubbles is unlikely to occur, because
agglomerations of bubbles are treated in the Eulerian frame. Therefore, Lagrangian
bubbles were two-way coupled with the liquid phase.

The total vapour volume fraction in the domain is obtained by adding the vapour
volume fractions from the Eulerian and the Lagrangian frameworks

αv,total = αv,E + αv,L. (3.41)
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Then, the density and viscosity of the mixture fluid are updated according to (3.1).
In the pressure equation (3.11), the total vapour volume fraction, αv,total, is used

to calculate the source terms (3.18). The implicit treatment of the pressure in (3.11)
yields a stable system of equations. Although it is possible to calculate the source
terms on the right hand side of (3.9) based on bubble properties (R, Ṙ), such
approaches cause instabilities because, in contrast to the approach of Sauer (2000),
the source terms cannot be treated implicitly.

Furthermore, the source term, sb, in the momentum equation (3.3), considers the
influence of Lagrangian bubbles on the momentum of the carrier fluid. The source
term depends on the rate of change of the bubble velocity of all bubbles entering a
considered control volume. When a Lagrangian bubble enters a control volume, a new
time step to calculate the bubble velocity is started. Solving (3.33) yields the rate of
change of the bubble velocity. The source term in the momentum equation for a given
cell j is then defined as follows (Vallier 2013; Lidtke 2017):

sb,j =−
1
Vj

∑
i

meff ,i
un+1

b,i − un
b,i

1t
, (3.42)

accounting for the contribution from all bubbles of index i incorporated in the cell; n
denotes the considered Eulerian time step.

3.5. Hybrid multi-scale treatment of vapour phase
There are several advantages associated with Euler–Euler and Euler–Lagrange methods
to simulate cavitation. An Eulerian treatment of the vapour phase enables fast
simulations while neglecting single bubble behaviour. A Lagrangian treatment of
the vapour phase consisting of spherical bubbles yields more accurate simulations
of bubble behaviour; however, the computational effort is high. Furthermore, a
Lagrangian approach requires knowing the size and distribution of nuclei in the
water, particulars that are usually not known. Regarding erosion assessment, it seems
advantageous to combine both approaches and to use a Lagrangian approach only
when the Eulerian approach cannot resolve the vapour structures. Therefore, we used
a hybrid approach based on earlier techniques of Vallier (2013), Lidtke (2017) and
Ma et al. (2017). The macroscopic vapour volumes are dealt with in the Eulerian
frame; the motion and dynamics of microscopic cavitation bubbles, in the Lagrangian
frame.

Cavitation structures are then transformed from the Eulerian into the Lagrangian
frame and vice versa. Vapour volumes underresolved by the Eulerian frame are
transformed into spherical Lagrangian bubbles. Isolated vapour volumes are identified
by selecting all control volumes containing a minimum threshold of vapour volume
fraction αv,limit. Afterwards, the isolated vapour volumes are evaluated based on their
size relative to the numerical grid and their absolute size. Transformation into the
Lagrangian frame is performed if the vapour structure contains less than a threshold
number of control volumes, nlimit, or if the radius representing the volume of the
vapour structure is smaller than a threshold radius, Rlimit. Analogously, transformation
of Lagrangian vapour bubbles into the Eulerian frame takes place, when the above
threshold values are exceeded again. Additionally, Lagrangian bubbles in contact with
larger vapour structures in the Eulerian frame are merged into these larger vapour
volumes and transformed into the Eulerian frame.

Vapour structures can be transformed in both directions between the Eulerian and
the Lagrangian frame. A vapour structure in the Eulerian frame can be defined as
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Sufficiently resolved

No bubble transformation Bubble transformation

ncells < nlimit

ncells ≥ nlimit

Underresolved

FIGURE 5. Evaluation of vapour structures in the Eulerian frame; underresolved vapour
volumes are replaced by spherical Lagrangian bubbles.

underresolved when its representative radius falls below a threshold radius, Rlimit, or
when the vapour volume on the Eulerian grid contains less than a threshold number
of vapour filled cells, nlimit. Figure 5 shows an example of the evaluation of two
vapour structures. The left vapour structure is sufficiently resolved on the Eulerian
grid (ncells > nlimit), whereas the right vapour structure is underresolved (ncells < nlimit).
Therefore, the right vapour structure is transformed into the Lagrangian frame and
replaced by a spherical Lagrangian bubble of equivalent vapour volume.

Similarly, Lagrangian bubbles are transformed into vapour volumes on the Eulerian
grid. When Lagrangian bubbles grow and exceed the limiting number of cells, nlimit,
they are transformed into the Eulerian frame because then the vapour volume can
be sufficiently resolved by the numerical mesh. Figure 6 shows the evaluation of
Lagrangian bubbles. The left bubble is too small to be transformed into the Eulerian
frame because it overlaps too few cells. However, the bubble on the right overlaps
enough cells to be transformed into the Eulerian frame because it can be sufficiently
resolved.

Another mechanism to transform a Lagrangian vapour volume into an Eulerian one
takes place when a Lagrangian bubble touches a vapour structure in the Eulerian
frame. Figure 7 depicts the scenario of a Lagrangian bubble touching a vapour cloud
in the Eulerian frame. Although the isolated bubble is too small to be sufficiently
resolved by the numerical grid, it is identified as touching the vapour cloud and,
therefore, transformed into the Eulerian frame, i.e. the bubble merges into the larger
vapour structure.

To prevent bubbles from being transformed back and forth between frames,
Lagrangian bubbles just transformed, cannot be retransformed into the Eulerian frame
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(ncells < nlimit)
Underresolved

No bubble transformation
Bubble transformation to

Eulerian frame

Sufficiently resolved

ncells ≥
 nlimit

FIGURE 6. Evaluation of Lagrangian bubbles; bubbles are transformed when they can be
sufficiently resolved by the numerical mesh.

within the same time step. This ensures that the bubble dynamics is continuously
developed for a longer time.

Special treatment is required for parallel simulations involving the above transformation
processes. If transformations are just treated locally, vapour structures overlapping
processor boundaries by a small amount may cause transformations from the Eulerian
into the Lagrangian frame because the vapour volume on the local processor is
small. Thus, sizes of vapour structures need to be communicated between processors
to determine the global volume of a vapour structure in the domain. For full
parallelisation, we implemented an algorithm similar to the one of Lidtke (2017),
allowing us to evaluate properties of the global instead of the local vapour volumes.

3.6. Non-condensable gas content of Lagrangian bubbles
When an Eulerian vapour volume is transformed into a spherical bubble in the
Lagrangian framework, not only the vapour volume, but also the non-condensable
gas content inside the bubble needs to be considered. Depending on the mass of this
non-condensable gas, the bubble’s equilibrium radius is defined and, consequently,
oscillations involving growth and collapse are significantly influenced. In most
cavitating flows, the size distribution of cavitation nuclei in forms of gas bubbles is
unknown. Therefore, constant nuclei sizes are often assumed for numerical simulations
involving Lagrangian methods. More complex approaches adopt a Gauss or Rayleigh
distribution of the nuclei in a flow.

A more realistic distribution of nuclei was derived from optical measurements.
Reuter et al. (2018) conducted bubble size measurements in various structures of
acoustically generated cavitation. They investigated a hydrodynamic jet where no
cavitation appeared at the beginning. Therefore, it resembled a standard hydrodynamic
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Bubble touching
vapour cloud Eulerian frame

Bubble transformation to

FIGURE 7. Lagrangian bubble transformed into the Eulerian frame as it touches a
vapour cloud.

case. The acoustic sound field then caused the cavitation nuclei to grow to larger
cavitation bubbles, making them visible and making it possible to capture their
dynamics. Based on high-speed observations of bubble sizes and using an equation
for spherical bubble dynamics, they determined populations of equilibrium sizes of
bubbles. For different cavitation structures, they measured the distribution of nuclei
and obtained the distribution of equilibrium radii for R0 > 2.2 µm. They found that
the sum of an exponential decay and a Gaussian distribution resulted in the best fit
expressed as follows:

F1 = exp
(
−

R0

x1

)
+ x3

1
√

2πx2
2

exp
(
−

R0
2

2x2
2

)
, (3.43)

with x1 = 1.28 µm, x2 = 0.54 µm and x3 = 0.0838 for the case of a cavitating jet.
Smaller equilibrium radii of R0 < 2.2 µm could not be measured because the optical
resolution was limited. Smaller bubbles did not oscillate to sizes large enough to
be measured because of the high surface tension of bubbles below the threshold by
Blake, Mettin et al. (1997). To obtain a measurement-based nuclei distribution, we
normalised the distribution of Reuter et al. (2018) and combined it with a simple
quadratic polynomial as follows:

F(R0)=

F1 =

(
exp

(
−

R0

x1

)
+ x3

1
√

2πx2
2

exp
(
−

R0
2

2x2
2

))
/x4 if R0 > 2.2 µm

F2 = (a1R0
2
+ a2R0)/a3 else,

(3.44)
with the constants x4 = 1.328005544, a1 = −0.00883577, a2 = 0.03711025, a3 =

0.2879407 and the aforementioned values of x1, x2 and x3 for the cavitating jet.
Figure 8 displays the combined distribution.

3.7. Erosion assessment
3.7.1. Eulerian approach

We employed a numerical model to estimate cavitation erosion for our Euler–Euler
simulations. Based on the approach of Peters et al. (2015a,b) this model determines
the presence of vapour in the near-wall region at every numerical face of a considered
boundary and in the numerical domain within its vicinity – referred to as a cell
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FIGURE 8. Probability density function (PDF) of different bubble equilibrium radii.

zone. This is done by evaluating the volume fraction of vapour, αv, if it exceeds a
certain threshold value, αlimit,ero. Earlier investigations found that a threshold value of
αlimit,ero = 0.01 is reasonable to determine whether enough vapour is inside a control
volume to be considered.

The erosion model relies on the hypothesis that a liquid high velocity water jet,
a so-called microjet, is developed when a cavitation bubble collapses near a solid
surface. The magnitude of the microjet velocity depends on the distance of the bubble
from this surface, the size of the bubble and the pressure of the liquid surrounding
the bubble. As soon as the microjet velocity exceeds a certain threshold velocity,
referred to as the critical velocity, an erosion impact is supposed to occur. Models to
approximate the impact pressure caused by a microjet on a solid surface rely on the
water hammer relationship of Joukowsky (1898). Knapp, Daily & Hammitt (1970)
formulated the pressure rise induced by a collapsing bubble as follows:

p′ = ρc1v, (3.45)

where ρ is the density of the liquid, c is the acoustic velocity at the bubble wall, v is
the velocity of the bubble wall and 1v is the velocity at the beginning and end of the
bubble collapse. Dular et al. (2006) and Dular & Coutier-Delgosha (2009) used this
hypothesis to numerically assess cavitation erosion. Peters et al. (2015a,b) extended
this numerical erosion model, taking into account flow quantities in the neighbouring
volume surrounding the regarded surface. These numerical models provide reliable
qualitative estimates of cavitation erosion on various surfaces. The microjet velocity
is therein calculated as follows:

vjet = cγ

√
p− pv
ρl

. (3.46)

It is assumed that an impact that damages a surface occurs when the critical velocity
is exceeded. This critical velocity is defined as follows (Lush 1983):

vcrit =

√
σy

ρl

(
1−

(
1+

σy

B

)−1/n
)
, (3.47)
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which relates the yield strength, σy, to the critical velocity, needed to cause plastic flow
of the impacted material. The Tait equation of state accounts for the compressibility
of the liquid mass impacting the solid surface. B= 300 MPa and n= 7 are standard
coefficients of liquid water in the Tait equation. The dimensionless impact intensity,
cjet, equals the ratio of the microjet velocity and the critical velocity as follows:

cjet =
vjet

vcrit
. (3.48)

Based on the approach of Peters et al. (2015a,b) dimensionless erosion potential
equals the ratio of estimated erosion at every face of a surface and the total estimated
erosion on the surface. The cumulative erosion potential for an Eulerian assessment
is then calculated as follows:

cero,E =

T∑
t

cjet,t

N∑
n

(
T∑
t

cjet,t

)
n

, (3.49)

where t is the time, T is the time interval of erosion assessment, n is the face number
and N is the total number of eroded faces. Larger values of this potential indicate a
higher erosion potential, and a value of zero denotes that no erosion occurs. Erosion
is estimated at the end of every time step of the flow solution.

Although this erosion model relies on the microjet hypothesis, it can be substituted
by other hypotheses, such as one that is based on a simplified calculation of the
collapse pressure during a bubble collapse. We found that both Eulerian models
obtained similar results. In former investigations, we used the microjet model to
assess erosion for an axisymmetric nozzle and for a propeller and obtained favourable
agreements with measurements (Peters et al. 2015a,b, 2018).

3.7.2. Lagrangian approach
Resolving shock wave radiation for asymmetric bubble collapses in a macroscopic

flow simulation is almost impossible, because the computational effort would be
excessive. To directly numerically simulate the multi-scale flow dynamics and the
associated structural interaction may still be unrealistic. Therefore, we chose to
assess erosion based on spherical Lagrangian bubble collapses and mathematically
modelled the physics involved in an asymmetric near-wall bubble collapse based
on well-recognised fundamental experiments and theoretical considerations that are
not restricted to particular applications. Our erosion model accounts for various
phenomena during an asymmetric bubble collapse, such as (i) the motion of the
bubble’s centre towards the solid surface, (ii) the reduced collapse pressure attributed
to the non-spherical collapse and (iii) the pressure decay of the shock wave that
travels towards the solid surface.

After the collapse of a bubble, a shock occurs. Shock waves of large pressure
amplitudes are radiated spherically away from the bubble. Depending on the damping
of the radiated pressures, shock waves are able to damage a nearby surface. Acoustic
waves travel at velocities equal to the sound velocity of the medium they permeate.
After collapse, the pressure is assumed to decay linearly as the acoustic wave expands.
We define the following ratio:

p1

p0
=

r0

r1
. (3.50)
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Here, the indices 0 and 1 denote the start and end position of a spherically expanding
acoustic wave, respectively, ri is the radius of the acoustic wave and pi is the
pressure at the wave’s considered radius. The sound velocity of liquid water is about
c = 1450 m s−1. Although, after generation, shock waves usually travel at velocities
greater than the sound velocity. In this case, a nonlinear relation applies, written as
follows:

p1

p0
=

(
r0

r1

)nshock

. (3.51)

Vogel, Busch & Parlitz (1996) studied laser-induced bubbles. They found the pressure
after collapse to decay with nshock ≈ 2.0 for pressures over 100 MPa and with
nshock ≈ 1.06 for lower pressures. Noack & Vogel (1998) and Lauterborn & Vogel
(2013) investigated shock waves generated at collapses of laser-induced bubbles.
Although they found initial shock velocities of up to 5000 m s−1 and pressures up to
11 GPa, the shock waves were rapidly damped. Noack & Vogel (1998) found that the
damping of the shock pressure up to a distance of r1 6 2r0 was about nshock= 1.3± 0.2.
For shock wave expansions of r1 > 2r0, the pressures were decreasing at a rate of
nshock = 2.2 ± 0.1. Supponen et al. (2017) stated a pressure decay for laser-induced
bubbles proportional to nshock= 1.249± 0.003 obtained from a fitted function. Johnsen
& Colonius (2008) numerically investigated shock-induced collapses of gas bubbles
and found that the pressure decay of shocks is proportional to nshock = 1.0.

During the collapse of a bubble, liquid water flows towards the bubble from all
sides. In the vicinity of a rigid boundary, a bubble always collapses asymmetrically
because the flow towards the bubble is disturbed by the presence of the solid wall.
Therein, a high liquid microjet pierces the bubble and impacts on the rigid surface.
Simultaneously, the flow of the microjet produces a toroidal bubble that collapses
immediately after impact of the microjet. During the entire collapse process, the
bubble moves towards the solid surface, and its impact concentrates in direction
of the surface. The following dimensionless stand-off distance, γ , is often used to
classify single bubble collapses in the vicinity of rigid boundaries

γ =
H

Rmax
. (3.52)

Here, H is the distance of the bubble centre from the rigid boundary and Rmax
is the maximum bubble radius at the beginning of collapse. Supponen et al. (2016)
considered laser-induced bubbles collapsing in a gravitational field, near a free surface
and near a rigid surface. They conducted experiments for different stand-off distances,
γ , and found that the normalised bubble displacement, 1z/Rmax, is related to a scalar
anisotropy parameter, ζ , as follows:

1z/Rmax = 2.5ζ 0.6. (3.53)

Here, 1z is the bubble displacement and ζ ≡ −|ζ | is a scalar anisotropy parameter
related to the Kelvin impulse, where ζ is the vector of the anisotropy parameter. In
the case of a bubble near a rigid surface, ζ is expressed as (Supponen et al. 2016)

ζ =−0.195γ −2n, (3.54)

with n as the unit normal vector of the surface pointing towards the centre of the
bubble. Equating (3.53) and (3.54) yields the relation to calculate the motion of a
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collapsing bubble as a function of its normalised wall distance, γ

1z= 2.5(−|− 0.195γ −2n|)0.6Rmax. (3.55)

Accordingly, the distance from the bubble centre to the rigid boundary, H, is corrected
to obtain Hcorr

Hcorr =H +1z. (3.56)

Recall that, during collapse, 1z has a negative sign and a bubble will always move
towards the boundary, i.e. Hcorr <H.

Another dependency of the bubble collapse behaviour on γ is found for the
conversion of the bubble energy into energy to generate shock waves. For γ > 4,
Supponen et al. (2017) conducted experiments of laser-induced bubbles to relate
the bubble’s energy to the energy of generated shock waves. For γ 6 3, Vogel &
Lauterborn (1988) experimentally determined that during the first and second collapse
of a spherical bubble 60 %–70 % of the energy initially stored in the bubble is
converted into shock wave energy. Based on hydrophone measurements, they showed
that the emitted shock waves depend on γ . For γ ≈ 0.9, almost no sound is emitted
during the first collapse, but more sound is emitted during the second collapse. For γ
lower or higher than 0.9 the shock wave emission increases during the first collapse;
for γ lower or higher than 1.5, it decreases during the second collapse. Johnsen &
Colonius (2009) numerically investigated non-spherical bubble collapses near solid
walls. They found that the fraction of energy that is converted into energy to radiate
shock waves during the first bubble collapse increases with increasing distance for
1.0 6 γ 6 5.0. This is in general agreement with the measurements of Vogel &
Lauterborn (1988).

As the shock wave emission is a result of the collapse pressure of the bubble, we
suppose that the pressure generated after a bubble collapse depends on γ analogously.
Based on the experiments of Vogel & Lauterborn (1988), we fitted two functions to
approximate the radiated pressure for an asymmetric bubble collapse. One function
refers to the pressure component after the first collapse, pasym,1, and reads as follows:

pasym,1 = pspher [b1(γ − 0.2)4 + b2(γ − 0.2)3

+ b3(γ − 0.2)2 + b4(γ − 0.2)+ b5], (3.57)

with b1 = 0.02788, b2 = −0.35725, b3 = 1.33158, b4 = −1.38117 and b5 = 0.44444;
pspher is the pressure radiated during the first collapse of a spherically collapsing
bubble. The other function refers to the pressure component after the second collapse,
pasym,2, and reads as follows:

pasym,2 =

{
pspher(c1γ

5
+ c2γ

4
+ c3γ

3
+ c4γ

2
+ c5γ + c6) if γ 6 2

pspher(d1 + d2ed3γ ) else,
(3.58)

with the constants c1 = 0.07680, c2 = −0.46386, c3 = 0.88197, c4 = −0.60657, c5 =

0.19778, c6 = 0.0006, d1 = 0.03802, d2 = 11.64971 and d3 = −3.13128. The sum
of these two components gives an approximation for the complete radiated pressure
during an asymmetric collapse as follows:

pasym = pasym,1 + pasym,2. (3.59)
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FIGURE 9. Normalised collapse pressure of an asymmetrical bubble collapse versus
normalised stand-off distance fitted to experiments of Vogel & Lauterborn (1988).

Figure 9 presents our fitted normalised collapse pressure during an asymmetric
collapse, pasym, normalised with the collapse pressure emitted during a spherical
collapse, pspher and plotted against the normalised stand-off distance, γ . Larger
collapse pressures are generated for γ < 0.3 and γ > 1.0. Recall that for γ > 1.0, a
collapse does not necessarily generate higher pressures at a respective wall because
generated shock waves need to travel larger distances over which the pressures decay
according to (3.51). Following this approach, we assumed that bubble collapses of
about γ < 0.75 are most aggressive because they take place in contact with a wall
and generate high collapse pressures as well.

We conducted simulations with the hybrid Euler–Euler/Euler–Lagrange method
to erosion based on information from collapses of spherical Lagrangian bubbles
near a solid surface. We first calculated the dynamics of each Lagrangian bubble
according to (3.36) and (3.37) and then specified the beginning of the collapse to be
the instance when the velocity of the bubble wall, Ṙ, changes sign from negative to
positive. Analogously, the beginning of a collapse is found from a change of sign
of Ṙ from positive to negative. For all identified collapses, the bubble’s position, its
inner bubble pressure, its maximum radius at the beginning of a collapse and its
minimum radius after collapse are obtained and serve to assess erosion for a surface.

As only spherical collapses can be calculated using a Lagrangian method, two main
effects of the asymmetric collapse behaviour and concentration of a collapse onto
a surface are considered. Based on the above discussion, compared to a spherical
collapse, during an asymmetric collapse:

(i) the bubble moves towards the rigid surface; and
(ii) the conversion of bubble energy into shock wave energy decreases.

For bubble collapses of γ 6 1.0, we assume that after collapse the bubble is in
contact with the rigid wall and the collapse pressure of the bubble is directly exerted
on to the surface. For γ > 1, the Kelvin impulse and (3.55) determine the bubble’s
motion towards the rigid surface. Depending on its displacement and radius after
collapse, a bubble can be in contact with the surface in which case we calculated the
impact pressure on the wall as follows:

pimp = pasym, (3.60)
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where the decreased collapse pressure of a bubble during an asymmetric collapse
is determined from (3.57), (3.58) and (3.59). If liquid separates a bubble from the
rigid surface, solving (3.51) with nshock = 2 gives the bubble’s radiation pressure. This
pressure is radiated over a distance until its pressure wave reaches the considered
face and causes an impact pressure expressed as follows:

pimp = pasym

(
Rmin

Hcorr

)2

. (3.61)

Although a microjet impact is not explicitly calculated, the influence of the microjet
is incorporated also in the model. First, the motion of the bubble towards the wall
is driven by the microjet and accounted for in (3.53) to (3.56). Second, the pressure
decay functions from (3.57) to (3.59) take into account the shock wave radiated by
the microjet. For different values of γ , the microjet impact on the surface occurs at
different times, generates a shock wave and thereby influences the radiation of shock
waves.

Analogously to (3.49), the Lagrangian erosion potential, cero,L, on the considered
face is obtained by summing the individual impact pressures, pimp, acting on one face
and normalised against the sum of all impact pressures on the considered surface

cero,L =

I∑
i

pimp,i

N∑
n

(
I∑
i

pimp,i

)
n

, (3.62)

where index i refers to the impact itself, and I is the total number of impacts on the
regarded face. Similar to (3.49), (3.62) gives the percentage of erosion in one face
compared to all faces of the considered surface.

Equation (3.62) assumes a linear relation between erosion and impact pressure, pimp.
On the contrary, experiments of Franc & Riondet (2006) indicated that incubation
times and pit depths depend nonlinearly on impact loads. They also stated that
stresses exceeding the yield strength of the material, but not its ultimate strength, are
proportional to pit depth, Hpit, and load stress, σ . For the material they considered
(stainless steel 316 L) and using a Ludwik-type consolidation approach, they proposed
the following relationship for the stress range of σy <σ < σu:

Hpit ∝ (σ − σy)
2.4. (3.63)

Although not all our calculated impact pressures are assumed to exceed the yield
strength of the regarded material, it is reasonable to assume, similar to (3.63), that our
calculated erosion potential is proportional to impact pressure squared. Analogously to
equation (3.62), we then calculate the erosion potential as being proportional to the
impact pressure squared as follows:

cero,L2 =

I∑
i

pimp,i
2

N∑
n

(
I∑
i

pimp,i
2

)
n

, (3.64)
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which also yields the percentage of erosion on one face compared to all faces of the
regarded surface. Here, influences of progressive erosion over different time periods
were neglected.

3.8. Solution algorithm
Figure 10 schematically outlines our solution algorithm. At the beginning of every
time step of the Eulerian flow solution, Eulerian vapour structures, which meet the
criteria described in § 3.5, are transformed into spherical Lagrangian bubbles. For
every bubble, the Lagrangian equation of motion (3.34) is solved to obtain its new
velocity, its position and its source term needed for the momentum equation (3.42).
The time step used for the solution of the Lagrange equation equals the time step
of the Euler flow solver. Nevertheless, for every bubble we defined a local Courant
number based on its velocity relative to the size of the cell incorporating this bubble.
Then, if necessary, the time step is reduced, and sub time stepping is conducted over
the entire Euler time step.

Solving bubble dynamics equations (3.36) and (3.37) for all bubbles yields bubble
radii and their radius growth rates. To track the dynamics of single bubbles which
takes place in time periods multiple orders smaller than the time periods considered
for the Eulerian flow solution, the time steps used for the integration of Ṙ and R̈
are significantly smaller. Time integration is conducted using an implicit second-order
Crank–Nicolson scheme. Additionally, as growth and collapse take place in different
time scales, adaptive time stepping is used for the time integration of bubble dynamics.
Then, to estimate erosion, collapse rates of single bubbles near rigid boundaries are
stored for post-processing.

Once the size and position of the Lagrangian bubbles are obtained, the new amount
of vapour in every control volume is calculated by distribution of the vapour volume
onto the numerical grid. Solving equation (3.12) gives the volume fraction for the
Eulerian frame, and summing the vapour volume fraction fields from Eulerian and
Lagrangian frames (3.41) yields the total vapour volume fraction.

The next steps consist of calculating the velocity and pressure fields of the Eulerian
carrier fluid flow by solving the momentum equation (3.3) and the Poisson equation
(3.11) in a segregated manner. The PIMPLE algorithm, a combination of the Pressure
Implicit with Splitting of Operator (PISO) and Semi-Implicit Method for Pressure-
Linked Equations (SIMPLE) algorithms, is used to solve the equations of the Eulerian
fluid flow. In contrast to flows without phase change, the solution of the Poisson
equation (3.11) differs for cavitating flows because the velocity field is no longer free
of divergence. As described above, source terms from the cavitation model account for
this divergence. These source terms (3.18) are calculated before solving the Poisson
equation to obtain the pressure of the carrier fluid.

If velocities and pressures fail to converge, another outer PIMPLE iteration is
initiated. Equations for Eulerian vapour volume fraction, momentum and pressure
are solved repetitively until convergence criteria are fulfilled. Then the turbulence
equations are solved. If an Eulerian erosion assessment is to be conducted, it is done
after completing the flow simulation time step (see § 3.7.1).

Second-order schemes spatially discretise the Euler flow simulations. First-order
schemes are used to discretise the turbulence equations to improve numerical stability.
An implicit Euler scheme integrates the flow equations.
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Lagrangian frame (see § 3.5)
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Lagrangian bubbles onto Eulerian grid
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FIGURE 10. Schematic of the solution algorithm.
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FIGURE 11. Dynamics of a spherical cavitation bubble exposed to an acoustic wave.
(a) Time histories of measured and calculated radius of a spherical cavitation bubble
exposed to an acoustic wave in an infinite liquid. (b) Time histories of calculated radius
and inner pressure of a spherical cavitation bubble exposed to an acoustic wave in an
infinite liquid.

4. Verification and validation
4.1. Bubble dynamics in an acoustic field

Pressure changes in the surrounding liquid are the main reason for bubble dynamics
to be initiated. Before investigating agglomerations of multiple moving bubbles in a
flow, we examined the dynamics of a single static bubble based on the experimental
measurements of Ohl et al. (1999). We considered a bubble in equilibrium at a radius
of R0 = 8 µm and at atmospheric pressure of p0 = 100 kPa. An acoustic wave of a
frequency of fac = 21.4 kHz and an acoustic pressure of pac = 132 kPa prescribed a
liquid pressure field.

To illustrate our numerical predictions of bubble dynamics, figure 11(a) presents
time histories of the measured and calculated radius of a bubble exposed to an
acoustic pressure wave, and figure 11(b) depicts time histories of the radius and
the inner pressure of the bubble. In figure 11(a), the black line identifies calculated
radii; the red crosses, comparative experimentally measured radii; the blue line,
the prescribed acoustic pressure. These time histories were shifted to visualise the
instance when liquid and atmospheric pressure were equal. At the beginning, the
bubble radius started to grow because liquid pressure decreased below atmospheric
pressure, at which the bubble was initially in equilibrium. The bubble growth rate
reached its maximum approximately when the acoustic pressure was minimal. When
the liquid pressure started to grow again, the acceleration of the bubble wall became
negative and caused the bubble’s growth rate to decrease. Further bubble growth
led to a decrease of the bubble’s inner pressure, and this inner pressure approached
the vapour pressure until the bubble attained its maximum radius. When the liquid
pressure exceeded the atmospheric pressure again, it initiated the first bubble collapse.
As the non-condensable gas inside the bubble was compressed the bubble’s radius
decreased well below its equilibrium radius.

At the end of the collapse, the pressure inside the bubble increased by multiple
orders of magnitude above the equilibrium pressure. The peak of the red line in the
right graph of figure 11(a) visualises the process, which is in accordance with an
adiabatic change of state of an ideal gas. During collapse, the largest part of the
potential energy, which was stored in the bubble at maximum size, was converted
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into energy to form shock waves that were radiated into the liquid. Viscous effects
dissipated additional energy. Compression and expansion of the non-condensable gas
caused multiple bubble radius and pressure oscillations of decreasing amplitude. The
entire process was repeated periodically according to the frequency of the acoustic
pressure oscillation. Calculated and measured radii compared favourably.

4.2. Behaviour of a bubble in a vortex
To ensure that a single bubble’s motion and the associated dynamics were calculated
correctly and interacted reasonably with each other, using a one-way coupling
approach, we simulated the behaviour of a spherical bubble in a Lamb–Oseen-based
vortex flow based on the work of Oweis et al. (2005). Chahine (1995) and Choi et al.
(2009) documented more complex investigations of bubbles captured by vortices to
account for bubble–vortex interactions and aspherical bubble deformations. Generally,
vortex flows can be modelled as Rankine vortices, consisting of the combination of
the following two vortex parts:

(i) a rotational vortex (with: ∇ × u 6= 0; rigid body vortex) on the inside (r < rc);
and

(ii) an irrotational vortex (with: ∇× u= 0) on the outside (r > rc).

The two vortex parts are joined at the core radius, rc, measured from the centre
of its rotational axis. At the vortex core, the tangential velocity is greatest and is
calculated as follows:

uc = γ1
Γ0

2πrc
. (4.1)

The corresponding core pressure is defined as

pc = p∞ −
ρl

2
u2

c . (4.2)

Here, Γ0 = 0.29 m2 s−1 is the circulation of the vortex and γ1 = 0.715. p∞ is the
pressure in the undisturbed far field. The tangential velocity measured from the centre
of the vortex axis of rotation reads as follows:

uθ = γ1
Γ0

2πrc

r
rc
. (4.3)

It increases with increasing radius, r, from 0 m s−1 at the vortex centre to its
maximum value, uc, at the vortex core. The pressure inside the inner rotational vortex
region is defined as follows:

p= pc + γ2ρl

(
Γ0

2πrc

)2
(r2
− r2

c)

r2
c

, (4.4)

with γ2 = 0.87. Outside the vortex core (r > rc), the flow velocity decreases with
increasing distance from the vortex core

uθ =
Γ0

2πrc
(1− e−γ3(r/rc)

2
), (4.5)
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FIGURE 12. Specified distributions of velocity (a) and pressure (b) for the vortex.

where γ3= 1.255. The pressure, p, increases with increasing distance from the centre
of the vortex axis of rotation. It is calculated by substituting equation (4.5) into the
following expression:

p= p∞ −
ρl

2
u2
θ . (4.6)

For vortex flows, the cavitation number at the vortex core can be defined using the vortex
core pressure, pc, the vapour pressure, pv, and the core velocity, uc (Choi et al. 2009)

σc =
pc − pv
0.5ρluc

2
. (4.7)

By changing the pressure difference, the bubble dynamics is influenced without
changing the flow field of the vortex.

Figure 12 depicts the velocity and pressure distributions for the vortex. Arrows
in figure 12(a) identify magnitude and direction of the counter-clockwise flow.
Flow velocities were highest near the vortex core and decreased with increasing
distance away from the vortex core. Varying colours in figure 12(b) mark the
corresponding pressure. They are seen to increase with increasing distance from
the vortex rotation axis.

According to Ligneul & Latorre (1989), for bubbles captured by vortices, a ratio,
N, can be defined to describe the influence of forces attracting the bubble towards
the vortex centre and forces keeping the bubble in a rotational motion. It is written
as follows:

N = Ra
Li

Ra
, (4.8)

where the parameter Ra is calculated as follows:

Ra =

√
6πν

Γ0
= 8× 10−3. (4.9)
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FIGURE 13. Influence of initial bubble radius on bubble trajectories in a vortex.
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FIGURE 14. Influence of initial bubble radius on bubble motion in terms of radial distance
to the vortex centre (a) and the bubble dynamics (b).

For N ≈ 1.0, attractive and rotational forces are of the same order of magnitude;
for N < 1.0, attractive forces increase; for N > 1.0, rotational forces increase. For
the smallest bubble radius of R0 = 0.8 mm, this ratio is N = 2.52; for R0 = 2 mm,
N = 1.01; for R0 = 5 mm, N = 0.4.

Bubbles with nucleus radii of R0 = 0.8, 2.0 and 5.0 mm were initially placed a
radial distance of Li = 0.25 m away from the vortex rotational axis, here with a
vortex core radius of rc = 0.1 m. At first, we specified a core cavitation number
of σc = 3.602. To compute bubble motions, forces caused by the pressure gradient
(3.24), virtual mass (3.25), volume variation (3.26), drag (3.27) and lift (3.30) were
considered. Initially, the bubble velocity equalled the carrier fluid velocity, causing the
bubble to move in a rotational counter-clockwise direction along the streamlines of
the flow. Thereafter, the bubble’s trajectory deviated from the carrier flow streamlines
as multiple forces influenced its motions.

Figure 13 presents the trajectories for bubbles of different radii inside the vortex.
The bubbles’ starting position was located at x=−0.25 m and y=0 m. A green circle
marks the vortex core radius, rc. The attractive forces towards the vortex core were
greatest for the largest bubble. While the bubble of radius R0= 0.8 mm circled around
the vortex core for more than four rotations before reaching the core radius, the bubble
of radius R0 = 5 mm reached the core radius after just one rotation.
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FIGURE 15. Influence of cavitation number, σ , on bubble motion in terms of radial
distance to the vortex centre (a) and the bubble dynamics (b).

Figure 14(a) depicts the normalised radial distance, r/rc, (r is the absolute radial
distance, and rc is the vortex core radius) of the bubble’s centre to the rotational
axis of the vortex; figure 14(b), the bubble radius, R, for different initial bubble radii,
R0. Depending on bubble size and bubble dynamics, forces acting on the path of
the bubble increased or decreased. Although all bubbles were attracted to the vortex
core, the attractive forces increased with increasing R0 and with decreasing N, which
agreed favourably with the findings of Levkovskii (1978), Latorre (1980) and Ligneul
& Latorre (1989). Specifically, the pressure gradient forces caused the bubbles to
be attracted towards the vortex centre, where the pressure was lowest. Because the
liquid pressures around the bubbles’ walls were averaged over multiple locations,
the bubbles’ centres did not move into the vortex centre. According to Hsiao et al.
(2000) and Hsiao et al. (2003), this approach can prevent unrealistic bubble growth
inside a vortex core. Figure 14(b) presents the dynamics of three bubbles. All three
bubbles grew, reached a new equilibrium radius, and followed a trajectory around
the vortex. Recall that, in this simplified one-way coupling simulation, although the
bubble was influenced by the flow field, the flow field itself was not influenced by
the bubble.

Figure 15(a) presents the normalised radial distance, r/rc, extending from the bubble
centre to the rotation axis of the vortex; figure 15(b), the bubble radius, R, for core
cavitation numbers of σc= 2.682, 3.142 and 3.602. In all cases, bubbles were attracted
to the vortex core and grew until they oscillated about their equilibrium sizes. For
smaller cavitation numbers, not only the size of the bubbles, but also the amplitudes
of their size oscillations increased. Averaging the liquid pressure at the bubbles’ walls
prevented an unbounded growth. The simulated bubble behaviour was similar to that
of Hsiao et al. (2003), who used a related approach to investigate a spherical single
bubble in a vortex.

In hydrodynamic flows, two dominant forces mostly define a bubble’s motion,
namely the drag force and the pressure gradient force. To visualise their effect,
figure 16 shows three simulated trajectories of the bubble’s motion. All three
simulations started with the same sized bubble of R0 = 2 mm located at the same
position. At the start, the bubble’s velocity equalled the carrier fluid velocity of the
control volume incorporating the bubble initially. The black line identifies the bubble’s
trajectory considering all forces; the green line, the bubble’s trajectory considering all
forces except the drag force, (3.27); the pink line, the bubble’s trajectory considering
all forces except the pressure gradient force, (3.24). The pressure gradient force
mainly caused the bubble to move to low pressure regions, i.e. towards the vortex
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FIGURE 16. Simulated bubble trajectories considering all forces (black line), forces
without drag force (green line) and forces without the pressure gradient force (pink line).

centre, where the fluid pressure was lowest. By neglecting this force, the bubble
mostly followed streamlines of the carrier fluid flow (pink line in figure 16). The
importance of the drag force is clearly obvious, too. By neglecting the drag force, the
bubble deviated from streamlines of the carrier fluid as its motion was then dominated
by the pressure gradient force, causing it to move towards the centre of the vortex
(green line in figure 16). This oscillatory behaviour was additionally influenced by
forces that depend on bubble dynamics. Considering both the drag and the pressure
gradient force, the bubble approached the vortex centre following a spiral-shaped path
(black line in figure 16).

4.3. Bubble rising in a liquid column
Gas bubbles rise in resting liquids owing to the gravity or buoyancy force generated
by the density difference between the gas inside a bubble and the liquid surrounding
this bubble. After an initial acceleration, a rising bubble reaches its final rise velocity
because an equilibrium between buoyancy force and drag force is achieved. An
analytical solution yields the final rise velocity of the bubble.

Based on a bubble’s interaction with the liquid phase, we employed a one-way
and a two-way coupling technique to simulate a bubble rising in a liquid medium
initially at rest (uz = 0 m s−1). We considered a gas bubble, positioned at the bottom
of a water column, having an initial radius of R0 = 2 mm and an initial velocity of
ub,z = 0 m s−1. Densities of air and water were assumed to be ρair = 1 kg m−3 and
ρair=1000 kg m−3, respectively. Surface tension of water was set at σ =0.073 N m−1.
For the calculation of bubble motions from the Lagrangian equation, we considered
forces owing to gravity (3.32), pressure gradient (3.24), virtual mass (3.25), Saffman
lift (3.30), and drag attributable to gravity (3.29).
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FIGURE 17. Rise velocity of the bubble obtained from an analytical calculation and
from simulations employing one-way (CFD – 1wc) and two-way coupling techniques
(CFD – 2wc).

Assuming that buoyancy and gravity forces are in equilibrium and that no other
forces influence the bubble’s motion, Darmana et al. (2006) derived the following
analytical formula for the bubble’s final rise velocity:

ub,z = uz +

√
σ

Rρc
+
(ρc − ρb)|gz|R

ρc
. (4.10)

Under initial conditions and fluid properties mentioned above, a final rise velocity of
ub,z = 0.23686 m s−1 is obtained.

Figure 17 depicts the rise velocities of a bubble obtained from the analytical
solution and from simulations applying one-way and two-way coupling. In this figure,
the black line marks the analytical solution; the blue line, the simulated time history
from the one-way coupling technique; the red line, the simulated time history from the
two-way coupling technique. Our simulations predicted that the initially resting bubble
accelerated, causing the rise velocity obtained from the one-way coupling technique
to asymptotically approach the analytical solution, thereby correctly verifying the
numerical solution of the Lagrangian equation of motion. However, from the two-way
technique we obtained a rise velocity that was approximately 3 % higher than the
analytical solution. This apparent discrepancy was attributed to the upward motion of
the bubble, which transferred its momentum to the surrounding liquid. Consequently,
the liquid surrounding the bubble was also accelerated, thereby decreasing the bubble’s
relative velocity and reducing the drag force acting on the bubble.

4.4. Coalescence of a Lagrangian bubble with an Eulerian vapour structure
To demonstrate the ability of our hybrid approach to transform a vapour volume
from the Lagrangian to the Eulerian framework and vice versa, we simulated the
process to merge a small Lagrangian bubble with a larger almost spherical vapour
structure in the Eulerian framework. To visualise this transformation between frames,
we deactivated the solution of the equations of bubble motion and bubble dynamics
for the Lagrangian bubbles. The velocity of the Lagrangian bubble was predefined,
such that it moved with constant velocity in the direction of the Eulerian vapour
structure.
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FIGURE 18. Coalescence of a single Lagrangian bubble with an Eulerian vapour
volume, the collapse of the Eulerian vapour volume and the vapour volume’s subsequent
transformation into a Lagrangian bubble.

Figure 18 illustrates the coalescence of a spherical Lagrangian bubble (identified
by a small blue coloured sphere) with an Eulerian vapour volume (distinguished
by a grey coloured shape) followed by the collapse of this Eulerian vapour volume
and its subsequent transformation into a Lagrangian bubble. At time t = 10 µs, the
Lagrangian bubble approached the Eulerian vapour structure and coalesced with it
at time t = 30 µs. Then, the complete vapour volume of the Lagrangian bubble
was transformed into the Eulerian frame. The influence of the coalesced Lagrangian
bubble on the shape of the vapour volume remained until, at time t = 60 µs, the
Eulerian vapour structure began to collapse because the pressure surrounding the
bubble greatly exceeded the vapour pressure. Furthermore, the action of gravity
caused the bubble to deform asymmetrically in the vertical direction. Between times
t = 140 µs and t = 170 µs, the Eulerian volume was transformed into a spherical
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FIGURE 19. Sketch of the nozzle’s geometry (Peters et al. 2015b).

Lagrangian bubble because the vapour volume decreased below the threshold volume
related to the predefined bubble’s limit radius of Rlimit = 50 µm.

5. Cavitation in internal nozzle flow
Following the work of Peters et al. (2015a,b), we used a RANS approach to simulate

the flow passing through an axisymmetric vertical nozzle, subjecting a target plate to
cavitation erosion. Franc & Riondet (2006) and Franc et al. (2011) investigated
the internal nozzle flow experimentally with regard to erosion damage caused
by cavitation. Mihatsch et al. (2011), Koukouvinis, Bergeles & Gavaises (2014),
Mihatsch, Schmidt & Adams (2015) and Mottyll (2017) numerically assessed
cavitation erosion for the considered case. Figure 19 shows the geometry of the
nozzle configuration we analysed. The nozzle consisted of a 16 mm diameter vertical
cylinder and a horizontal target plate, which formed the bottom of a 2.5 mm high
diverging radial channel. With an average velocity of 31 m s−1 the flow passed
through the nozzle and, at the connection of the nozzle with this channel, the small
radius of only 1.0 mm ensured that flow separated and then accelerated, generating
transient sheet and cloud cavitation travelling downstream on the target plate until
collapsing in regions of higher pressure. The high outlet pressure of the channel of
10.1 bar caused aggressive cavitation collapses leading to erosion on the target plate
(Franc & Riondet 2006; Franc et al. 2011). The greatest erosion occurred within a
radial distance of approximately 21 to 22 mm from the nozzle’s central axis.

To reduce computational costs, the numerical grid we constructed for our
simulations encompassed a three-dimensional symmetrical 17.5◦ section of the
nozzle’s flow domain as shown in figure 20. In the radial direction, control volumes
were slowly growing to obtain the highest spatial resolution near the radius where
cavitation structures were generated. Furthermore, cell sizes near solid surfaces were
specified in accordance with dimensionless wall distances, n+, to enable the use of
logarithmic wall functions. The inlet boundary was located at a height of 50 mm
above the connecting radius; the outlet, a radius of 100 mm from the centre axis
of the nozzle. No-slip velocity conditions were specified for the outer cylinder and
the top and bottom boundaries of the diverging radial channel. Periodic boundary
conditions were defined for the side boundaries whose normal vectors pointed in
circumferential direction. All cases were simulated for a time of at least 0.25 s
which represents over 80 periods associated with the lowest identified shedding
frequency of approximately 350 Hz and enabled us to calculate a sufficient number
of Lagrangian collapses in the vicinity of the target surface. We relied on an implicit
Euler scheme to perform time integrations of the flow solution. To obtain a maximum
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FIGURE 20. Perspective view of the entire solution domain (a) and a detailed view of
the small radius region of cavitation inception (b).

Courant number of less than two and an average Courant number of approximately
2.5 × 10−3, a time step of 1t = 3.54 × 10−7 s was specified. A first-order upwind
scheme spatially discretised convective turbulence terms; second-order schemes,
all other terms. To model cavitation for vapour structures treated in the Eulerian
frame, the cavitation model by Sauer & Schnerr (2000) with a nuclei density of
n0 = 1 × 1011 m−3 was used. To model turbulence, we used the k–ω-SST model
together with the correction of turbulent kinetic energy proposed by Reboud et al.
(1998) (see (3.19), (3.20)). To calculate the dynamics of spherical bubbles, we used
equations (3.36) and (3.37) and an adaptive time-stepping technique to deal with
relatively long growth and relatively short collapse phases. The time loop for the
bubble dynamics was integrated until reaching the next time step of the Eulerian
flow solution. To compute bubble motions, forces owing to pressure gradient, (3.24),
virtual mass, (3.25), volume variation, (3.26), drag, (3.27), lift, (3.30) and gravity,
(3.32) were considered. Lagrangian bubbles introduced into the simulation by the
transformation mechanisms interacted with the carrier fluid via a two-way coupling
approach.

First, the flow passing through the nozzle was computed using pure Euler–Euler
simulations. Figure 21 shows a time instance of the circumferential cross section
of the rotationally symmetric nozzle geometry for this Euler–Euler simulation. The
left half plots the velocity magnitude; the right half, the pressure inside the domain.
The flow from the top to the bottom caused a stagnation point flow at the bottom
boundary of the domain. At the stagnation point, the pressure was of a magnitude
of approximately 20 bar. Downstream of the 1 mm radius, which connected the top
cylinder to the radial divergent part, the flow accelerated into the channel, and vortices
were generated. In the vicinity of the radius, the pressure decreased, reaching values
lower than the vapour pressure, so that cavitation structures grew, which travelled
radially outwards. Further downstream, the static pressure increased again, leading to
collapsing cavitation structures.

We performed Euler–Euler simulations on seven grids consisting of 8.90 × 104 to
2.09 × 106 control volumes. A refinement ratio of 21/4 between the edge lengths of
consecutive grids in all three directions was specified. Based on calculations obtained
on these seven grids, figure 22(a) plots time-averaged normalised vapour volume
in the computational domain (V∗v = Vv/Vdom) versus refinement ratio of each grid
relative to the coarsest grid (r). Vv is the time-averaged volume of vapour in the
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FIGURE 21. Circumferential cross-section of the nozzle domain showing the velocity
magnitude on the left half and the pressure on the right half.
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FIGURE 22. Time-averaged normalised vapour volume in the domain, V∗v , versus the
refinement ratio of each grid, relative to the coarsest grid, r, (a) and relative deviation of
exceedances of vertical force acting on the bottom boundary, relative to the one obtained
on the finest grid, εNF ,i = (NF,i − NF,fine)/NF,fine (b). NF,i is the number of exceedances
of vertical force obtained on grid i and NF,fine is the number of exceedances of vertical
force on the finest grid. FZ/F0 is the vertical force acting on the bottom boundary, FZ ,
normalised against F0 =−25 kN.

numerical domain and Vdom is the volume of the entire domain. The coarsest grid
is denoted as r = 1 and the finest grid as r = 2

√
2. The vapour volume on grid

r = 2 deviated by −1 % relative to the vapour volume calculated on the finest grid
r= 2
√

2.
Figure 22(b) plots the relative deviation of the number of exceedances of vertical

force acting on the bottom boundary of the domain relative to the number of
exceedances obtained on the finest grid r = 2

√
2. The relative deviation of the

number of exceedances obtained on grid i relative to the finest grid was calculated
as εNF,i = (NF,i − NF,fine)/NF,fine. Here, NF,i is the number of exceedances of vertical
force obtained on grid i and NF,fine is the number of exceedances of vertical force
obtained on the finest grid. FZ/F0 is the vertical force on the bottom boundary, FZ ,
normalised against F0 = −25 kN. Increasing the refinement, r, caused deviations of
calculated forces to decrease smaller.

On a double logarithmic scale, figure 23 plots the amplitude of V∗v versus the
frequency. Although a seemingly unsteady behaviour characterised the temporal
progression and shape of the vapour volume, the fast Fourier transform (FFT)
of simulations on grids r =

√
2, r = 2 and r = 2

√
2 yielded periodic processes.

These identified the first characteristic frequency occurring between 300 and 400 Hz
( f1 ≈ 350 Hz); the second characteristic frequency, at about f2 ≈ 1050 Hz; the first
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FIGURE 23. Frequency analysis of the vapour volume calculated on different grids plotted
on a double logarithmic scale.

harmonic mode of the second characteristic frequency, at approximately f3≈ 2100 Hz.
To investigate the effects of the nuclei density, n0, on the cavitation characteristics,
we performed simulations based on the cavitation model of Sauer & Schnerr (2000)
using nuclei densities of 1× 108, 1× 1011, and 1× 1014 m−3, in the cavitation model
of Sauer & Schnerr (2000). For all three nuclei densities, the computed normalised
vapour volume in the domain deviated by a maximum of 1.5 %. Further on, the
frequency analyses revealed the same characteristic frequencies. Hence, we selected
a nuclei density of n0 = 1× 1011 m−3 for further investigations.

Mihatsch et al. (2011) investigated this case numerically, using a compressible
density-based solver that incorporated a barotropic cavitation model. They identified
characteristic frequencies of cavitation shedding at 408 Hz and two well-defined
frequencies at 1139 and 1182 Hz. Mihatsch et al. (2015) obtained four dominant
frequencies for the same case (denoted as ‘20 bar case’ owing to the stagnation
pressure of the incoming flow). They obtained the two lowest frequencies at 350 Hz,
a second characteristic frequency at 1100 Hz, and the first harmonic mode of the
second characteristic frequency at about 2200 Hz. The frequencies obtained by
Mihatsch et al. (2011, 2015) agreed favourably with the frequencies we obtained
from our simulations. On grid r= 2 we were able to capture the dynamic behaviour
of cavitation. This enabled us to determine the average amount of vapour in the
computational domain and to obtain a favourable agreement between vertical forces
acting on the bottom boundary. Therefore, our computations on grid r = 2 yielded
sufficiently accurate results and a workable compromise for further investigations
using the multi-scale approach.

5.1. Hybrid approach – cavitation behaviour
All simulations using the hybrid Euler–Euler/Euler–Lagrange method were started
from a previously converged Euler–Euler simulation. Employing our hybrid method
to simulate the flow through an axisymmetric vertical nozzle, we united the efficient
Eulerian treatment of large vapour structures with the accurate Lagrangian approach
and simulated the behaviour of single spherical bubbles. We transformed vapour
volumes between the two frames whenever specified conditions as documented above
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FIGURE 24. Two perspective views of Eulerian cavitation structures and Lagrangian
bubbles at different time instances. See also the supplementary Movie 1 and Movie 2
at https://doi.org/10.1017/jfm.2020.273.

were met (see § 3.5). Specifically, vapour structures were transformed into Lagrangian
bubbles when their mesh resolution was too low or their radii decreased below a
predefined threshold and, reciprocally, when they grew to a sufficient size or merged
with other Eulerian vapour structures.

Figure 24 displays two perspective views of larger cavitation structures (light green)
and single isolated bubbles (light grey) in the domain at different time instances.
Although the domain contained many Lagrangian bubbles, most of them were small
until reaching regions of low pressure. At the time instance presented in figure 24(a),
single Lagrangian bubbles were introduced owing to vapour structures collapsing or
splitting into smaller parts or from the growth of small isolated vapour volumes.
Afterwards, bubbles accumulated and started to form a larger vapour structure again.
At the time instance shown in figure 24(b), an Eulerian vapour structure detached
from a large cavitation cloud, collapsed, and then transformed into a Lagrangian
bubble.

Figure 25 illustrates the formation of a large scale vapour structure, starting from
individual bubbles (View A from figure 24a). Figure 25 1t= 0 µs to figure 25 1t=
10.62 µs show bubbles that moved to the low pressure region and then grew, while
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Ît = 0 µs

Ît = 10.62 µs

Ît = 24.78 µs

Ît = 3.54 µs

Ît = 17.7 µs

Ît = 31.86 µs

FIGURE 25. Lagrangian bubbles growing and forming a larger Eulerian vapour structure.

other bubbles followed into this region. At time 1t= 3.54 µs, bubbles were already
large enough to be transformed into the Eulerian framework, and from time 1t =
3.54 µs to 1t = 31.86 µs Lagrangian bubbles were contacting the Eulerian vapour
structure and were consecutively transformed into the Eulerian framework and merged
into the larger vapour structure.

Figure 26 displays the conversion of a vapour volume from the Eulerian into
the Lagrangian frame. Starting from the vapour structure shown in View B from
figure 24(b), figure 26 1t = 0 µs to figure 26 1t = 3.54 µs present a nearly
spherical vapour structure that detached from a large cavitation cloud. Between times
1t = 3.54 µs and 1t = 10.62 µs, after detachment, the vapour volume collapsed.
From time 1t = 7.02 µs to time 1t = 10.62 µs, the bubble achieved a size so
small that a sufficient resolution by the numerical grid could not be maintained and,
therefore, it was transformed into a spherical Lagrangian bubble.
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Ît = 0 µs

Ît = 7.02 µs

Ît = 3.54 µs

Ît = 10.62 µs

FIGURE 26. An Eulerian vapour volume detaching from a larger cloud, collapsing and
being transformed into a Lagrangian bubble.

Thresholds αv,limit, nlimit and Rlimit identified those vapour volumes that had to be
transformed between the Lagrangian and Eulerian frameworks (see § 3.5). Therefore,
we investigated the influence of these thresholds on the transformation processes.
Recall that Lagrangian bubbles were transformed into the Eulerian frame, not only
owing to growth above a specified threshold (nlimit or Rlimit), but also by merging into
present Eulerian vapour structures. Table 1 lists the results of simulations conducted
using our hybrid approach, specifically, the number of transformations into the
Lagrangian frame per time step, nEtoL/1t, the number of transformations into the
Eulerian frame per time step, nLtoE/1t, and the net number of bubbles added into the
Lagrangian frame per time step, 1n/1t= (nEtoL − nLtoE)/1t. For simulations H1, H2
and H3, only the threshold αv,limit varied. Although we found no clear dependence
of the number of transformations on αv,limit, its increase yielded a greater net number
of bubbles added into the Lagrangian frame per time step, 1n/1t. Simulated cases
H2, H4 and H5, differed only in the specified values of threshold nlimit. With a
higher threshold related to the grid resolution, nlimit, more vapour volumes were
transformed from the Eulerian to the Lagrangian frame and vice versa. Nevertheless,
the net number of bubbles added into the Lagrangian frame did not show a definite
tendency related to the threshold nlimit. In contrast to the other simulations, case
H7 used an absolute threshold radius of Rlimit = 25 µm to evaluate transformations
of vapour volumes. Compared to maximum radii achieved in other simulations, this
threshold radius was approximately one order smaller. Fewer Eulerian vapour volumes
were, therefore, transformed into the Lagrangian frame and a considerably smaller
net number of Lagrangian bubbles was introduced. Cases H2, H6 and H8 differed
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FIGURE 27. Time history of the total number of Lagrangian bubbles inside the simulation
domain for cases H1, H2 and H3.

Case αv,limit nlimit Rlimit R0 nEtoL/1t nLtoE/1t 1n/1t

H1 0.01 8 — 1 µm 2.105 2.018 0.087
H2 0.05 8 — 1 µm 1.912 1.806 0.106
H3 0.10 8 — 1 µm 2.257 2.132 0.125
H4 0.05 14 — 1 µm 3.586 3.482 0.104
H5 0.05 22 — 1 µm 4.331 4.220 0.111
H6 0.05 8 — 10 µm 2.789 2.721 0.068
H7 0.05 — 25 µm 1 µm 0.346 0.324 0.022
H8 0.05 8 — Spectra 2.148 2.065 0.083

TABLE 1. Results of simulations using the hybrid approach with different transformation
thresholds.

only in the equilibrium radius specified. For simulation H8, the average equilibrium
radius was larger than for simulation H2 and it was even larger for simulation
H6. Increasing the equilibrium radius yielded a larger number of transformations
between the frames in both directions, but decreased their difference per time step,
1n/1t.

Figure 27 presents the start of the time histories of the total number of Lagrangian
bubbles inside the domain for cases H1, H2 and H3. Simulations started from a
converged solution of an Euler–Euler simulation. In the beginning, for all cases, the
number of Lagrangian bubbles increased until reaching an average number of bubbles
at a time of about 0.03 s. This figure shows that the number of Lagrangian bubbles
transformed between the two frames and the bubbles moving out of the outlet of the
domain approached a value that, depending on the temporal behaviour of cavitation,
varied only slightly.

Except for simulation H6, the simulated macroscopic cavitation for the simulations
listed in table 1 the simulated macroscopic cavitation behaved similarly compared
to an Euler–Euler simulation with regard to the average cavitation volume, its
temporal progress, and its characteristic frequencies. These simulations, therefore,
were influenced only on a microscopic scale when transforming vapour volumes
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FIGURE 28. Temporal progress of vapour volume for simulations using an Euler–Euler
approach and the hybrid approach for cases H2 and H6.

from the Eulerian frame into the Lagrangian frame. Although we used a Lagrangian
approach, which incorporated a two-way coupling technique, to deal with smaller
vapour structures, the Lagrangian vapour bubbles correctly replaced the Eulerian
vapour volumes and, therefore, did not affect the macroscopic behaviour of cavitation.
For simulation H6, we specified a much larger equilibrium bubble radius and, thereby,
a greater non-condensable gas content in the bubbles. This resulted in an increased
vapour volume in the domain and led to augmented amplitudes of oscillations of
the vapour volume. Figure 28 presents time histories of vapour volumes for the
Euler–Euler simulation and the H2 and H6 simulations obtained from our hybrid
approach. Although the equilibrium radius differed, cases H2 and H6 used the
same parameters for the hybrid model (see table 1). The behaviour of macroscopic
cavitation was similar for the Euler–Euler simulation and the hybrid simulation H2.
For case H6, owing to the high gas content in the bubbles, large oscillations of
vapour volume occurred and the average vapour volume increased significantly. For
simulation H8, although the gas content in the Lagrangian bubbles was spectrally
distributed, the macroscopic cavitation resembled not only the Euler–Euler simulation,
but also all other hybrid simulations. The only exception was simulation H6.

5.2. Hybrid approach – erosion assessment
To assess erosion caused by the flow through the axisymmetric nozzle, we first
identified the bubbles collapsing in the fluid domain and stored their properties, such
as collapse pressure, initial and final radii during collapse and bubble position. The
procedure then consisted of calculating pressures impacting the rigid target plate. For
the dimensionless stand-off distance of γ 6 3.0 of case H4, figure 29(a) visualises
Lagrangian bubble collapses impacting on the target plate using their initial bubble
radii at the beginning of the respective collapses. In this figure, the blue to red
colouring in the domain and a logarithmic scale identify impact pressures, pimp,
associated with bubble collapses; different shades of grey and another logarithmic
scale, the sum of impact pressures on the respective faces,

∑
pimp. It is seen that a

defined region of the target plate is covered by impacts of Lagrangian bubble collapses.
In the close-up view, shown in figure 29(b), the darker grey areas identify areas of the
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FIGURE 29. Lagrangian bubble collapses displayed using their maximum radii and sum
of impact pressures on the bottom target plate for case H4.

target plate subject to erosion by visualising the correlation between erosion potential
and bubble collapses. Faces neighbouring collapses of high impact pressures and/or
multiple collapses were estimated to have the highest damage potential. Furthermore,
bubble collapses for greater stand-off distances (γ > 1.5) seldom caused high impact
pressures.

A more quantitative statistical erosion assessment is obtained by evaluation of
collapse impacts in circumferential direction of the nozzle at different radial intervals.
Franc & Riondet (2006) measured the depth of erosion in terms of mass loss on this
area of the target plate. Based on an interval length of 1 mm, their moving averaging
technique obtained the distribution of penetration depth over the radial distance from
the central axis of the nozzle. For comparison purposes, we chose radial intervals
of the same length to evaluate Lagrangian collapse impacts. Here, all faces which
were multiply impacted were considered. For case H4, figure 30 exemplarily plots the
number of impacts (normalised against the maximum number of collapse impacts),
nimp/nimp,max, versus the radial distance from the nozzle’s central axis, r, obtained for
different thresholds of dimensionless collapse distances of γ 6 1, γ 6 3 and γ 6 5.
The legend in this figure lists the maximum number of collapse impacts associated
with each simulation. Bubbles collapsed mostly between radial distances of 15 to
30 mm. For larger collapse distances, the distribution of calculated impacts turned
out to be broader banded and, also, a greater number of impacts were calculated.

To investigate the influence of the parameters listed in table 1 on the simulation of
Lagrangian bubble collapses, figure 31 exemplarily plots distributions of the number of
impacts per time versus the radial distance from the nozzle’s central axis for γ 63 and
for cases H1 to H4, case H7 and case H8. Despite small deviations in the distributions’
shapes, in all cases the highest number of impacts was calculated between radial
distances of 21 to 22 mm. The number of impacts per unit time increased as αv,limit
and nlimit increased and as the average equilibrium radii decreased. Comparing the
parameters listed in table 1, it seemed obvious that the number of impacts per unit
time increased as αv,limit from simulation H1 to H2 and from simulation H2 to H3
increased and as nlimit from simulation H2 to H4 increased. For simulation H7, the
lowest number of calculated impacts correlated well with the fact that, for this case,
the number of transformations from Eulerian to Lagrangian vapour volumes, nEtoL/1t,
was smallest.
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FIGURE 30. Number of collapses for different collapse distance thresholds versus radial
distance from the nozzle’s central axis for case H4.

Franc & Riondet (2006) reported that they did not consider pits with diameters
smaller than 20 µm, because their contribution to overall erosion was too low. The
largest pit they found had a diameter of 220 µm and characteristic pit diameter
leading to most surface erosion was between 80 and 100 µm. In numerical
simulations of single bubbles near a solid wall considering fluid-structure interaction,
Chahine (2014) investigated the dependence of pit radius on the maximum bubble
radius at the beginning of a collapse. They found that the radius of a generated pit
is similar to the bubble radius at the beginning of a collapse.

More than 95 % of our calculated bubble collapses occurred at maximum diameters
between 20 and 180 µm for simulations H1, H2 and H3; for simulation H4, between
20 and 400 µm; for simulation H7, between 20 and 50 µm; for simulation H8,
between 20 µm and 1 mm. Maximum collapse radii were smaller for simulation
H7 because the maximum Lagrangian bubble size was limited by the transformation
threshold Rlimit and were larger for simulation H8 because the average equilibrium
radii were larger than for other cases. Presumably pit diameters are similar to initial
bubble diameters. Our calculated maximum bubble diameters agreed favourably
with observations from Franc & Riondet (2006) and Chahine (2014). For further
comparisons, we used simulation H4 because it comprised a large number of collapses
and was considered to be statistically most reliable. Moreover, the maximum bubble
diameters of this case correlated favourably with measured pit diameters.

For collapses of γ 6 3, we calculated the erosion potential for Lagrangian bubbles,
cero,L, (see (3.62)) using our hybrid method. Additionally, we calculated the erosion
potential from an Euler–Euler simulation, cero,E, (see (3.49)) for the same case based
on the microjet model. Summing the erosion potentials, cero, of all faces in each
radial interval yielded the erosion as a function of the radial distance, r, from the
nozzle’s central axis. Figure 32 plots, as functions of r, the erosion potential, cero,E,
obtained from a pure Euler–Euler simulation (using the Eulerian erosion model), the
erosion potential, cero,L, obtained from a simulation based on the multi-scale approach
(using the Lagrangian erosion model), and the experimentally measured erosion
depths of Franc & Riondet (2006). Maximum values of potentials obtained from
the multi-scale method and from the Euler–Euler simulation compared favourably to
maximum values of measured erosion depths (Exp.); however, the overall distribution
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FIGURE 31. Number of collapses for different simulated cases versus radial distance from
the nozzle’s central axis.
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FIGURE 32. Numerical erosion assessment obtained from case H4 using our multi-scale
method with a Lagrangian erosion model (cero,L) and using an Eulerian erosion model
(cero,E) and comparative measured erosion depths of Franc & Riondet (2006) (Exp.) plotted
against radial distance from the nozzle’s central axis.

of erosion potential from our hybrid method was narrower and agreed more closely
with measured erosion depths. For collapse distances of γ < 1, far lesser impacts
occurred than for collapse distances of 1 6 γ 6 3. Although only collapses of γ < 1
were able to exceed the yield strength of the stainless steel 316 L target plate of
σy = 400 MPa, i.e. the material Franc & Riondet (2006) used in their experiments.
We concluded that our calculated collapses close to the surface were most aggressive.
This was in agreement with experimental investigations on near-wall cavitation bubble
collapses of Vogel & Lauterborn (1988), Isselin, Alloncle & Autric (1998), Philipp
& Lauterborn (1998) and Dular et al. (2019) who found that near-wall collapses are
most aggressive and that, for bubble collapses occurring at distances of γ > 2, almost
no erosion takes place.
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FIGURE 33. Numerical erosion assessment obtained from case H4 using our multi-scale
method with a Lagrangian erosion model assuming a linear dependence (cero,L) and
assuming a nonlinear dependence on impact pressure (cero,L2) and comparable measured
erosion depths of Franc & Riondet (2006) (Exp.) plotted against radial distance from the
nozzle’s central axis.

Recall that mass loss of material from an impacted surface depends nonlinearly
on impact loads. We proposed that erosion is proportional to our calculated impact
pressure squared (see (3.64)). Although most of our calculated impact pressures did
not necessarily exceed the yield strength of σy = 400 MPa for stainless steel 316 L,
we assumed that all collapses within γ 6 3 impacted the surface of the target plate.
To compare, we calculated the coefficient, cero,L2, by summing the coefficients from
all other faces within radial intervals of 1 mm. Figure 33 plots, as functions of r,
these coefficients, assuming a linear dependence, cero,L, and a nonlinear dependence
of erosion on impact pressure, cero,L2, together with measured erosion depths of Franc
& Riondet (2006). Although the assumption of a quadratic proportionality in (3.64)
was rough, our erosion assessment was improved and agreed more favourably with
measured erosion depths, demonstrating that the nonlinear dependence of erosion on
impact pressures is valid. Considering this nonlinear pressure dependence, the area of
erosion was estimated to be narrower because not only most impacts, but also the
impacts of highest pressures occurred at radial distances between 21 to 22 mm from
the nozzle’s central axis.

6. Conclusion
We numerically simulated cavitating flow using a multi-scale Euler–Euler/Euler–

Lagrange approach to assess cavitation erosion based on Lagrangian bubble collapses.
The resulting simulated bubble dynamics was validated against experimental measure-
ments, while bubble motions were verified for different cases. Our multi-scale
approach treated large vapour volumes on an Eulerian grid; small vapour volumes, as
spherical Lagrangian bubbles. To gain insight into bubble behaviour, the dynamics and
motions of each Lagrangian bubble were solved individually. For one simple case
and for the flow through an axisymmetric nozzle, the transformation mechanisms
demonstrated the conversion of Eulerian vapour volumes into Lagrangian bubbles
and vice versa. This multi-scale approach accounted for the interaction between
macroscopic and microscopic scales involved in cavitating flows. To simulate the
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cavitating flow through an axisymmetric nozzle, we considered various characteristic
parameters of the multi-scale solver and identified their influence on cavitation
behaviour and erosion assessment. Although the average number of Lagrangian
bubbles differed in all cases, these bubbles did not influence macroscopic cavitation.
With the exception of a constant nucleus diameter of 10 µm, all our simulations
showed a similar behaviour of macroscopic cavitation, and this behaviour compared
favourably to cavitation obtained from a pure Euler–Euler simulation. Shedding
frequencies obtained from pure Euler–Euler simulations agreed favourably with
those obtained by Mihatsch et al. (2011, 2015) who used a compressible solver to
investigate the flow through this axisymmetric nozzle. As the distribution of cavitation
nuclei can strongly influence cavitation behaviour, we additionally made use of a
measurement-based distribution of nuclei based on experiments of Reuter et al. (2018).
We assumed that this measurement-based nucleus distribution was reasonable because
it provided the gas content of Lagrangian bubbles without considering additional
assumptions.

To assess cavitation-induced erosion, we used information from calculated spherical
Lagrangian bubble collapses and modelled the physics involved in an asymmetric
near-wall bubble collapse based on well-recognised fundamental experiments and
theoretical considerations. Our developed model using Lagrangian bubble collapses
to estimate cavitation erosion was based on experimental measurements of Vogel
& Lauterborn (1988) and Supponen et al. (2016). The influence of the asymmetric
collapse on bubble motion and collapse pressure depended on the stand-off distance
of bubbles from the solid surface. Applying this model to simulations using our
multi-scale approach enabled us to assess erosion that compared favourably to
measured erosion depths of Franc & Riondet (2006). Our simulations demonstrated
that bubbles collapsing within a normalised stand-off distance of less than unity
generated the highest impact pressures and coincided best with measured erosion
depths. We conclude that the calculated collapses near to the wall contributed most to
erosion, which is in agreement with experimental investigations on near-wall bubble
collapses of Vogel & Lauterborn (1988), Isselin et al. (1998), Philipp & Lauterborn
(1998) and Dular et al. (2019). Despite case H7, where the maximum bubble radius
was limited, for all other hybrid simulations maximum collapse radii agreed favourably
with investigations of Franc & Riondet (2006) and Chahine (2014). Furthermore, for
the numerical collapse based erosion assessment, we found that erosion in the form
of pit depth depended nonlinearly on impact pressures, which agreed with the erosion
model of Franc & Riondet (2006). By considering single Lagrangian bubble collapses,
the possibility to assess cavitation erosion was significantly improved.

The physics-based assessment of erosion based on calculated single bubble collapses
represents our principal contribution documented in this paper, and the experiments
of Franc & Riondet (2006) provided a reliable basis to validate our numerical
approach. We established a connection between the behaviour of macroscopic
cavitation structures and near-wall bubble collapses that cause erosion.

This approach offers the potential to correlate measured pits with bubble sizes. In
future, hopefully additional data of single different sized bubble collapses, stand-off
distances, pressure differences, and material properties will be made available from
laser-induced bubble collapses near solid surfaces. Our approach made it possible to
specify input data for simulations of isolated asymmetric bubble collapses. Plans call
for applying our multi-scale approach to assess erosion sensitive regions for more
complex flow problems, such as ship propellers.
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